Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Cancer Sci ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113435

RESUMO

Cholangiocarcinoma is a fatal disease with limited therapeutic options. We screened genes required for cholangiocarcinoma tumorigenicity and identified FADS2, a delta-6 desaturase. FADS2 depletion reduced in vivo tumorigenicity and cell proliferation. In clinical samples, FADS2 was expressed in cancer cells but not in stromal cells. FADS2 inhibition also reduced the migration and sphere-forming ability of cells and increased apoptotic cell death and ferroptosis markers. Lipidome assay revealed that triglyceride and cholesterol ester levels were decreased in FADS2-knockdown cells. The oxygen consumption ratio was also decreased in FADS2-depleted cells. These data indicate that FADS2 depletion causes a reduction in lipid levels, resulting in decrease of energy production and attenuation of cancer cell malignancy.

2.
Psychoneuroendocrinology ; 163: 106985, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38394918

RESUMO

OBJECTIVE: Although antipsychotics constitute the best treatment for patients with schizophrenia, this treatment class carries a high risk of metabolic disarrangements thus developing metabolic syndrome (MetS). Altered fatty acid (FA) composition and desaturase indices have been associated with several metabolic diseases, including MetS. Herein, we determined fatty acid desaturase 1 (FADS1) and FADS2 gene expressions, serum delta-5 desaturase (D5D) and D6D indices in female adults with first-episode schizophrenia after olanzapine medication, as well as their relationship with the incidence of MetS. METHODS: This study prospectively recruited 120 female patients with first-episode schizophrenia who completed 6-month olanzapine medication. Among these female patients, 31 patients developed MetS and 89 patients did not. RESULTS: The mRNA expression levels of FADS1 and FADS2 in patients were analyzed according to the presence of MetS and evaluation times with results of two-way ANOVAs (FADS1: PMetS = 0.0006, Ptime = 0.004, Pinteraction = 0.010; FADS2: PMetS = 0.012, Ptime < 0.0001, Pinteraction = 0.001). The D5D and D6D indices in patients were analyzed according to the presence of MetS and evaluation times with results of two-way ANOVAs (D5D: PMetS = 0.002, Ptime = 0.009, Pinteraction = 0.014; D6D: PMetS = 0.011, Ptime = 0.006, Pinteraction = 0.0001). The SCD-16 and SCD-18 indices in patients were analyzed according to the presence of MetS and evaluation times (SCD-16: PMetS = 0.005, Ptime = 0.009, Pinteraction = 0.016; SCD-18: PMetS = 0.037, Ptime = 0.382, Pinteraction = 0.163). The following multiple comparisons test showed the MetS exhibited reduced FADS1 mRNA expression and D5D index, increased FADS2 mRNA expression and D6D index, concomitant with an enhanced SCD-16 index, compared to the non-MetS did not after 6-month olanzapine medication. CONCLUSION: The study suggests changes of FADS1, FADS2 expressions, and fatty acid desaturase indices including D5D, D6D, and SCD-16 may be associated with the development of MetS in female adults with first-episode schizophrenia after olanzapine medication.


Assuntos
Antipsicóticos , Síndrome Metabólica , Esquizofrenia , Adulto , Humanos , Feminino , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Antipsicóticos/efeitos adversos , Esquizofrenia/tratamento farmacológico , Olanzapina , RNA Mensageiro
3.
J Comp Physiol B ; 193(4): 401-412, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37284836

RESUMO

Commercially important trout species, especially rainbow trout, are under great threat due to several negative factors affecting oxygen levels in water such as global warming and eutrophication. In our study, rainbow trout (Oncorhynchus mykiss) was exposed to chronic (for 28 days) hypoxia (4.0 ± 0.5 mg/L) and hyperoxia (12 ± 1.2 mg/L) in order to evaluate the alteration of fatty acid profiles in muscle, liver and gill tissues. In addition, delta-6-desaturase and elongase gene expression profiles were measured in liver, kidney and gill tissues. The amount of saturated fatty acids increased by oxygen applications in the liver, while it decreased in the muscle and gill tissues compared to normoxia (p < 0.05). Monounsaturated fatty acids levels increased in muscle and gill (p < 0.05). Although n-3 polyunsaturated fatty acid (PUFA) decreased in muscle tissue, n-6 PUFA increased (p < 0.05). The n-3/n-6 ratio decreased in muscle tissue in response to the both exposures (p < 0.05) as well as eicosapentaenoic acid/docosahexaenoic acid ratio (p < 0.05). Hypoxia exposure generally increased delta-6-desaturase and elongase mRNA levels in all tissues (p < 0.05). However, gene expression profiles were variable in fish exposed to hyperoxia. As a result of oxygen exposures, the lipid profile of muscle tissue, which stores dense fat, was negatively affected more than that of liver and gill tissues. We determined that the change in expression levels was tissue specific.


Assuntos
Hiperóxia , Oncorhynchus mykiss , Animais , Ácidos Graxos , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , Elongases de Ácidos Graxos/metabolismo , Linoleoil-CoA Desaturase/genética , Linoleoil-CoA Desaturase/metabolismo , Hipóxia , Oxigênio/metabolismo , Expressão Gênica
4.
Lipids ; 58(5): 217-227, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37309710

RESUMO

Past research in rodents suggests that fatty acid (FA) desaturase expression and activity may be modified by vitamin A; however, this has not been investigated in humans. The primary objective of this study was to examine associations between dietary retinoid intakes, plasma retinoid concentrations, and FA desaturase indices in young adults. As a secondary objective, biological sex and estrogen-containing contraceptive (EC) use were investigated due to prior evidence demonstrating that both can influence plasma retinol concentration and FA desaturase indices. Dietary retinoid intake (food frequency questionnaire), plasma retinoid concentrations (high-performance liquid chromatography-tandem mass spectrometry), plasma FA (gas chromatography), and FA desaturase indices (product-to-precursor ratios) from 945 adults recruited for the cross-sectional Toronto Nutrigenomics and Health study were analyzed. Participants were stratified into quartiles based on plasma retinol concentration and data analyzed by one-way analysis of covariance. Dietary retinoid intakes were not associated with the overall n-3 pathway, overall n-6 pathway, delta-5 desaturase, delta-6 desaturase, or delta-9 desaturase indices (all r < 0.10, p > 0.05). The overall n-6 pathway index was significantly higher (p = 0.0004) and the delta-5 desaturase index was significantly lower (p = 0.0003) in individuals with higher plasma retinol levels; however, these differences were lost when participants were grouped by biological sex and EC use. Although weak relationships were observed between plasma retinol and some FA desaturase indices in the total population, these associations appear to be driven by biological sex and EC usage rather than retinoids. We therefore find little evidence of a relationship between retinoids and FA desaturase indices in young, healthy adults.


Assuntos
Ácidos Graxos Dessaturases , Retinoides , Humanos , Adulto Jovem , Vitamina A , Estudos Transversais , Cromatografia Gasosa-Espectrometria de Massas , Estearoil-CoA Dessaturase/metabolismo , Ácidos Graxos/química
5.
EBioMedicine ; 91: 104510, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37086649

RESUMO

BACKGROUND: The causal relevance of polyunsaturated fatty acids (PUFAs) for risk of site-specific cancers remains uncertain. METHODS: Using a Mendelian randomization (MR) framework, we assessed the causal relevance of PUFAs for risk of cancer in European and East Asian ancestry individuals. We defined the primary exposure as PUFA desaturase activity, proxied by rs174546 at the FADS locus. Secondary exposures were defined as omega 3 and omega 6 PUFAs that could be proxied by genetic polymorphisms outside the FADS region. Our study used summary genetic data on 10 PUFAs and 67 cancers, corresponding to 562,871 cases and 1,619,465 controls, collected by the Fatty Acids in Cancer Mendelian Randomization Collaboration. We estimated odds ratios (ORs) for cancer per standard deviation increase in genetically proxied PUFA exposures. FINDINGS: Genetically elevated PUFA desaturase activity was associated (P < 0.0007) with higher risk (OR [95% confidence interval]) of colorectal cancer (1.09 [1.07-1.11]), esophageal squamous cell carcinoma (1.16 [1.06-1.26]), lung cancer (1.06 [1.03-1.08]) and basal cell carcinoma (1.05 [1.02-1.07]). There was little evidence for associations with reproductive cancers (OR = 1.00 [95% CI: 0.99-1.01]; Pheterogeneity = 0.25), urinary system cancers (1.03 [0.99-1.06], Pheterogeneity = 0.51), nervous system cancers (0.99 [0.95-1.03], Pheterogeneity = 0.92) or blood cancers (1.01 [0.98-1.04], Pheterogeneity = 0.09). Findings for colorectal cancer and esophageal squamous cell carcinoma remained compatible with causality in sensitivity analyses for violations of assumptions. Secondary MR analyses highlighted higher omega 6 PUFAs (arachidonic acid, gamma-linolenic acid and dihomo-gamma-linolenic acid) as potential mediators. PUFA biosynthesis is known to interact with aspirin, which increases risk of bleeding and inflammatory bowel disease. In a phenome-wide MR study of non-neoplastic diseases, we found that genetic lowering of PUFA desaturase activity, mimicking a hypothetical intervention to reduce cancer risk, was associated (P < 0.0006) with increased risk of inflammatory bowel disease but not bleeding. INTERPRETATION: The PUFA biosynthesis pathway may be an intervention target for prevention of colorectal cancer and esophageal squamous cell carcinoma but with potential for increased risk of inflammatory bowel disease. FUNDING: Cancer Resesrch UK (C52724/A20138, C18281/A19169). UK Medical Research Council (MR/P014054/1). National Institute for Health Research (NIHR202411). UK Medical Research Council (MC_UU_00011/1, MC_UU_00011/3, MC_UU_00011/6, and MC_UU_00011/4). National Cancer Institute (R00 CA215360). National Institutes of Health (U01 CA164973, R01 CA60987, R01 CA72520, U01 CA74806, R01 CA55874, U01 CA164973 and U01 CA164973).


Assuntos
Neoplasias Colorretais , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Ácidos Graxos Ômega-3 , Doenças Inflamatórias Intestinais , Humanos , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/metabolismo , Polimorfismo de Nucleotídeo Único
6.
J Lipid Res ; 64(6): 100376, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37085033

RESUMO

The Δ-6 desaturase (D6D) enzyme is not only critical for the synthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from α-linolenic acid (ALA), but recent evidence suggests that it also plays a role in adipocyte lipid metabolism and body weight; however, the mechanisms remain largely unexplored. The goal of this study was to investigate if a D6D deficiency would inhibit triacylglycerol storage and alter lipolytic and lipogenic pathways in mouse white adipose tissue (WAT) depots due to a disruption in EPA and DHA production. Male C57BL/6J D6D knockout (KO) and wild-type (WT) mice were fed either a 7% w/w lard or flax (ALA rich) diet for 21 weeks. Energy expenditure, physical activity, and substrate utilization were measured with metabolic caging. Inguinal and epididymal WAT depots were analyzed for changes in tissue weight, fatty acid composition, adipocyte size, and markers of lipogenesis, lipolysis, and insulin signaling. KO mice had lower body weight, higher serum nonesterified fatty acids, smaller WAT depots, and reduced adipocyte size compared to WT mice without altered food intake, energy expenditure, or physical activity, regardless of the diet. Markers of lipogenesis and lipolysis were more highly expressed in KO mice compared to WT mice in both depots, regardless of the diet. These changes were concomitant with lower basal insulin signaling in WAT. Collectively, a D6D deficiency alters triacylglycerol/fatty acid cycling in WAT by promoting lipolysis and reducing fatty acid re-esterification, which may be partially attributed to a reduction in WAT insulin signaling.


Assuntos
Ácidos Graxos , Insulinas , Camundongos , Masculino , Animais , Ácidos Graxos/metabolismo , Triglicerídeos/metabolismo , Camundongos Endogâmicos C57BL , Tecido Adiposo Branco/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Camundongos Knockout , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Peso Corporal , Insulinas/metabolismo , Tecido Adiposo/metabolismo
7.
Am J Physiol Endocrinol Metab ; 324(3): E241-E250, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696599

RESUMO

Delta-6 desaturase (D6D), encoded by the Fads2 gene, catalyzes the first step in the conversion of α-linolenic acid to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The ablation of D6D in whole body Fads2-/- knockout (KO) mice results in an inability to endogenously produce EPA and DHA. Evidence supports a beneficial role for EPA and DHA on insulin-stimulated glucose disposal in skeletal muscle in the context of a metabolic challenge; however, it is unknown how low EPA and DHA levels impact skeletal muscle fatty acid composition and insulin signaling in a healthy context. The objective of this study was to examine the impact of ablating the endogenous production of EPA and DHA on skeletal muscle fatty acid composition, whole body glucose and insulin tolerance, and a key marker of skeletal muscle insulin signaling (pAkt). Male C57BL/6J wild-type (WT), Fads2+/- heterozygous, and Fads2-/- KO mice were fed a low-fat diet (16% kcal from fat) modified to contain either 7% w/w lard or 7% w/w flaxseed for 21 wk. No differences in total phospholipid (PL), triacylglycerol, or reactive lipid content were observed between genotypes. As expected, KO mice on both diets had significantly less DHA content in skeletal muscle PL. Despite this, KO mice did not have significantly different glucose or insulin tolerance compared with WT mice on either diet. Basal pAktSer473 was not significantly different between the genotypes within each diet. Ultimately, this study shows for the first time, to our knowledge, that the reduction of DHA in skeletal muscle is not necessarily detrimental to glucose homeostasis in otherwise healthy animals.NEW & NOTEWORTHY Skeletal muscle is the primary location of insulin-stimulated glucose uptake. EPA and DHA supplementation has been observed to improve skeletal muscle insulin-stimulated glucose uptake in models of metabolic dysfunction. Fads2-/- knockout mice cannot endogenously produce long-chain n-3 polyunsaturated fatty acids. Our results show that the absence of DHA in skeletal muscle is not detrimental to whole body glucose homeostasis in healthy mice.


Assuntos
Ácidos Docosa-Hexaenoicos , Intolerância à Glucose , Camundongos , Masculino , Animais , Insulina/metabolismo , Camundongos Endogâmicos C57BL , Ácido Eicosapentaenoico , Ácidos Graxos/metabolismo , Músculo Esquelético/metabolismo , Fosfolipídeos , Intolerância à Glucose/metabolismo , Glucose/metabolismo , Camundongos Knockout
8.
Arch Microbiol ; 204(10): 635, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127512

RESUMO

γ-Linolenic acid (GLA) is an essential n-6 polyunsaturated fatty acid (PUFA) that has received considerable attention in human and animal feed. GLA is used in many nutritional and medicinal applications, such as the treatment of cancer, inflammatory disorders, and diabetes. Currently, plant seed is the primary dietary source of GLA that is not enough to utilize on an industrial scale. To generate a sustainable novel source of GLA, the gene of delta-6 desaturase, one of the essential enzymes in the GLA production pathway, was isolated from Mucor rouxii DSM1194 and expressed in P. pastoris GS115 by pPICZC vector. The recombinant yeast expressed the GLA up to 19.2% (72 mg/g) of total fatty acids. GLA production of recombinant yeast was studied in a fermenter by oil waste for 5 days, and results detected 6.3 g/l lipid, and 103 mg/g GLA was produced in 72 h. The present study may provide an opportunity to develop an alternative host for manufacturing GLA on an industrial scale.


Assuntos
Pichia , Saccharomycetales , Ácido gama-Linolênico , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/metabolismo , Pichia/genética , Pichia/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Ácido gama-Linolênico/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-35500529

RESUMO

BACKGROUND: Zinc is an essential trace mineral that serves as a cofactor for the delta-5 and delta-6 desaturases (D5D, D6D) that are critical for long-chain polyunsaturated fatty acid (LC-PUFA) synthesis. While plasma zinc levels are generally reported to be associated with D5D and D6D indices in humans, it remains unclear if dietary zinc intake can be similarly associated with desaturase indices. Therefore, the present investigation examined if zinc intake determined by food frequency questionnaire (FFQ) is associated with desaturase indices in young Canadian adults. Additionally, we explored whether desaturase indices were modified by an interaction between dietary zinc intake and a common variant in the FADS1 gene. METHODS: Dietary zinc intake (FFQ), plasma fatty acids (gas chromatography) and the FADS1 rs174547 polymorphism were analyzed in young men and women (n = 803) from the cross-sectional Toronto Nutrigenomics and Health Study. Product-to-precursor fatty acid ratios were used to determine desaturase enzyme indices (D5D = 20:4n-6/20:3n-6; D6D = 18:3n-6/18:2n-6). Individuals were grouped according to dietary zinc intake, as well as by their rs174547 genotype (TT vs. TC+CC). Data were analyzed by 1-way and 2-way ANCOVA. RESULTS: Plasma fatty acids and D5D/D6D indices did not differ between individuals grouped according to dietary zinc intake. Further, the recently proposed biomarker of zinc intake, 20:3n-6/18:2n-6, was not associated with dietary zinc intake. Although the FADS1 rs174547 SNP was significantly associated with D5D and D6D indices in both men and women (p < 0.0001), we did not find evidence of a dietary zinc intake - FADS1 SNP interaction on D5D or D6D indices. CONCLUSION: Dietary zinc intake, as determined using FFQs, does not predict differences in desaturase indices, irrespective of FADS1 genotype.


Assuntos
Ácidos Graxos Dessaturases , Zinco , Canadá , Estudos Transversais , Dessaturase de Ácido Graxo Delta-5 , Dieta , Ácidos Graxos Dessaturases/genética , Ácidos Graxos , Feminino , Humanos , Linoleoil-CoA Desaturase/genética , Masculino , Avaliação Nutricional , Adulto Jovem
10.
Food Chem (Oxf) ; 4: 100060, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35415688

RESUMO

Hamsters have been long accepted as animal models to study the lipid metabolism in humans. However, very few scientific works described in detail the fatty acid (FA) composition of plasma and erythrocytes in hamsters in relation to their dietary intake, and none work was found comparing them with that described in humans. Therefore, a study was carried out to compare the effect of ingesting olive oil or dairy fat, as part of an equilibrated diet in healthy subjects, on plasma and erythrocytes FA composition. More than 40 FA were detected in samples of both species. It was demonstrated that plasma total FA (TFA) concentration and FA profiles are similar in humans and hamsters. In both species linoleic, oleic and palmitic acids are the main FA and accounted for the 70% of TFA. Differences found between species can be explained by differences in the dietary intake and differences in the proportion of triglycerides, cholesteryl esters and phospholipid fractions in plasma of both species. Changes in dietary FA intake causes similar changes in FA concentration in the plasma of both species and can be explained by the same metabolic processes. The erythrocyte FA profile differs more between the two species. Moreover, unlike humans, the FA profile of hamster erythrocytes is more sensitive to changes in dietary FA than that of plasma.

11.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 44(1): 158-163, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35300779

RESUMO

The fatty acid desaturase 2 (FADS2) gene encodes delta-6 desaturase (D6D) and is a member of the fatty acid desaturase gene family.D6D is the key enzyme catalyzing the transformation of linoleic acid and α-linolenic acid to long-chain polyunsaturated fatty acid (LC-PUFA).LC-PUFA play a crucial role in regulating the glycolipid metabolism of living organisms.In recent years,the activity of D6D and the single nucleotide polymorphism (SNP) of FADS2 gene have become a hot topic in the research on glycolipid metabolism.This article reviews the role of FADS2 gene in glycolipid metabolism.


Assuntos
Ácidos Graxos Dessaturases , Glicolipídeos , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Glicolipídeos/metabolismo , Humanos , Polimorfismo de Nucleotídeo Único
12.
Cell Metab ; 34(1): 125-139.e8, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986331

RESUMO

Concerted alteration of immune and metabolic homeostasis underlies several inflammation-related pathologies, ranging from metabolic syndrome to infectious diseases. Here, we explored the coordination of nucleic acid-dependent inflammatory responses and metabolic homeostasis. We reveal that the STING (stimulator of interferon genes) protein regulates metabolic homeostasis through inhibition of the fatty acid desaturase 2 (FADS2) rate-limiting enzyme in polyunsaturated fatty acid (PUFA) desaturation. STING ablation and agonist-mediated degradation increased FADS2-associated desaturase activity and led to accumulation of PUFA derivatives that drive thermogenesis. STING agonists directly activated FADS2-dependent desaturation, promoting metabolic alterations. PUFAs in turn inhibited STING, thereby regulating antiviral responses and contributing to resolving STING-associated inflammation. Thus, we have unveiled a negative regulatory feedback loop between STING and FADS2 that fine-tunes inflammatory responses. Our results highlight the role of metabolic alterations in human pathologies associated with aberrant STING activation and STING-targeting therapies.


Assuntos
Ácidos Graxos Dessaturases , Síndrome Metabólica , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/metabolismo , Humanos , Inflamação , Metabolismo dos Lipídeos
13.
Biochem Cell Biol ; 99(6): 725-734, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34738827

RESUMO

Delta-6-desaturase (D6D) activity is deficient in MCF-7 and other cancer cell lines, but it is not explained by FADS2 gene mutations. This deficient activity was not ameliorated by induction of the FADS2 gene; therefore, we hypothesized that some of the induced FADS2 transcript variants (tv) may play a negative regulatory role. FADS2_tv1 is the reference FADS2 tv, coding for full-length D6D isoform 1 (D6D-iso1), and alternative transcriptional start sites result in FADS2_tv2 and FADS2_tv3 variants encoding D6D-iso2 and D6D-iso3 isoforms, respectively, which lack the catalytically critical N-terminal domain. In MCF-7 cells, FADS2_tv2 and FADS2_tv3 were expressed at significantly higher levels than FADS2_tv1. Overexpression of FADS2_tv2 in HEK293 cells confirmed that D6D-iso2 is non-functional, and co-transfection demonstrated a dominant-negative role for D6D-iso2 in D6D-iso1 activity regulation. FADS2_tv2 was expressed at higher levels than FADS2_tv1 in HeLa, MDA-MB-435, MCF-10 A, and HT-29 cells, but at lower levels in A549, MDA-MB-231, and LNCaP cells. Overexpression studies indicated roles for FADS2 variants in proliferation and apoptosis regulation, which were also cell-line specific. Increased FADS2_tv2 expression provides a new mechanism to help explain deficient D6D activity in MCF-7 and other cancer cell lines, but it is not a hallmark of malignant cells.


Assuntos
Ácidos Graxos Dessaturases , Linoleoil-CoA Desaturase/metabolismo , Ácidos Graxos Dessaturases/genética , Células HEK293 , Humanos , Isoformas de Proteínas
14.
Nutrients ; 13(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34684479

RESUMO

Dihomo-gamma-linolenic acid (DGLA) is an n-6 polyunsaturated fatty acid (PUFA) derived from linoleic acid (LA). The LA:DGLA ratio reflects conversion from LA to DGLA. Low levels of DGLA in serum have been related to poor outcome in myocardial infarction (MI) patients. Aims: To assess the association of DGLA and LA:DGLA with total death as a primary aim and incident cardiovascular events as a secondary objective. Methods: Baseline samples from 1002 patients, aged 70 to 82 years, included 2-8 weeks after an MI and followed for 2 years, were used. Major adverse clinical events (MACE) consisted of nonfatal MI, unscheduled coronary revascularization, stroke, hospitalization for heart failure or all-cause death. Cox regression analysis was used to relate serum n-6 PUFA phospholipid levels (%wt) to the risk of MACE, adjusting for the following: (1) age, sex and body mass index (BMI); (2) adding baseline cod liver oil supplementation; (3) adding prevalent hypertension, chronic kidney disease and diabetes mellitus. Results: Median DGLA level in serum phospholipids was 2.89 (Q1-Q3 2.43-3.38) %wt. DGLA was inversely related to LA and LA:DGLA ratio. There were 208 incident cases of MACE and 55 deaths. In the multivariable analysis, the hazard ratio (HR) for the total death in the three higher quartiles (Q2-4) of DGLA as compared to Q1 was 0.54 (0.31-0.95), with p = 0.03 (Model-1), 0.50 (0.28-0.91), with p = 0.02 (Model-2), and 0.47 (0.26-0.84), with p = 0.012 (Model-3), and non-significant for MACE. Risk of MACE (Model 3) approached borderline significance for LA:DGLA in Q2-4 vs. Q1 [HR 1.42 (1.00-2.04), p = 0.052]. Conclusions: Low levels of DGLA were related to a high LA:DGLA ratio and risk of total death in elderly patients with recent MI.


Assuntos
Ácido 8,11,14-Eicosatrienoico/sangue , Ácido Linoleico/sangue , Infarto do Miocárdio/sangue , Infarto do Miocárdio/mortalidade , Idoso , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Análise Multivariada , Fosfolipídeos/sangue , Modelos de Riscos Proporcionais
15.
Nutrients ; 13(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34444977

RESUMO

Past research using hepatic rat microsomes showed that soy protein suppressed delta-6 desaturase activity (D6D) compared to casein (a dairy protein). The effects of soy and dairy on desaturase pathway activity in humans remain poorly investigated. The objective of this analysis was to investigate the association between soy and dairy consumption with plasma fatty acids and estimate the desaturase pathway activity in a multiethnic Canadian population of young adults. We analyzed data from men (n = 319) and women (n = 764) previously collected for the Toronto Nutrigenomics and Health Study. Food frequency questionnaires and plasma fatty acids were assessed. Relationships between soy and dairy beverages and food consumption with estimated desaturase activities were assessed by regression models and by grouping participants according to beverage and food intake data. Weak inverse associations (p ≤ 0.05) were found between soy consumption and the overall desaturation pathway activity, specifically D6D activity. When participants were grouped based on soy and dairy consumption habits, omega-6 LC-PUFAs, as well as various estimates of the desaturase pathway activity, were significantly lower in individuals consuming soy (with or without dairy) compared to individuals consuming only fluid milk and dairy products. In conclusion, soy consumption, not dairy consumption, appears to suppress desaturase pathway activity.


Assuntos
Laticínios , Dieta , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Ômega-6/sangue , Comportamento Alimentar , Alimentos de Soja , Animais , Canadá , Caseínas/farmacologia , Feminino , Humanos , Masculino , Leite , Ontário , Leite de Soja/farmacologia , Proteínas de Soja/farmacologia , Glycine max , Inquéritos e Questionários , Adulto Jovem
16.
BMC Genomics ; 22(1): 200, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33752587

RESUMO

BACKGROUND: Tilapia (Oreochromis niloticus) cultures are frequently infected by Vibrio vulnificus, causing major economic losses to production units. Previously, tilapia expressing recombinant delta-5 desaturase and delta-6 desaturase (D56) were found to be resistant to V. vulnificus infection. In this report, we profile the D56-mediated molecular changes underlying this resistance in tilapia. A comparative transcriptome analysis was performed on V. vulnificus-infected wild-type and D56-transgenic tilapia using Illumina's sequencing-by-synthesis approach. Gene enrichment analysis on differentially expressed unigenes was performed, and the expression patterns were validated by real-time PCR. RESULTS: Comparative transcriptome analysis was performed on RNA-sequence profiles obtained from wild-type and D56-transgenic tilapia at 0, 6 and 24 h post-infection with V. vulnificaus. GO and KEGG gene enrichment analyses showed that D56 regulates several pathways and genes, including fatty acid (FA) metabolism associated, and inflammatory and immune response. Expression of selected FA metabolism-associated, inflammatory and immune responsive genes was validated by qPCR. The inflammatory and immune responsive genes that are modulated by FA-associated D56 likely contribute to the enhanced resistance against V. vulnificus infection in Tilapia. CONCLUSIONS: Transcriptome profiling and filtering for two-fold change variation showed that 3795 genes were upregulated and 1839 genes were downregulated in D56-transgenic tilapia. These genes were grouped into pathways, such as FA metabolism, FA elongation, FA biosynthesis, biosynthesis of unsaturated FA, FA degradation, inflammation, immune response, and chemokines. FA-associated genes and immune-related genes were modulated by D56 at 6 h and 24 h post infection with V. vulnificus. The expression patterns of FA-related genes, inflammatory genes, antimicrobial peptide genes and immune responsive genes at 0, 3, 6, 12, 24 and 48 h post-infection suggests these genes are involved in the enhanced resistance of D56 transgenic tilapia to V. vulnificus.


Assuntos
Ciclídeos , Doenças dos Peixes , Tilápia , Vibrioses , Vibrio vulnificus , Animais , Ciclídeos/genética , Doenças dos Peixes/genética , Perfilação da Expressão Gênica , Tilápia/genética , Transcriptoma , Vibrioses/genética , Vibrioses/veterinária , Vibrio vulnificus/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-32145668

RESUMO

Polyunsaturated fatty acids (PUFAs), especially arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), play an important role in biological regulation. In our previous study using mice deficient in Δ6 desaturase (D6D), we reported that ARA is required for body growth, while DHA is necessary for functional development. In mammals, ARA and DHA are supplied directly or by synthesis from linoleic acid (LA) and α-linolenic acid (ALA). However, as desaturase enzyme activity is immature or low in newborns, and humans with minor alleles of the gene encoding desaturase, respectively, they require dietary supplementation with ARA and DHA. To investigate how the body reacts to a long-term reduction in fatty acid synthesis, we measured behavioral changes and fatty acid composition in mice heterozygous for the D6D null mutation with reduced D6D activity fed a diet containing only LA and ALA as PUFAs. During the growth-maturity period, heterozygous mice showed a slightly change in interest and curiosity compared with the wild-type group. ARA levels were decreased in the brain and liver in the heterozygous group, especially during the growth-maturity period, whereas DHA levels were decreased in the liver only in the old age period, suggesting that there are differences in the synthesis of and demand for ARA and DHA during life. For newborns, and humans with minor alleles with low desaturase activity, direct ARA intake is particularly important during the growth-maturity period, but they may need to be supplemented with DHA in the old age period. Further research is needed to determine the optimal intake and duration of these fatty acids.


Assuntos
Ácido Araquidônico/metabolismo , Comportamento Animal , Encéfalo/metabolismo , Dieta/métodos , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos Dessaturases/deficiência , Fígado/metabolismo , Animais , Animais Recém-Nascidos , Ansiedade , Suplementos Nutricionais , Ácidos Graxos Dessaturases/genética , Ácido Linoleico/administração & dosagem , Masculino , Camundongos , Camundongos Knockout , Atividade Motora , Ácido alfa-Linolênico/administração & dosagem
18.
J Biotechnol ; 308: 130-140, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31843519

RESUMO

Buglossoides arvensis seed oil is the richest natural source of stearidonic acid (SDA), an ω-3 fatty acid with nutraceutical potential superior to α-linolenic acid (ALA). The molecular basis of polyunsaturated fatty acid synthesis in B. arvensis is unknown. Here, we describe the identification of B. arvensis fatty acid desaturase2 (BaFAD2), fatty acid desaturase3 (BaFAD3), and Delta-6-desaturase (BaD6D-1 and BaD6D-2) genes by mining the transcriptome of developing seeds and their functional characterization by heterologous expression in Saccharomyces cerevisiae. In silico analysis of their encoded protein sequences showed conserved histidine-boxes and signature motifs essential for desaturase activity. Expression profiling of these genes showed higher transcript abundance in reproductive tissues than in vegetative tissues, and their expression varied with temperature stress treatments. Yeast expressing BaFAD2 was found to desaturate both oleic acid and palmitoleic acid into linoleic acid (LA) and hexadecadienoic acid, respectively. Fatty acid supplementation studies in yeast expressing BaFAD3 and BaD6D-1 genes revealed that the encoded enzyme activities of BaFAD3 efficiently converted LA to ALA, and BaD6D-1 converted LA to γ-linolenic acid and ALA to SDA, but with an apparent preference to LA. BaD6D-2 did not show the encoded enzyme activity and is not a functional D6D. Our results provide an insight into SDA biosynthesis in B. arvensis and expand the repository of fatty acid desaturase targets available for biotechnological production of SDA in traditional oilseed crops.


Assuntos
Vias Biossintéticas , Boraginaceae/genética , Ácidos Graxos Insaturados/metabolismo , Perfilação da Expressão Gênica/métodos , Boraginaceae/metabolismo , Simulação por Computador , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Linoleoil-CoA Desaturase/genética , Linoleoil-CoA Desaturase/metabolismo , Microssomos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Estresse Fisiológico , Temperatura
19.
Artigo em Inglês | MEDLINE | ID: mdl-31422159

RESUMO

Previous studies showed that mild iron deficiency anaemia (IDA) induced by feeding an iron deficient (ID) diet to female guinea pigs during gestation and lactation to alters the auditory functions of the offspring when corn oil is the only source of dietary lipids. Conversely, feeding an ID diet with a dietary fatty acid composition similar to that of typical human western diets induced minor impairments. Since tissue fatty acid metabolism is affected by dietary iron, the current study measured the impacts of these ID diets (ID-corn and ID-west) compared to the corresponding iron-sufficient control diets (IS-corn and IS-west) on encephalum fatty acid metabolism in the offspring at post-natal day 24. IDA induced by the ID-corn diet resulted in significant increases in encephalum n-6 PUFA content, but IDA induced by the ID-west diet had little impact on fatty acid profiles compared to the IS-west group. Brain COX II protein expression and FADS2 mRNA expression were statistically unaffected in both experiments, but encephalum PGE2 concentrations were significantly reduced in ID-west pups. These results suggest IDA studies during prenatal development should consider dietary lipid compositions.


Assuntos
Cérebro/metabolismo , Gorduras na Dieta , Eicosanoides/metabolismo , Deficiências de Ferro , Ferro da Dieta , Lactação/sangue , Anemia Ferropriva/metabolismo , Animais , Animais Recém-Nascidos , Dieta , Feminino , Cobaias , Ferro/sangue , Masculino , Fenômenos Fisiológicos da Nutrição , Gravidez , Efeitos Tardios da Exposição Pré-Natal
20.
Asian Pac J Cancer Prev ; 20(4): 1005-1018, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31030467

RESUMO

Background: The phosphatidylinositol 3-kinase/ protein kinase B /mammalian target of rapamycin (PI3K/Akt/ mTOR) signaling regulates multiple cellular processes and organizes cell proliferation, survival, and differentiation with the available nutrients, in particular, fatty acids. Polyunsaturated fatty acids (PUFAs) are cytotoxic to cancer cells and play a critical role in the treatment of multiple sclerosis (MS) and diabetes mellitus (DM). PUFAs are produced in the body by desaturases and elongases from dietary essential fatty acids (EFAs), primarily involving delta-6-desaturase (D6D). D6D is a rate-limiting enzyme for maintaining many aspects of lipid homeostasis and normal health. D6D is important to recognize the mechanisms that regulate the expression of this enzyme in humans. A lower level of D6D was seen in breast tumors compared to normal tissues. Interestingly, the elevated serum level of D6D was seen in MS and DM, which explains the critical role of D6D in inflammatory diseases. Methods: We searched databases of PubMed, Web of Science (WOS), Google Scholar, Scopus and related studies by predefined eligibility criteria. We assessed their quality and extracted data. Results: Regarding the mTOR signaling pathway, there is remarkable contributions of many inflammatory diseases to attention to common metabolic pathways are depicted. Of course, we need to have the insights into each disorder and their pathological process. The first step in balancing the intake of EFAs is to prevent the disruption of metabolism and expression of the D6D enzyme. Conclusions: The ω6 and ω3 pathways are two major pathways in the biosynthesis of PUFAs. In both of these, D6D is a vital bifunctional enzyme desaturating linoleic acid or alpha-linolenic acid. Therefore, if ω6 and ω3 EFAs are given together in a ratio of 2: 1, the D6D expression will be down-regulated and normalized.


Assuntos
Diabetes Mellitus/patologia , Linoleoil-CoA Desaturase/metabolismo , Esclerose Múltipla/patologia , Neoplasias/patologia , Diabetes Mellitus/enzimologia , Humanos , Esclerose Múltipla/enzimologia , Neoplasias/enzimologia , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA