Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Reprod Sci ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619795

RESUMO

This study aims to investigate the association between chromosomal polymorphisms and abnormalities in male reproductive health. Within the period from January 2018 to December 2022, a cohort of 10,827 males seeking fertility services at our reproductive center was selected for inclusion in this study. Peripheral blood chromosomal karyotype analysis was conducted for each participant to identify carriers of chromosomal polymorphisms, who were subsequently categorized into a polymorphism group. Additionally, a control group was constituted by randomly selecting 1,630 patients exhibiting normal chromosomal karyotypes. The study conducted statistical analyses to compare clinical outcomes between the two groups, focusing on infertility, history of spontaneous miscarriage in partners, anomalies in reproductive development, fetal abnormalities, and sperm quality metrics. (1) Among the cohort of 10,827 males, chromosomal polymorphisms were identified in 1,622 participants, yielding a detection rate of 14.98%. This rate is significantly elevated in comparison to the baseline prevalence of 1.77% observed in the general population. (2) The predominant variant among these polymorphisms was related to the Y chromosome, accounting for 1,082 cases (66.71% of the polymorphic findings), corresponding to a detection rate of 9.99%. This is markedly higher than the approximate 0.09% prevalence noted within a normative demographic. (3) Statistical analysis revealed significant disparities between the chromosomal polymorphism group and the control group in several clinical outcomes. Notably, the rates of spontaneous abortion (18.06% vs. 1.35%), fetal anomalies (1.97% vs. 0.25%), and poor sperm quality (41.74% vs. 7.18%) were markedly higher in the polymorphism group. Additionally, incidences of testicular dysgenesis (2.28% vs. 0.92%) and hypogonadism in partners (0.62% vs. 0.37%) also demonstrated significant differences, underscoring the potential reproductive implications of chromosomal polymorphisms. The study establishes a significant link between chromosomal polymorphisms and critical reproductive outcomes, including male infertility, spontaneous miscarriages in partners, fetal anomalies, and reduced sperm quality. These findings highlight the clinical relevance of chromosomal polymorphisms in reproductive health assessments and suggest the necessity for their consideration in the diagnostic and therapeutic strategies for male reproductive disorders.

2.
Am J Primatol ; 85(9): e23535, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37475573

RESUMO

In many slowly developing mammal species, males reach sexual maturity well before they develop secondary sexual characteristics. Sexually mature male orangutans have exceptionally long periods of developmental arrest. The two male morphs have been associated with behavioral alternative reproductive tactics, but this interpretation is based on cross-sectional analyses predominantly of Northwest Sumatran populations. Here we present the first longitudinal analyses of behavioral changes of 10 adult males that have been observed in both unflanged and flanged morph. We also analyzed long-term behavioral data on an additional 143 individually identified males from two study sites, Suaq (Sumatra, Pongo abelii) and Tuanan (Borneo, Pongo pygmaeus wurmbii), to assess male mating tactics cross-sectionally in relation to population, male morph (unflanged and flanged), and other socio-ecological factors. Both our longitudinal and cross-sectional results confirm and refine previous cross-sectional accounts of the differences in mating tactics between the unflanged and the flanged male morphs. In the unflanged morph, males exhibit higher sociability, particularly with females, and higher rates of both copulation and sexual coercion than in the flanged morph. Based on our results and those of previous studies showing that females prefer flanged males, and that flanged males have higher reproductive success, we conclude that unflanged males face a trade-off between avoiding male-male contest competition and gaining mating access to females, and thus follow a "best-of-a-bad-job" mating strategy.


Assuntos
Pongo abelii , Pongo pygmaeus , Feminino , Masculino , Animais , Estudos Transversais , Reprodução , Indonésia , Mamíferos
3.
Front Cell Dev Biol ; 11: 1193248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37261077

RESUMO

Early embryonic arrest is one of the causes of assist reproduction technology (ART) failure. We have previously reported that the first sperm-derived genetic factor, ACTL7a mutations, could lead to early embryonic arrest. However, whether there are other male genetic factors associated with early embryonic arrest remains elusive. Here, we reported bi-allelic mutations in PLCZ1, a well-known causal gene of total fertilization failure, in four infertile males. Among these mutations, p.403_404del, p.I489S, and p.W536X were newly reported in this study. Histological and Western blotting analysis of the patients' sperm indicated these variants as loss-of-function mutations. These patients manifested normal conventional semen parameters and ultra-structures in sperm heads. However, among four in vitro fertilization (IVF) cycles, 81.8% (18/22) of the oocytes were polyspermic fertilized, which was rarely reported in PLCZ1-related male patients. In the following six ICSI cycles, artificial oocyte activation (AOA) was applied and successfully rescued the fertilization failure and polyspermy phenotypes, with 31.3% (15/48) of the MII oocytes normally fertilized. However, 60.0% (9/15) of these normally fertilized zygotes were arrested at 2-5-cell stage, with one failing to cleave, indicating that PLCZ1 was not only necessary for fertilization, but also crucial for early embryonic development. However, these rescued zygotes showed a lower potential in developing into blastocysts when cultured in vitro. Thus, fresh cleavage transfer was tried and two live births were successfully achieved thereafter. In conclusion, this study provided novel mutations in PLCZ1 gene to expand the pathogenic mutational spectrum in male infertility and demonstrated that PLCZ1 was a crucial sperm-related genetic factor for early embryonic arrest. We also proposed that cleavage transfer after ICSI and AOA treatment could be a potential treatment method for male patients carrying bi-allelic mutations in PLCZ1.

4.
Theriogenology ; 209: 60-75, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37356280

RESUMO

Histone methylation plays an essential role in oocyte growth and preimplantation embryonic development. The modification relies on histone methyl-transferases and demethylases, and one of these, lysine-specific demethylase 2a (Kdm2a), is responsible for modulating histone methylation during oocyte and early embryonic development. The mechanism of how Kdm2a deficiency disrupts early embryonic development and fertility remains elusive. To determine if maternally deposited Kdm2a is required for preimplantation embryonic development, the expression profile of Kdm2a during early embryos was detected via immunofluorescence staining and RT-qPCR. The Kdm2a gene in oocytes was specifically deleted with the Zp3-Cre/LoxP system and the effects of maternal Kdm2a loss were studied through a comprehensive range of female reproductive parameters including fertilization, embryo development, and the number of births. RNA transcriptome sequencing was performed to determine differential mRNA expression, and the interaction between Kdm2a and the PI3K/Akt pathway was studied with a specific inhibitor and activator. Our results revealed that Kdm2a was continuously expressed in preimplantation embryos and loss of maternal Kdm2a suppressed the morula-to-blastocyst transition, which may have been responsible for female subfertility. After the deletion of Kdm2a, the global H3K36me2 methylation in mutant embryos was markedly increased, but the expression of E-cadherin decreased significantly in morula embryos compared to controls. Mechanistically, RNA-seq analysis revealed that deficiency of maternal Kdm2a altered the mRNA expression profile, especially in the PI3K/Akt signaling pathway. Interestingly, the addition of a PI3K/Akt inhibitor (LY294002) to the culture medium blocked embryo development at the stage of morula; however, the developmental block caused by maternal Kdm2a loss was partially rescued with a PI3K/Akt activator (SC79). In summary, our results indicate that loss of Kdm2a influences the transcriptome profile and disrupts the PI3K/Akt signaling pathway during the development of preimplantation embryo. This can result in embryo block at the morula stage and female subfertility, which suggests that maternal Kdm2a is a potential partial redundancy with other genes encoding enzymes in the dynamics of early embryonic development. Our results provide further insight into the role of histone modification, especially on Kdm2a, in preimplantation embryonic development in mice.


Assuntos
Infertilidade Feminina , Animais , Feminino , Camundongos , Gravidez , Blastocisto , Caderinas/metabolismo , Caderinas/farmacologia , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Infertilidade Feminina/veterinária , Mórula , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais
5.
Theriogenology ; 198: 30-35, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36542875

RESUMO

Casein kinase 1, alpha 1 (CSNK1A1), is a member of the highly conserved serine/threonine protein kinase family. This study was established to analyze the expression and localization of CSNK1A1 and its function in early embryonic development in mice. Csnk1a1 mRNA and protein are expressed in multiple mouse tissues including the ovary. After ovulation and fertilization, Csnk1a1 mRNA and protein were detected in preimplantation embryos and their expression was highest in two-cell-stage embryos. CSNK1A1 protein was also mainly localized in the cytoplasm of preimplantation embryos. Moreover, knockdown of Csnk1a1 in zygotes led to a significant decrease in the rate of blastocyst formation. Furthermore, treatment of zygotes with the CSNK1A1-specific inhibitor D4476 also resulted in embryonic developmental arrest. These results provide the first evidence for a novel function of CSNK1A1 in early embryonic development in mice.


Assuntos
Desenvolvimento Embrionário , Zigoto , Animais , Feminino , Camundongos , Gravidez , Blastocisto/fisiologia , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Caseína Quinase Ialfa/metabolismo
6.
Theriogenology ; 194: 154-161, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257135

RESUMO

The target of EGR1 protein 1 (TOE1) is evolutionarily conserved from Caenorhabditis elegans to mammals, which plays a critical role in the maturation of a variety of small nuclear RNAs. Mutation in human TOE1 has been reported to cause pontocerebellar hypoplasia type 7, a severe neurodegenerative syndrome. However, the role of TOE1 in early embryonic development remains unclear. Herein, we found that Toe1 mRNA and protein were expressed in mouse preimplantation embryos. Silencing Toe1 by siRNA led to morula-to-blastocyst transition failure. This developmental arrest can be rescued by Toe1 mRNA microinjection. EdU incorporation assay showed a defect in blastomere proliferation within developmentally arrested embryos. Further studies revealed that Toe1 knockdown caused increased signals for γH2AX and micronuclei, indicative of sustained DNA damage. Moreover, mRNA levels of cell cycle inhibitor p21 were significantly upregulated in Toe1 knockdown embryos before developmental arrest. Together, these results suggest that TOE1 is indispensable for mouse early embryo development potentially through maintaining genomic integrity. Our findings provide further insight into the role of TOE1 in mouse preimplantation embryonic development.


Assuntos
Blastocisto , Desenvolvimento Embrionário , Animais , Feminino , Humanos , Camundongos , Gravidez , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Mórula , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Cell ; 185(16): 2988-3007.e20, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35858625

RESUMO

Human cleavage-stage embryos frequently acquire chromosomal aneuploidies during mitosis due to unknown mechanisms. Here, we show that S phase at the 1-cell stage shows replication fork stalling, low fork speed, and DNA synthesis extending into G2 phase. DNA damage foci consistent with collapsed replication forks, DSBs, and incomplete replication form in G2 in an ATR- and MRE11-dependent manner, followed by spontaneous chromosome breakage and segmental aneuploidies. Entry into mitosis with incomplete replication results in chromosome breakage, whole and segmental chromosome errors, micronucleation, chromosome fragmentation, and poor embryo quality. Sites of spontaneous chromosome breakage are concordant with sites of DNA synthesis in G2 phase, locating to gene-poor regions with long neural genes, which are transcriptionally silent at this stage of development. Thus, DNA replication stress in mammalian preimplantation embryos predisposes gene-poor regions to fragility, and in particular in the human embryo, to the formation of aneuploidies, impairing developmental potential.


Assuntos
Quebra Cromossômica , Segregação de Cromossomos , Aneuploidia , Animais , DNA , Replicação do DNA , Desenvolvimento Embrionário/genética , Humanos , Mamíferos/genética
8.
9.
Mol Ecol ; 31(16): 4319-4331, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35762848

RESUMO

After gastrulation, oviductal hypoxia maintains turtle embryos in an arrested state prior to oviposition. Subsequent exposure to atmospheric oxygen upon oviposition initiates recommencement of embryonic development. Arrest can be artificially extended for several days after oviposition by incubation of the egg under hypoxic conditions, with development recommencing in an apparently normal fashion after subsequent exposure to normoxia. To examine the transcriptomic events associated with embryonic arrest in green sea turtles (Chelonia mydas), RNA-sequencing analysis was performed on embryos from freshly laid eggs and eggs incubated in either normoxia (oxygen tension ~159 mmHg) or hypoxia (<8 mmHg) for 36 h after oviposition (n = 5 per group). The patterns of gene expression differed markedly among the three experimental groups. Normal embryonic development in normoxia was associated with upregulation of genes involved in DNA replication, the cell cycle, and mitosis, but these genes were commonly downregulated after incubation in hypoxia. Many target genes of hypoxia inducible factors, including the gene encoding insulin-like growth factor binding protein 1 (igfbp1), were downregulated by normoxic incubation but upregulated by incubation in hypoxia. Notably, some of the transcriptomic effects of hypoxia in green turtle embryos resembled those reported to be associated with hypoxia-induced embryonic arrest in diverse taxa, including the nematode Caenorhabditis elegans and zebrafish (Danio rerio). Hypoxia-induced preovipositional embryonic arrest appears to be a unique adaptation of turtles. However, our findings accord with the proposition that the mechanisms underlying hypoxia-induced embryonic arrest per se are highly conserved across diverse taxa.


Assuntos
Tartarugas , Animais , Feminino , Hipóxia , Oxigênio/metabolismo , Transcriptoma/genética , Tartarugas/genética , Peixe-Zebra
10.
Curr Biol ; 32(10): 2248-2262.e9, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35504281

RESUMO

Sleep is an essential state that allows for recuperation and survival processes. Disturbing sleep triggers stress responses that promote protective gene expression. Sleep and its deprivation grossly impact gene expression, but little is known about how normal or disturbed sleep control gene expression. Central to the induction of sleep are sleep-active neurons, which inhibit wakefulness and promote survival. Sleep and sleep-active neurons are highly conserved. In Caenorhabditis elegans, the sleep-active RIS neuron is crucial for sleep and survival. Here, we show that RIS depolarization promotes the protective gene expression response that occurs during developmental arrest. This response includes the activation of FOXO/DAF-16 and expression of DAF-16 target genes such as HSP-12.6, a small heat-shock protein that is required for starvation survival. Disturbing sleep by mechanical stimulation increases RIS depolarization. RIS activation in turn activates DAF-16 and other genes required for survival. Hence, during normal sleep, RIS depolarization promotes protective gene expression. When sleep is disturbed, protective gene expression gets further increased by raised RIS depolarization. We thus link sleep-active neuron depolarization to protective gene expression changes and suggest that the cellular stress response following sleep deprivation could be understood as a safeguarding process that is caused by the overactivation of sleep-active neurons.


Assuntos
Proteínas de Caenorhabditis elegans , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica , Neurônios/fisiologia , Sono/genética
11.
Physiol Biochem Zool ; 95(4): 279-287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35588475

RESUMO

AbstractIn oviparous reptiles, parental care is often limited to the energy allocated to embryos before oviposition. Reproducing females can allocate energy toward vitellogenesis, determining the number and size of eggs, fertilization, eggshell calcification, retention of eggs within the oviduct after fertilization (oviductal egg retention), and nesting activities. Oviductal egg retention in turtles ranges from 2 wk to half a year, permitting flexibility in the timing of oviposition. The energetic cost of oviductal egg retention in eastern musk turtles (Sternotherus odoratus) was investigated by measuring the metabolism of females before and after oviposition. Gravid female metabolic rates were elevated relative to male and nongravid female metabolic rates, indicating an associated energetic cost for egg retention. Metabolism of gravid females was 40% higher before oviposition than after oviposition, and it was relatively constant across the period of oviductal egg retention. Metabolic costs associated with egg retention were correlated with clutch mass and female body mass but not with clutch size or the number of days leading up to oviposition. These results suggest that the strategy of oviductal egg retention has considerable energetic costs for eastern musk turtles but that it likely provides critical flexibility in nesting phenology.


Assuntos
Tartarugas , Animais , Tamanho da Ninhada , Feminino , Masculino , Oviductos , Oviposição
12.
Int J Gen Med ; 15: 949-954, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35115820

RESUMO

This study set out to evaluate quality control within a new in vitro fertilization (IVF) laboratory environment and of new incubators based on the culture results of tripronuclear zygotes. The representative environmental indicators within new and old IVF laboratories were monitored, and tripronuclear zygotes were cultured in the two laboratories; the results were analyzed and compared. Subsequently, tripronuclear (3PN) zygotes were cultured in both new and old incubators and the culture results were compared. No differences were found in embryo development between 3PN zygotes in the old and new laboratories. However, in the quality control test, the degeneration rate and developmental arrest rate in the new incubator early phase group were significantly increased when compared with the old incubators. Moreover, the grade I embryo rate also decreased significantly. Nevertheless, all the above comparisons in the new incubator later phase group showed no statistical significance as compared to those observed in old incubators. Tripronuclear zygotes are sensitive to the environment in IVF laboratories and can be considered useful during quality control trials of new IVF laboratories and new equipment including incubators.

13.
Cell Cycle ; 21(6): 547-571, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35072590

RESUMO

Mammalian oocytes undergo two rounds of developmental arrest during maturation: at the diplotene of the first meiotic prophase and metaphase of the second meiosis. These arrests are strictly regulated by follicular cells temporally producing the secondary messengers, cAMP and cGMP, and other factors to regulate maturation promoting factor (composed of cyclin B1 and cyclin-dependent kinase 1) levels in the oocytes. Out of these normally appearing developmental arrests, permanent arrests may occur in the oocytes at germinal vesicle (GV), metaphase I (MI), or metaphase II (MII) stage. This issue may arise from absence or altered expression of the oocyte-related genes playing key roles in nuclear and cytoplasmic maturation. Additionally, the assisted reproductive technology (ART) applications such as ovarian stimulation and in vitro culture conditions both of which harbor various types of chemical agents may contribute to forming the permanent arrests. In this review, the molecular determinants of developmental and permanent arrests occurring in the mammalian oocytes are comprehensively evaluated in the light of current knowledge. As number of permanently arrested oocytes at different stages is increasing in ART centers, potential approaches for inducing permanent arrests to obtain competent oocytes are discussed.


Assuntos
Meiose , Oócitos , Animais , Mamíferos , Prófase Meiótica I , Metáfase , Oócitos/metabolismo
14.
Theriogenology ; 181: 119-125, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35078124

RESUMO

Energy is essential for early embryogenesis, and fertilized eggs can successfully develop to blastocyst in in vitro culture medium with an appropriate energy supply. Conversely, embryonic development is negatively affected by a suboptimal energy supply. We previously observed that a low level of pyruvate greatly arrests mouse embryos at the 2-cell stage. However, how methylation modifications are affected at this specific stage remains unknown. In this study, we found that mouse embryos could timely develop to the 4-cell stage in K+simplex optimized medium (KSOM) with control level of pyruvate, but embryos were significantly arrested at the 2-cell stage when pyruvate was reduced to 0.2-fold of the control level. Moreover, the fluorescence intensities of 5 mC, H3K4me2, H3K9me2 and H3K27me2 in the 2-cell stage embryos of the 0.2-fold pyruvate group were notedly lower than those of the control group, but N6-methyladenosine (m6A) fluorescence intensity was higher, suggesting that global genomic DNA, histone and m6A methylation modifications are disrupted with low levels of pyruvate. Consistently, the mRNA levels of genes related to DNA methylation, histone methylation and m6A modifications were also disturbed in the 2-cell stage embryos cultured with low levels of pyruvate. In summary, our findings demonstrate that insufficient pyruvate in culture medium results in mouse embryonic developmental arrest, at least in part due to defects in methylation modifications.


Assuntos
Blastocisto , Ácido Pirúvico , Animais , Blastocisto/metabolismo , Metilação de DNA , Desenvolvimento Embrionário/genética , Epigênese Genética , Feminino , Camundongos , Gravidez , Ácido Pirúvico/metabolismo
15.
Dev Cell ; 56(19): 2692-2702.e5, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34610328

RESUMO

Animals have developed various nutrient-sensing mechanisms for survival under fluctuating environmental conditions. Although extensive cell-culture-based analyses have identified diverse mediators of amino acid sensing upstream of mTOR, studies using animal models to examine intestine-initiated amino acid sensing mechanisms under specific physiological conditions are lacking. Here, we developed a Caenorhabditis elegans model to examine the impact of amino acid deficiency on development. We discovered a leucine-derived monomethyl branched-chain fatty acid and its downstream metabolite, glycosphingolipid, which critically mediates the overall amino acid sensing by intestinal and neuronal mTORC1, which in turn regulates postembryonic development at least partly by controlling protein translation and ribosomal biogenesis. Additional data suggest that a similar mechanism may operate in mammals. This study uncovers an amino-acid-sensing mechanism mediated by a lipid biosynthesis pathway.


Assuntos
Aminoácidos/deficiência , Ácidos Graxos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Citoplasma/metabolismo , Glicoesfingolipídeos/metabolismo , Intestinos , Leucina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Modelos Animais , Biossíntese de Proteínas
16.
Reprod Biomed Online ; 43(5): 891-898, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34509376

RESUMO

RESEARCH QUESTION: How can the effect of genetic mutations that may cause primary female infertility be evaluated? DESIGN: Patients and their family members underwent whole-exome sequencing and Sanger sequencing to detect the infertility-causing gene and inheritance pattern. To study the function of mutant proteins in vitro, vectors containing wild-type or mutant TUBB8 cDNA were constructed for transient expression in HeLa cells, and in-vitro transcribed mRNA were used for microinjection in germinal vesicle-stage mouse oocytes. Immunofluorescence staining was used to observe the microtubule structure in HeLa cells or meiotic spindle in mouse oocytes. RESULTS: A maternally inherited TUBB8 (Tubulin beta 8 class VIII) mutation (NM_177987.2: c. 959G>A: p. R320H) and a previously reported (NM_177987.2: c. 161C>T: p. A54V) recessive mutation from two infertile female patients were identified. The oocytes from the patient carrying p.A54V mutation failed fertilization, whereas oocytes with p.R320H mutation could be fertilized but showed heavy fragmentation during early development. In vitro, functional assays showed that p. A54V mutant disrupted the microtubule structure in HeLa cells (49.3% of transfected cells) and caused large polar body extrusion in mouse oocytes (27.5%), whereas the p.R320H mutant caused a higher abnormal rate (69.7%) in cultured cells and arrested mouse oocytes at meiosis I (38.7%). CONCLUSION: Two TUBB8 mutations (p.A54V and p.R320H) were identified and their pathogeny was confirmed by in-vitro functional assays.


Assuntos
Desenvolvimento Embrionário/genética , Infertilidade Feminina/genética , Mutação , Oócitos/crescimento & desenvolvimento , Tubulina (Proteína)/genética , Adulto , Animais , Feminino , Fertilização/genética , Células HeLa/ultraestrutura , Humanos , Meiose/genética , Camundongos , Microtúbulos/genética , Oócitos/ultraestrutura , Linhagem , Corpos Polares/fisiologia , Transfecção
17.
Acta Biochim Biophys Sin (Shanghai) ; 53(7): 925-932, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34041522

RESUMO

Human embryos of in vitro fertilization (IVF) are often susceptible to developmental arrest, which greatly reduces the efficiency of IVF treatment. In recent years, it has been found that protein arginine methyltransferase 7 (PRMT7) plays an important role in the process of early embryonic development. However, not much is known about the relationship between PRMT7 and developmentally arrested embryos. The role of PRMT7 in developmentally arrested embryos was thus investigated in this study. Discarded human embryos from IVF were collected for experimental materials. Quantitative real-time polymerase chain reaction (qRT-PCR) and confocal analyses were used to identify PRMT7 mRNA and protein levels in early embryos at different developmental stages, as well as changes in the methylation levels of H4R3me2s. Additionally, PRMT7 was knocked down in the developmentally arrested embryos to observe the further development of these embryos. Our results demonstrated that PRMT7 mRNA and protein levels in arrested embryos were significantly increased compared with those in control embryos; meanwhile, the methylation levels of H4R3me2s in arrested embryos were also increased significantly. Knockdown of PRMT7 could rescue partially developmentally arrested embryos, and even individual developmentally arrested embryos could develop into blastocysts. In conclusion, over-expression of PRMT7 disrupts the early embryo development process, leading to early embryos developmental arrest, but these developmentally arrested defects could be partially rescued by knockdown of the PRMT7 protein.


Assuntos
Embrião de Mamíferos/enzimologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Proteína-Arginina N-Metiltransferases/biossíntese , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário , Histonas/genética , Histonas/metabolismo , Humanos , Metilação , Proteína-Arginina N-Metiltransferases/genética
18.
J Assist Reprod Genet ; 38(6): 1551-1559, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34036456

RESUMO

PURPOSE: This study aims to identify genetic causes of female infertility associated with recurrent failure of assisted reproductive technology (ART) characterized by embryonic developmental arrest. METHODS: We recruited infertile patients from two consanguineous families from the Reproductive Medicine Center of Guizhou Provincial People's Hospital. Peripheral blood was collected for genomic DNA extraction. Two affected individuals and their family members were performed with whole-exome sequencing and Sanger validation in order to identify possible causative genes. For further analyzing the effect of splicing mutation on mRNA integrity in vivo, TLE6 cDNA from the peripheral blood lymphocyte of the affected individual was sequenced. In addition, the possible impact of the pathogenic mutation on the structure and function of the protein were also assessed. RESULTS: Two novel homozygous mutations in the peptidylarginine deiminase type VI (PADI6) and the transducin-like enhancer of split 6 (TLE6) genes were identified in the two families. One patient carried the frameshift deletion mutation c.831_832del:p.S278Pfs*59 of the PADI6 gene and the other patient carried the splicing mutation c.1245-2 A>G of the TLE6 gene. The analysis of the mRNA from the proband's peripheral blood leukocytes confirmed aberrant splicing. CONCLUSIONS: Our findings expand the mutational spectrum of PADI6 and TLE6 associated with embryonic developmental arrest and deepen our understanding of the genetic causes of infertility with recurrent ART failure.


Assuntos
Proteínas Correpressoras/genética , Predisposição Genética para Doença , Infertilidade Feminina/genética , Proteína-Arginina Desiminase do Tipo 6/genética , Adulto , Desenvolvimento Embrionário/genética , Feminino , Mutação da Fase de Leitura , Humanos , Infertilidade Feminina/patologia , Gravidez , Deleção de Sequência , Sequenciamento do Exoma
19.
Front Neurol ; 12: 643805, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986717

RESUMO

ßIV-spectrin is a protein of the spectrin family which is involved in the organization of the cytoskeleton structure and is found in high quantity in the axon initial segment and the nodes of Ranvier. Together with ankyrin G, ßIV-spectrin is responsible for the clustering of KCNQ2/3-potassium channels and NaV-sodium channels. Loss or reduction of ßIV-spectrin causes a destabilization of the cytoskeleton and an impairment in the generation of the action potential, which leads to neuronal degeneration. Furthermore, ßIV-spectrin has been described to play an important role in the maintenance of the neuronal polarity and of the diffusion barrier. ßIV-spectrin is also located in the heart where it takes an important part in the structural organization of ion channels and has also been described to participate in cell signaling pathways through binding of transcription factors. We describe two patients with a severe form of ßIV-spectrin deficiency. Whole-exome sequencing revealed the homozygous stop mutation c.6016C>T (p.R2006*) in the SPTBN4 gene. The phenotype of these patients is characterized by profound psychomotor developmental arrest, respiratory insufficiency and deafness. Additionally one of the patients presents with cardiomyopathy, optical nerve atrophy, and mitochondrial dysfunction. This is the first report of a severe form of ßIV-spectrin deficiency with hypertrophic cardiomyopathy and mitochondrial dysfunction.

20.
Theriogenology ; 166: 104-111, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33721681

RESUMO

Energy homeostasis and accomplishment of maternal-to-zygotic transition (MZT), which involves the timed processes of maternal mRNA clearance and zygotic genome activation (ZGA), are essential for mammalian embryogenesis. However, how energy substrates regulate maternal mRNA clearance and the underlying mechanisms have not yet been fully elucidated. Here, we found that mouse embryos were arrested at the 2-cell stage when the pyruvate level was reduced to one-fifth of the control level. Moreover, we observed that the mitochondrial contents and ROS levels were reduced. Interestingly, some maternal mRNA, including transcripts involved in the maternal factor-mediated mRNA decay (M-decay) pathway, was vastly degraded from 1-cell to 2-/4-cell embryos when cultured with control pyruvate levels, but the clearance of these transcripts was hindered when the pyruvate level was reduced. In contrast, some transcripts involved in the zygotic factor-mediated mRNA decay (Z-decay) pathway were vastly downregulated by the reduction in pyruvate. This effect was possibly due to a reduction in global transcription, as the embryos cultured with low-level pyruvate had lower transcription activity than embryos cultured with control pyruvate level. In summary, our findings demonstrate that low-level pyruvate inhibits maternal mRNA clearance, possibly by disrupting the M- and Z-decay pathways, extending our current understanding of the energy requirements of embryogenesis.


Assuntos
Ácido Pirúvico , RNA Mensageiro Estocado , Animais , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Zigoto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA