Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 662: 962-975, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382379

RESUMO

This study involved the preparation of Metal Organic Frameworks (MOF)-derived Co8FeS8@Co1-xS nanoenzymes with strong interfacial interactions. The nanoenzymes presented the peroxidase (POD)-like activity and the oxidation activity of reduced glutathione (GSH). Accordingly, the dual activities of Co8FeS8@Co1-xS provided a self-cascading platform for producing significant amounts of hydroxyl radical (•OH) and depleting reduced glutathione, thereby inducing tumor cell apoptosis and ferroptosis. More importantly, the Co8FeS8@Co1-xS inhibited the anti-apoptosis protein B-cell lymphoma-2 (Bcl-2) and activated caspase family proteins, which caused tumor cell apoptosis. Simultaneously, Co8FeS8@Co1-xS affected the iron metabolism-related genes such as Heme oxygenase-1 (Hmox-1), amplifying the Fenton response and promoting apoptosis and ferroptosis. Therefore, the nanoenzyme synergistically killed anti-apoptotic tumor cells carrying Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations. Furthermore, Co8FeS8@Co1-xS demonstrated good biocompatibility, which paved the way for constructing a synergistic catalytic nanoplatform for an efficient tumor treatment.


Assuntos
Ferroptose , Neoplasias , Humanos , Apoptose , Neoplasias/tratamento farmacológico , Antioxidantes , Glutationa/metabolismo , Linhagem Celular Tumoral , Peróxido de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA