Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138992

RESUMO

This comprehensive review presents a comparative analysis of early embryogenesis in Protostomia and Deuterostomia, the first of which exhibit a mosaic pattern of development, where cells are fated deterministically, while Deuterostomia display a regulatory pattern of development, where the fate of cells is indeterminate. Despite these fundamental differences, there are common transcriptional mechanisms that underline their evolutionary linkages, particularly in the field of functional genomics. By elucidating both conserved and unique regulatory strategies, this review provides essential insights into the comparative embryology and developmental dynamics of these groups. The objective of this review is to clarify the shared and distinctive characteristics of transcriptional regulatory mechanisms. This will contribute to the extensive areas of functional genomics, evolutionary biology and developmental biology, and possibly lay the foundation for future research and discussion on this seminal topic.


Assuntos
Bivalves , Regulação da Expressão Gênica no Desenvolvimento , Animais , Ouriços-do-Mar , Evolução Biológica , Genômica
2.
PeerJ ; 11: e16385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37953779

RESUMO

The Cambrian Radiation represents one of the largest diversification events in Earth history. While the resulting taxonomic diversity is exceptional, relatively few of these novel species can be traced outside the boundaries of a single palaeocontinent. Many of those species with cosmopolitan distributions were likely active swimmers, presenting opportunity and means to conquer new areas, but this would not have been the case for sessile organisms. Herpetogaster is a lower to middle Cambrian (Series 2-Miaolingian, Stage 3-Wuliuan) genus of sessile, stalked, filter-feeding deuterostomes with two species, H. collinsi and H. haiyanensis, known respectively from Laurentia and Gondwana. Here, we expand the distribution of H. collinsi to Gondwana with newly discovered specimens from the Balang Formation of Hunan, China. This discovery raises questions on the origin of the genus and how sessile organisms were able to disperse over such a broad distance in the lower Cambrian. As Herpetogaster has been recovered at the base of the Ambulacrarian tree in recent phylogenies, a planktonic larval stage is suggested, which implies, that the last common ancestor of the Ambulacraria might have already had planktonic larvae or that such larvae developed multiple times within the Ambulacraria.


Assuntos
Fósseis , Animais , Larva , Filogenia , China
3.
Curr Biol ; 33(12): 2359-2366.e2, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37167976

RESUMO

Deuterostomes are characterized by some of the most widely divergent body plans in the animal kingdom. These striking morphological differences have hindered efforts to predict ancestral characters, with the origin and earliest evolution of the group remaining ambiguous. Several iconic Cambrian fossils have been suggested to be early deuterostomes and hence could help elucidate ancestral character states. However, their phylogenetic relationships are controversial. Here, we describe new, exceptionally preserved specimens of the discoidal metazoan Rotadiscus grandis from the early Cambrian Chengjiang biota of China. These reveal a previously unknown double spiral structure, which we interpret as a chordate-like covering to a coelomopore, located adjacent to a horseshoe-shaped tentacle complex. The tentacles differ in key aspects from those seen in lophophorates and are instead more similar to the tentacular systems of extant pterobranchs and echinoderms. Thus, Rotadiscus exhibits a chimeric combination of ambulacrarian and chordate characters. Phylogenetic analyses recover Rotadiscus and closely related fossil taxa as stem ambulacrarians, filling a significant morphological gap in the deuterostome tree of life. These results allow us to reconstruct the ancestral body plans of major clades of deuterostomes, revealing that key traits of extant forms, such as a post-anal region, gill bars, and a U-shaped gut, evolved through convergence.


Assuntos
Evolução Biológica , Cordados , Animais , Filogenia , Equinodermos , Fósseis
4.
Biol Rev Camb Philos Soc ; 98(1): 316-351, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36257784

RESUMO

Deuterostomes are the major division of animal life which includes sea stars, acorn worms, and humans, among a wide variety of ecologically and morphologically disparate taxa. However, their early evolution is poorly understood, due in part to their disparity, which makes identifying commonalities difficult, as well as their relatively poor early fossil record. Here, we review the available morphological, palaeontological, developmental, and molecular data to establish a framework for exploring the origins of this important and enigmatic group. Recent fossil discoveries strongly support a vermiform ancestor to the group Hemichordata, and a fusiform active swimmer as ancestor to Chordata. The diverse and anatomically bewildering variety of forms among the early echinoderms show evidence of both bilateral and radial symmetry. We consider four characteristics most critical for understanding the form and function of the last common ancestor to Deuterostomia: Hox gene expression patterns, larval morphology, the capacity for biomineralization, and the morphology of the pharyngeal region. We posit a deuterostome last common ancestor with a similar antero-posterior gene regulatory system to that found in modern acorn worms and cephalochordates, a simple planktonic larval form, which was later elaborated in the ambulacrarian lineage, the ability to secrete calcium minerals in a limited fashion, and a pharyngeal respiratory region composed of simple pores. This animal was likely to be motile in adult form, as opposed to the sessile origins that have been historically suggested. Recent debates regarding deuterostome monophyly as well as the wide array of deuterostome-affiliated problematica further suggest the possibility that those features were not only present in the last common ancestor of Deuterostomia, but potentially in the ur-bilaterian. The morphology and development of the early deuterostomes, therefore, underpin some of the most significant questions in the study of metazoan evolution.


Assuntos
Cordados , Fósseis , Humanos , Animais , Filogenia , Brânquias , Equinodermos/genética , Larva , Evolução Biológica
5.
Curr Biol ; 32(23): 5180-5188.e3, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36356574

RESUMO

Conflicting studies place a group of bilaterian invertebrates containing xenoturbellids and acoelomorphs, the Xenacoelomorpha, as either the primary emerging bilaterian phylum1,2,3,4,5,6 or within Deuterostomia, sister to Ambulacraria.7,8,9,10,11 Although their placement as sister to the rest of Bilateria supports relatively simple morphology in the ancestral bilaterian, their alternative placement within Deuterostomia suggests a morphologically complex ancestral bilaterian along with extensive loss of major phenotypic traits in the Xenacoelomorpha. Recent studies have questioned whether Deuterostomia should be considered monophyletic at all.10,12,13 Hidden paralogy and poor phylogenetic signal present a major challenge for reconstructing species phylogenies.14,15,16,17,18 Here, we assess whether these issues have contributed to the conflict over the placement of Xenacoelomorpha. We reanalyzed published datasets, enriching for orthogroups whose gene trees support well-resolved clans elsewhere in the animal tree.16 We find that most genes in previously published datasets violate incontestable clans, suggesting that hidden paralogy and low phylogenetic signal affect the ability to reconstruct branching patterns at deep nodes in the animal tree. We demonstrate that removing orthogroups that cannot recapitulate incontestable relationships alters the final topology that is inferred, while simultaneously improving the fit of the model to the data. We discover increased, but ultimately not conclusive, support for the existence of Xenambulacraria in our set of filtered orthogroups. At a time when we are progressing toward sequencing all life on the planet, we argue that long-standing contentious issues in the tree of life will be resolved using smaller amounts of better quality data that can be modeled adequately.19.


Assuntos
Irmãos , Animais , Humanos , Filogenia
6.
R Soc Open Sci ; 9(9): 220773, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36147942

RESUMO

Here, we describe the shape and mineral composition of ossicles from eight acorn worm species, bringing the total known biomineralizing enteropneusts to 10 and confirming that ossicles are widespread in Enteropneusta. Three general forms were identified including a globular form that occurs in all three major enteropneust families. The biomineral compositions included all three polymorphs of calcium carbonate; calcite, aragonite and vaterite, and low to high magnesium concentrations. Calcite was the most common and characteristic of echinoderm ossicles. Based on these findings we hypothesize that an enteropneust-like ancestor to the Ambulacraria had ectodermal ossicles, formed in an extracellular occluded space bordered by a sheath of sclerocyte cells. The ossicles were microscopic, monotypic globular shaped, calcite ossicles with low to high Mg content and MSP130 proteins. The ossicles lacked intercalation with other ossicles. The function of acorn worm ossicles is unknown, but the position of ossicles in the trunk epithelia and near to the surface suggests predator deterrence, to provide grip on the walls of a burrow or tube, as storage of metabolic waste, or to regulate blood pH, rather than as an endoskeleton function seen in fossil and crown group Echinodermata.

7.
Ecol Evol ; 10(23): 13544-13554, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304558

RESUMO

We measured gill slit fluctuating asymmetry (FA), a measure of developmental noise, in adults of three invertebrate deuterostomes with different feeding modes: the cephalochordate Branchiostoma floridae (an obligate filter feeder), the enteropneusts Protoglossus graveolens (a facultative filter feeder/deposit feeder) and Saccoglossus bromophenolosus (a deposit feeder). FA was substantially and significantly low in B. floridae and P. graveolens and high in S. bromophenolosus. Our results suggest that the gills of species that have experienced a relaxation of the filter feeding trait exhibit elevated FA. We found that the timing of development of the secondary collagenous gill bars, compared to the primary gill bars, was highly variable in P. graveolens but not the other two species, demonstrating an independence of gill FA from gill bar heterochrony. We also discovered the occasional ectopic expression of a second set of paired gills posterior to the first set of gills in the enteropneusts and that these were more common in S. bromophenolosus. Moreover, our finding that gill slits in enteropneusts exhibit bilateral symmetry suggests that the left-sidedness of larval cephalochordate gills, and the directional asymmetry of Cambrian stylophoran echinoderm fossil gills, evolved independently from a bilaterally symmetrical ancestor.

8.
Zoolog Sci ; 37(1): 79-90, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32068377

RESUMO

We describe here a new pterobranch, Cephalodiscus planitectus sp. nov. This pterobranch was collected from rocky slopes, at 100-300 m depth, off Jogashima Island, Sagami Bay, Japan. The tubaria of this new species have unique morphological features that differentiate it from known species. The tubaria are usually isolated from one another and have a completely flat and smooth surface that is devoid of erect features and projecting spines. Each has a simple, non-branched tubular cavity that is usually inhabited by a mature animal and its asexually budding offspring. The zooids have three pairs of tentaculated arms. A single bud is produced on the dorsal side of the stalk in adult zooids. In one instance, a live embryo was observed rotating at the bottom of a tubarium. Molecular phylogenetic analysis showed that C. planitectus is a sister group to all other Cephalodiscus species analyzed to date.


Assuntos
Invertebrados/anatomia & histologia , Invertebrados/classificação , Animais , Invertebrados/genética , Invertebrados/ultraestrutura , Japão , Microscopia Eletrônica de Varredura , Filogenia , RNA Ribossômico 18S/genética , Especificidade da Espécie
9.
Mol Phylogenet Evol ; 116: 87-96, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28860009

RESUMO

Sequences of ribosomal internal transcribed spacers (ITSs) are of great importance to molecular phylogenetics and DNA barcoding, but remain unstudied in some large taxa of Deuterostomia. We have analyzed complete ITS1 and ITS2 sequences in 62 species from 16 Deuterostomia classes, with ITS sequences in 24 species from 11 classes initially obtained using unannotated contigs and raw read sequences. A general tendency for both ITS length and GC-content increase from interior to superior Deuterostomia taxa, a uniform GC-content in both ITSs within the same species, thymine content decrease in sense DNA sequences of both ITSs are shown. A possible role of GC-based gene conversion in Deuterostomia ITS evolutionary changes is hypothesized. The first example of non-LTR retrotransposon insertion into ITS sequence in Deuterostomia is described in turtle Geochelone nigra. The roles of mobile genetic element insertions in the evolution of ITS sequences in some Sauropsida taxa are discussed as well.


Assuntos
DNA Espaçador Ribossômico/genética , Evolução Molecular , Animais , Composição de Bases , Sequência de Bases , DNA Espaçador Ribossômico/classificação , Bases de Dados Genéticas , Filogenia
10.
Proc Biol Sci ; 284(1859)2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28724733

RESUMO

Bilaterians usually possess a central nervous system, composed of neurons and supportive cells called glial cells. Whereas neuronal cells are highly comparable in all these animals, glial cells apparently differ, and in deuterostomes, radial glial cells are found. These particular secretory glial cells may represent the archetype of all (macro) glial cells and have not been reported from protostomes so far. This has caused controversial discussions of whether glial cells represent a homologous bilaterian characteristic or whether they (and thus, centralized nervous systems) evolved convergently in the two main clades of bilaterians. By using histology, transmission electron microscopy, immunolabelling and whole-mount in situ hybridization, we show here that protostomes also possess radial glia-like cells, which are very likely to be homologous to those of deuterostomes. Moreover, our antibody staining indicates that the secretory character of radial glial cells is maintained throughout their various evolutionary adaptations. This implies an early evolution of radial glial cells in the last common ancestor of Protostomia and Deuterostomia. Furthermore, it suggests that an intraepidermal nervous system-composed of sensory cells, neurons and radial glial cells-was probably the plesiomorphic condition in the bilaterian ancestor.


Assuntos
Evolução Biológica , Sistema Nervoso Central/citologia , Células Ependimogliais/citologia , Neuroglia/citologia , Animais , Neurônios
11.
Proc Natl Acad Sci U S A ; 114(27): 7055-7060, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28630328

RESUMO

Animals have evolved an array of pattern-recognition receptor families essential for recognizing conserved molecular motifs characteristic of pathogenic microbes. One such family is the Toll-like receptors (TLRs). On pathogen binding, TLRs initiate specialized cytokine signaling catered to the class of invading pathogen. This signaling is pivotal for activating adaptive immunity in vertebrates, suggesting a close evolutionary relationship between innate and adaptive immune systems. Despite significant advances toward understanding TLR-facilitated immunity in vertebrates, knowledge of TLR pathway evolution in other deuterostomes is limited. By analyzing genomes and transcriptomes across 37 deuterostome taxa, we shed light on the evolution and diversity of TLR pathway signaling elements. Here, we show that the deuterostome ancestor possessed a molecular toolkit homologous to that which drives canonical MYD88-dependent TLR signaling in contemporary mammalian lineages. We also provide evidence that TLR3-facilitated antiviral signaling predates the origin of its TCAM1 dependence recognized in the vertebrates. SARM1, a negative regulator of TCAM1-dependent pathways in vertebrates, was also found to be present across all major deuterostome lineages despite the apparent absence of TCAM1 in invertebrate deuterostomes. Whether the presence of SARM1 is the result of its role in immunity regulation, neuron physiology, or a function of both is unclear. Additionally, Bayesian phylogenetic analyses corroborate several lineage-specific TLR gene expansions in urchins and cephalochordates. Importantly, our results underscore the need to sample across taxonomic groups to understand evolutionary patterns of the innate immunity foundation on which complex immunological novelties arose.


Assuntos
Proteínas do Domínio Armadillo/genética , Moléculas de Adesão Celular/genética , Proteínas do Citoesqueleto/genética , Imunidade Inata/genética , Invertebrados/genética , Receptores Toll-Like/genética , Imunidade Adaptativa , Animais , Teorema de Bayes , Linhagem da Célula , Drosophila , Evolução Molecular , Humanos , Invertebrados/imunologia , Camundongos , Fator 88 de Diferenciação Mieloide/genética , Filogenia , Transdução de Sinais , Transcriptoma
12.
Biol Rev Camb Philos Soc ; 92(1): 316-325, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26486096

RESUMO

The chordates are usually characterized as bilaterians showing deuterostomy, i.e. the mouth developing as a new opening between the archenteron and the ectoderm, serial gill pores/slits, and the complex of chorda and neural tube. Both numerous molecular studies and studies of morphology and embryology demonstrate that the neural tube must be considered homologous to the ventral nerve cord(s) of the protostomes, but the origin of the 'new' mouth of the deuterostomes has remained enigmatic. However, deuterostomy is known to occur in several protostomian groups, such as the chaetognaths and representatives of annelids, molluscs, arthropods and priapulans. This raises the question whether the deuterostomian mouth is in fact homologous with that of the protostomes, viz. the anterior opening of the ancestral blastopore divided through lateral blastopore fusion, i.e. amphistomy. A few studies of gene expression show identical expression patterns around mouth and anus in protostomes and deuterostomes. Closer studies of the embryology of ascidians and vertebrates show that the mouth/stomodaeum differentiates from the anterior edge of the neural plate. Together this indicates that the chordate mouth has moved to the anterior edge of the blastopore, so that the anterior loop of the ancestral circumblastoporal nerve cord, which is narrow in the protostomes, has become indistinguishable. In the vertebrates, the mouth has moved further around the anterior pole to the 'ventral' side. The conclusion must be that the chordate mouth (and that of the deuterostomes in general) is homologous to the protostomian mouth and that the latest common ancestor of protostomes and deuterostomes developed through amphistomy, as suggested by the trochaea theory.


Assuntos
Evolução Biológica , Padronização Corporal/fisiologia , Cordados/classificação , Cordados/embriologia , Animais
13.
Evodevo ; 5: 22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24959343

RESUMO

BACKGROUND: The Hox gene cluster ranks among the greatest of biological discoveries of the past 30 years. Morphogenetic patterning genes are remarkable for the systems they regulate during major ontogenetic events, and for their expressions of molecular, temporal, and spatial colinearity. Recent descriptions of exceptions to these colinearities are suggesting deep phylogenetic signal that can be used to explore origins of entire deuterostome phyla. Among the most enigmatic of these deuterostomes in terms of unique body patterning are the echinoderms. However, there remains no overall synthesis of the correlation between this signal and the variations observable in the presence/absence and expression patterns of Hox genes. RESULTS: Recent data from Hox cluster analyses shed light on how the bizarre shift from bilateral larvae to radial adults during echinoderm ontogeny can be accomplished by equally radical modifications within the Hox cluster. In order to explore this more fully, a compilation of observations on the genetic patterns among deuterostomes is integrated with the body patterning trajectories seen across the deuterostome clade. CONCLUSIONS: Synthesis of available data helps to explain morphogenesis along the anterior/posterior axis of echinoderms, delineating the origins and fate of that axis during ontogeny. From this, it is easy to distinguish between 'seriality' along echinoderm rays and true A/P axis phenomena such as colinearity within the somatocoels, and the ontogenetic outcomes of the unique translocation and inversion of the anterior Hox class found within the Echinodermata. An up-to-date summary and integration of the disparate lines of research so far produced on the relationship between Hox genes and pattern formation for all deuterostomes allows for development of a phylogeny and scenario for the evolution of deuterostomes in general, and the Echinodermata in particular.

14.
Front Zool ; 11: 35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24847374

RESUMO

BACKGROUND: Metamorphic remodeling of the nervous system and its organization in juvenile may shed light on early steps of evolution and can be used as an important criterion for establishing the relationships among large groups of animals. The protostomian affiliation of phoronids does not still have certain morphological and embryological proofs. In addition, the relationship of phoronids and other former "lophophorates" is still uncertain. The resolving of these conflicts requires detailed information from poorly investigated members of phoronids, such as Phoronopsis harmeri. RESULTS: During metamorphosis, the juvenile consumes the nerve elements of the larval hood. Two dorsolateral groups of larval perikarya remain and give rise to the dorsal ganglion, which appears as the "commissural brain". The juvenile inherits the main and minor tentacular nerve rings from the larva. Although the larval tentacles are directly inherited by the juvenile in P. harmeri, the ultrastructure and location of the definitive tentacular neurite bundles change greatly. Innervation of the juvenile lophophore exhibits a regular alternation of the intertentacular and abfrontal neurite bundles. The giant nerve fiber appears at early stage of metamorphosis and passes from the right group of dorsolateral perikarya to the left side of the body. DISCUSSION: THE METAMORPHIC REMODELING OF THE PHORONID NERVOUS SYSTEM OCCURS IN TWO DIFFERENT WAYS: with complete or incomplete destruction of organ systems. The morphology of the lophophore seems similar to those of the former members of "Lophophorata", but its innervation differs greatly. These findings support the separation of bryozoans from Lophophorata and establish a need for new data on the organization of the brachiopod nervous system. The nervous system of the phoronid juvenile is organized as an epidermal nerve plexus but exhibits a nerve center in the anterior portion of the body. The simultaneous presence of both the apical organ and anlage of the cerebral ganglion in phoronids at the larval stage, and the reduction of the apical organ during metamorphosis support the Trochea theory and allow to suggest the presence of two nervous centers in the last common ancestor of the Bilateria. Phoronids retained some plesiomorphic traits and can be regarded as one of the most primitive groups of lophotrochozoans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA