Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35886113

RESUMO

Humans are routinely exposed to complex mixtures such as polycyclic aromatic hydrocarbons (PAHs) rather than to single compounds, as are often assessed for hazards. Cytochrome P450 enzymes (CYPs) metabolize PAHs, and multiple PAHs found in mixtures can compete as substrates for individual CYPs (e.g., CYP1A1, CYP1B1, etc.). The objective of this study was to assess competitive inhibition of metabolism of PAH mixtures in humans and evaluate a key assumption of the Relative Potency Factor approach that common human exposures will not cause interactions among mixture components. To test this objective, we co-incubated binary mixtures of benzo[a]pyrene (BaP) and dibenzo[def,p]chrysene (DBC) in human hepatic microsomes and measured rates of enzymatic BaP and DBC disappearance. We observed competitive inhibition of BaP and DBC metabolism and measured inhibition coefficients (Ki), observing that BaP inhibited DBC metabolism more potently than DBC inhibited BaP metabolism (0.061 vs. 0.44 µM Ki, respectively). We developed a physiologically based pharmacokinetic (PBPK) interaction model by integrating PBPK models of DBC and BaP and incorporating measured metabolism inhibition coefficients. The PBPK model predicts significant increases in BaP and DBC concentrations in blood AUCs following high oral doses of PAHs (≥100 mg), five orders of magnitude higher than typical human exposures. We also measured inhibition coefficients of Supermix-10, a mixture of the most abundant PAHs measured at the Portland Harbor Superfund Site, on BaP and DBC metabolism. We observed similar potencies of inhibition coefficients of Supermix-10 compared to BaP and DBC. Overall, results of this study demonstrate that these PAHs compete for the same enzymes and, at high doses, inhibit metabolism and alter internal dosimetry of exposed PAHs. This approach predicts that BaP and DBC exposures required to observe metabolic interaction are much higher than typical human exposures, consistent with assumptions used when applying the Relative Potency Factor approach for PAH mixture risk assessment.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Benzo(a)pireno/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo
2.
Toxicol Appl Pharmacol ; 438: 115830, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34933053

RESUMO

Dibenzo[def,p]chrysene (DBC) is an environmental polycyclic aromatic hydrocarbon (PAH) that causes tumors in mice and has been classified as a probable human carcinogen by the International Agency for Research on Cancer. Animal toxicity studies often utilize higher doses than are found in relevant human exposures. Additionally, like many PAHs, DBC requires metabolic bioactivation to form the ultimate toxicant, and species differences in DBC and DBC metabolite metabolism have been observed. To understand the implications of dose and species differences, a physiologically based pharmacokinetic model (PBPK) for DBC and major metabolites was developed in mice and humans. Metabolism parameters used in the model were obtained from experimental in vitro metabolism assays using mice and human hepatic microsomes. PBPK model simulations were evaluated against mice dosed with 15 mg/kg DBC by oral gavage and human volunteers orally microdosed with 29 ng of DBC. DBC and its primary metabolite DBC-11,12-diol were measured in blood of mice and humans, while in urine, the majority of DBC metabolites were obeserved as conjugated DBC-11,12-diol, conjugated DBC tetrols, and unconjugated DBC tetrols. The PBPK model was able to predict the time course concentrations of DBC, DBC-11,12-diol, and other DBC metabolites in blood and urine of human volunteers and mice with reasonable accuracy. Agreement between model simulations and measured pharmacokinetic data in mice and human studies demonstrate the success and versatility of our model for interspecies extrapolation and applicability for different doses. Furthermore, our simulations show that internal dose metrics used for risk assessment do not necessarily scale allometrically, and that PBPK modeling provides a reliable approach to appropriately account for interspecies differences in metabolism and physiology.


Assuntos
Crisenos/administração & dosagem , Crisenos/farmacocinética , Cistina/análogos & derivados , Animais , Carcinógenos/administração & dosagem , Carcinógenos/farmacocinética , Cistina/administração & dosagem , Cistina/farmacocinética , Feminino , Humanos , Masculino , Camundongos , Modelos Biológicos , Neoplasias/induzido quimicamente
3.
Toxicol In Vitro ; 63: 104749, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31838185

RESUMO

In the study the modulating effect of inhibition of phosphatidylinositol 3-kinase-related kinases (PIKK): ATM (Ataxia Telangiectasia Mutated), ATR (Ataxia Telangiectasia and Rad3 Related) and DNA-PK (DNA-dependent protein kinase) on genotoxicity of dibenzo[def,p]chrysene (DBC) in HepG2 human hepatocellular cancer cells was investigated. The cytotoxicity of DBC was determined, also in combination with PIKK inhibitors, using the MTT reduction assay. The high cytotoxicity of DBC was observed after 72 h incubation (IC50 = 0.06 µM). The PIKK inhibitors applied at non-cytotoxic concentrations: caffeine (1 mM) and KU55933 (2.5 µM) had no significant influence on the DBC cytotoxicity, however NU7026 (5 µM) caused significant increase in the cell viability by about 25%. The combinations of the inhibitors (double or triple) where NU7026 was present also caused increase in the cell viability (i.e. cytoprotective effect) compared to the effect of DBC. The level of damage to the genetic material (DNA double strand breaks, DSB) was assessed by measuring levels of phosphorylated form of H2A histone (γH2AX) and neutral comet assay. DBC induced DSB in a concentration and time-dependent manner. NU7026 considerably reduced the level of DSB level measured by γH2AX and comet assay. The obtained results confirm that DBC is cytotoxic and causes damage to the genetic material including DSB. The DNA-PK inhibitor NU7026 increases cell viability after exposure to DBC and reduces DNA damage, what indicates an important role of the sensor kinase in mediating the effect.


Assuntos
Benzopirenos/toxicidade , Cromonas/farmacologia , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinase , Inibidores de Proteínas Quinases/farmacologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Dano ao DNA , Células Hep G2 , Histonas/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo
4.
Toxicol Lett ; 269: 23-32, 2017 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-28119020

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are contaminants that are ubiquitously found in the environment, produced through combustion of organic matter or petrochemicals, and many of which are procarcinogens. The prototypic PAH, benzo[a]pyrene (B[a]P) and the highly carcinogenic dibenzo[def,p]chrysene (DBC) are metabolically activated by isoforms of the P450 enzyme superfamily producing benzo[a]pyrene-7,8-dihydrodiol (B[a]P diol), dibenzo[def,p]chrysene-11,12 diol (DBC diol). Each of these diols can be further metabolized by cytochrome P450 enzymes to highly reactive diol-epoxide metabolites that readily react with DNA or by phase II conjugation facilitating excretion. To complement prior in vitro metabolism studies with parent B[a]P and DBC, both phase I metabolism and phase II glucuronidation of B[a]P diol and DBC diol were measured in hepatic microsomes from female B6129SF1/J mice, male Sprague-Dawley rats, and female humans. Metabolic parameters, including intrinsic clearance and Michaelis-Menten kinetics were calculated from substrate depletion data. Mice and rats demonstrated similar B[a]P diol phase I metabolic rates. Compared to rodents, human phase I metabolism of B[a]P diol demonstrated lower overall metabolic capacity, lower intrinsic clearance at higher substrate concentrations (>0.14µM), and higher intrinsic clearance at lower substrate concentrations (<0.07µM). Rates of DBC diol metabolism did not saturate in mice or humans and were highest overall in mice. Higher affinity constants and lower capacities were observed for DBC diol glucuronidation compared to B[a]P diol glucuronidation; however, intrinsic clearance values for these compounds were consistent within each species. Kinetic parameters reported here will be used to extend physiologically based pharmacokinetic (PBPK) models to include the disposition of B[a]P and DBC metabolites in animal models and humans to support future human health risk assessments.


Assuntos
Crisenos/metabolismo , Di-Hidroxi-Di-Hidrobenzopirenos/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Animais , Benzo(a)pireno/metabolismo , Carcinógenos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Ratos , Ratos Sprague-Dawley , Medição de Risco , Testes de Toxicidade
5.
Artigo em Inglês | MEDLINE | ID: mdl-26338538

RESUMO

The effect of inhibitors of phosphatidylinositol-3-kinase related kinases (PIKK): ataxia-telangiectasia mutated (ATM), ATM- and Rad3-related (ATR) and DNA-dependent protein kinase (DNA-PK) on the response of HepG2 human liver cancer cells to dibenzo[def,p]chrysene (DBC) was investigated. High cytotoxicity of DBC (IC50=0.1µM) was observed after 72h incubation. PIKK inhibitors: KU55933 (5µM), NU7026 (10µM) or caffeine (1 and 2mM) when used alone did not significantly influence the cytotoxicity. However, two combinations: KU55933/NU7026 and caffeine/NU7026 significantly increased HepG2 viability (by 25%) after treatment with DBC at 0.5µM. The cytoprotective effect was confirmed by cell cycle and apoptosis/necrosis analysis. DNA damage level after exposure to DBC assessed by comet assay (single strand breaks) showed a long persistence and significant decrease after incubation of the cells in the presence the inhibitors (the combination of KU55933+NU7026 showed the strongest effect). Weak induction of reactive oxygen species (ROS) by DBC (0.5µM) was observed. Although, KU55933 and NU7026 when used alone did not increase ROS levels in the cells, their combination induced the ROS increase and moderately enhanced ROS generation by DBC. We propose a mechanism how cells with damaged DNA after exposure to DBC and under the condition of PIKK inhibition, may be at higher risk of undergoing malignant transformation.


Assuntos
Benzopirenos/toxicidade , Citotoxinas/toxicidade , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Mutagênicos/toxicidade , Inibidores de Proteínas Quinases/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Cafeína/farmacologia , Proliferação de Células/efeitos dos fármacos , Cromonas/farmacologia , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Células Hep G2 , Humanos , Morfolinas/farmacologia , Pironas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-25868132

RESUMO

The polycyclic aromatic hydrocarbon (PAH), dibenzo[def,p]chrysene (DBC; also known as dibenzo[a,l]pyrene), is a potent carcinogen in animal models and a class 2A human carcinogen. Recent investigations into DBC-mediated toxicity identified DBC as a potent immunosuppressive agent similar to the well-studied immunotoxicant 7,12-dimethylbenz[a]anthracene (DMBA). DBC, like DMBA, is bioactivated by cytochrome P450 (CYP) 1B1 and forms the reactive metabolite DBC-11,12-diol-13,14-epoxide (DBCDE). DBCDE is largely responsible for the genotoxicity associated with DBC exposure. The immunosuppressive properties of several PAHs are also linked to genotoxic mechanisms. Therefore, this study was designed to identify DBCDE-DNA adduct formation in the spleen and thymus of wild-type and cytochrome P450 1b1 (Cyp1b1) knockout (KO) mice using a highly sensitive stable-isotope dilution UHPLC-MS/MS method. Stable-isotope dilution UHPLC-MS/MS identified the major DBC adducts (±)-anti-cis-DBCDE-dA and (±)-anti-trans-DBCDE-dA in the lung, liver, and spleen of both WT and Cyp1b1 KO mice. However, adduct formation in the thymus was below the level of quantitation for our method. Additionally, adduct formation in Cyp1b1 KO mice was significantly reduced compared to wild-type (WT) mice receiving DBC via oral gavage. In conclusion, the current study identifies for the first time DBCDE-dA adducts in the spleen of mice supporting the link between genotoxicity and immunosuppression, in addition to supporting previous studies identifying Cyp1b1 as the primary CYP involved in DBC bioactivation to DBCDE. The high levels of DBC-DNA adducts identified in the spleen, along with the known high levels of Cyp1b1 expression in this organ, supports further investigation into DBC-mediated immunotoxicity.


Assuntos
Benzopirenos/química , Cromatografia Líquida de Alta Pressão/métodos , Citocromo P-450 CYP1B1/deficiência , Adutos de DNA/análise , Desoxiadenosinas/química , Espectrometria de Massas em Tandem/métodos , Animais , Citocromo P-450 CYP1B1/genética , Adutos de DNA/química , Humanos , Marcação por Isótopo , Fígado/química , Fígado/metabolismo , Pulmão/química , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estrutura Molecular , Técnica de Diluição de Radioisótopos , Baço/química , Baço/metabolismo , Timo/química , Timo/metabolismo
7.
Toxicol Lett ; 228(1): 48-55, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24769260

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous and often carcinogenic contaminants released into the environment during natural and anthropogenic combustion processes. Benzo[a]pyrene (B[a]P) is the prototypical carcinogenic PAH, and dibenzo[def,p]chrysene (DBC) is a less prevalent, but highly potent transplacental carcinogenic PAH. Both are metabolically activated by isoforms of the cytochrome P450 enzyme superfamily to form reactive carcinogenic and cytotoxic metabolites. Metabolism of B[a]P and DBC was studied in hepatic microsomes of male Sprague-Dawley rats, naïve and pregnant female B6129SF1/J mice, and female humans, corresponding to available pharmacokinetic data. Michaelis-Menten saturation kinetic parameters including maximum rates of metabolism (VMAX, nmol/min/mg microsomal protein), affinity constants (KM, µM), and rates of intrinsic clearance (CLINT, ml/min/kg body weight) were calculated from substrate depletion data. CLINT was also estimated from substrate depletion data using the alternative in vitro half-life method. VMAX and CLINT were higher for B[a]P than DBC, regardless of species. Clearance for both B[a]P and DBC was highest in naïve female mice and lowest in female humans. Clearance rates of B[a]P and DBC in male rat were more similar to female human than to female mice. Clearance of DBC in liver microsomes from pregnant mice was reduced compared to naïve mice, consistent with reduced active P450 protein levels and elevated tissue concentrations and residence times for DBC observed in previous in vivo pharmacokinetic studies. These findings suggest that rats are a more appropriate model organism for human PAH metabolism, and that pregnancy's effects on metabolism should be further explored.


Assuntos
Benzo(a)pireno/metabolismo , Benzopirenos/metabolismo , Carcinógenos/metabolismo , Microssomos Hepáticos/metabolismo , Algoritmos , Animais , Benzo(a)pireno/farmacocinética , Benzopirenos/farmacocinética , Peso Corporal/efeitos dos fármacos , Carcinógenos/farmacocinética , Interpretação Estatística de Dados , Feminino , Meia-Vida , Humanos , Cinética , Masculino , Camundongos , Tamanho do Órgão/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA