Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 168: 277-284, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31786229

RESUMO

Changes in brain energy metabolism in diabetes mellitus, including increased insulin resistance and mitochondrial dysfunction, are critically involved in diabetes-related neurodegeneration, and associate with early cognitive impairment as well. The aim of this study is to detect the specific phosphorylated-Thr485- AMP-activated protein kinase (AMPK-α2), regulated by cyclin-dependent kinase 5 (Cdk5) paly the inhibitory functional role of AMPK-α2, Which is maybe the link to the accelerated diabetic brain damage progression. Here, we used GK rats, the type 2 diabetic animal model for in vivo studies and performed In vitro kinase assay, high glucose treatment, -phosphorylated mutation and protein expression in both HEK-293T and HT-22 cell lines. In vitro, the results show that murine wild-type AMPK-α2 was phosphorylated by Cdk5 at a (S/T)PX(K/H/R) phosphorylation consensus sequence, which was associated with decreased AMPK-α2 activity. Surprisingly, mutation of Thr485 to alanine in AMPK-α2 results in the abolished Cdk5 effects, demonstrating that Thr485-phosphorylation is critical to AMPK-α2 inhibition by Cdk5. In addition, these alterations in AMPK-α2-phosphorylation and -activity induced by Cdk5 is specific at Thr485. Furthermore, in GK rats, the increased phosphorylated- Thr 485 of AMPK-α2 results in the decreased AMPK-α2 activity, which is correlated with the apoptosis of neurons in hippocamps. After high glucose treatment, the decreased survival showed in AMPK-α2T485A HT-22 cells compared to AMPK-α2WT. The down-regulated of p-CREB, SNAP25, synaptophysin as well as synapsin-1were shown in both GK rats and HT-22 cell line. Meanwhile, pre-treated with either the specific Cdk5-inhibitor (roscovitine) or the antidiabetic AMPK-α2-inhibitor (metformin) could restore the alterations in neuronal protein expression. Our results suggest that Cdk5-mediated phosphorylated- Thr485 in AMPK-α2 may be involved in the pathogenesis of diabetic brain damage.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Quinase 5 Dependente de Ciclina/fisiologia , Diabetes Mellitus , Hipocampo , Neurônios , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Animais , Linhagem Celular , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Metformina/metabolismo , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Ratos , Roscovitina/metabolismo
2.
Front Neurol ; 10: 1068, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781013

RESUMO

Objective: To explore the correlation between diabetic cognitive impairment (DCI) and diabetic retinopathy (DR) through examining the cognitive function and the metabolism of the cerebrum in Type 2 diabetes mellitus (T2DM) by 1H-MRS. Methods: Fifty-three patients with T2DM were enrolled for this study. According to the fundus examination, the patients were divided into the DR group (n = 26) and the T2DM without DR group (T2DM group, n = 27). Thirty healthy adults were selected as a control group (HC group, n = 30). Cognitive function was measured by Montreal Cognitive Assessment (MoCA). The peak areas of N-acetylaspartate (NAA), Cho-line (Cho), Creatine (Cr), and Myo-inositol (mI) as well as their ratios were detected by proton magnetic resonance spectroscopy (1H-MRS). The difference analysis between the three groups was performed by one-way ANOVA. When p < 0.05, LSD-t was applied. A partial correlation analysis (with age as a covariate) was used to analyze the correlation between metabolites in the DR group and MoCA scores. Among all T2DM patients, Chi-square test age, gender, education level, BMI, SBP, DBP, FPG, HbA1c, TC, TG, HDL-C, LDL-C, DR, and DCI correlation were measured. Differences were statistically significant while P < 0.05. Results: 1. The scores of MoCA in the DR group or in the T2DM group were significantly less than those in the HC group (F = 3.54, P < 0.05), and the scores of MoCA in the DR group were significantly less than those in the other groups (F = 3.61, P < 0.05). 2. There were significant differences for NAA in the bilateral hippocampus in DR patients, T2DM patients, and healthy controls (P < 0.05). 3. The NAA/Cr was significantly positively correlated with the score of MoCA in DR patients' left hippocampus (r = 0.781, P < 0.01). 4. Chi-square analysis found that there was a correlation between DR and DCI (x 2 = 4.6, df = 1, p = 0.032, plt: 0.05). There was no correlation between other influencing factors and DCI (P > 0.05). Conclusion: DCI is closely correlated with the DR in patients with T2DM. Hippocampal brain metabolism may have some changes in two sides of NAA in patients with DR, 1H-MRS may provide effective imaging strategies and methods for the early diagnosis of brain damage and quantitative assessment cognitive function in T2DM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA