Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(14): 7672-7683, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38530782

RESUMO

Agrochemical residues and nitrous oxide (N2O) emissions have caused considerable threats to agricultural soil ecology. Nanoscale zerovalent iron (nZVI) and nitrification inhibitors might be complementary to each other to diminish soil agrochemical residues and N2O emissions and enhance soil bacterial community diversities. Compared to the control, the nZVI application declined soil paclobutrazol residues by 5.9% but also decreased the bacterial community co-occurrence network node. Combined nZVI and Dicyandiamide applications significantly decreased soil N2O emission rates and paclobutrazol residues but promoted Shannon diversity of the bacterial community. The increased soil pH, ammonium nitrogen, and Actinobacteriota could promote soil paclobutrazol dissipation. The nZVI generated double-edged sword effects of positively decreasing paclobutrazol residues and N2O emissions but negatively influencing soil multifunctionalities. The nZVI and Dicyandiamide could be complementary to each other in diminishing soil agrochemical residues and N2O emission rates but promoting soil bacterial community diversities simultaneously.


Assuntos
Guanidinas , Óxido Nitroso , Solo , Triazóis , Solo/química , Óxido Nitroso/química , Nitrificação , Agricultura , Bactérias/genética , Fertilizantes/análise , Agroquímicos/farmacologia , Nitrogênio/química
2.
J Agric Food Chem ; 71(46): 17689-17699, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37934059

RESUMO

Fungicide carbendazim accumulation in soils and plants is a wide concern. Nitrogen (N) is a substantial nutrient limiting crop growth and affecting soil microbial activity and the community in degrading fungicides. We investigated the effects of urea-hydrogen peroxide (UHP) and nitrification inhibitors Dicyandiamide (DCD) and 3,4-dimethylpyrazole phosphate (DMPP) on carbendazim accumulation and soil and endophytic microbial communities. The UHP application had negligible influences on soil and plant carbendazim accumulation, but the combined UHP and DCD decreased soil carbendazim accumulation by 5.31% and the combined UHP and DMPP decreased plant carbendazim accumulation by 44.36%. The combined UHP and nitrification inhibitor significantly decreased the ratios of soil Firmicutes and endophytic Ascomycota. Soil microbial community assembly was governed by the stochastic process, while the stochastic and deterministic processes governed the endophyte. Our findings could provide considerable methods to reduce fungicide accumulation in soil-plant systems with agricultural N management strategies.


Assuntos
Microbiota , Solo , Nitrificação , Peróxido de Hidrogênio/farmacologia , Peróxido de Carbamida/farmacologia , Iodeto de Dimetilfenilpiperazina/farmacologia , Microbiologia do Solo , Fertilizantes , Nitrogênio/análise
3.
Environ Sci Pollut Res Int ; 30(36): 85482-85493, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37389750

RESUMO

Grass uptake and phytoaccumulation factors of N-(n-butyl) thiophosphoric triamide (NBPT) and dicyandiamide (DCD) were quantified. Following the application of urea fertilizer treated with the inhibitors in Irish grassland, grass samples were collected at 5, 10, 15, 20, and 30 day time intervals following five application cycles. Uptake of NBPT by grass was below the limit of quantitation of the analytical method (0.010 mg NBPT kg-1). Dicyandiamide concentrations in grass ranged from 0.004 to 28 mg kg-1 with the highest concentrations measured on days 5 and 10. A reducing trend in concentration was found after day 15. The DCD phytoaccumulation factor was ranged from 0.004% to 1.1% showing that DCD can be taken up by grass at low levels when co-applied with granular urea. In contrast, NBPT was not detected indicating that grass uptake is unlikely when co-applied with granular urea fertilizer. The contrasting results are likely due to very different longevity of DCD and NBPT along with the much lower rate of NBPT, which is used compared with DCD.


Assuntos
Poaceae , Urease , Ureia , Nitrificação , Fertilizantes/análise , Inibidores Enzimáticos/farmacologia , Solo , Nitrogênio
4.
Food Chem X ; 18: 100658, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37032745

RESUMO

A single run approach for rapid detection of nitrification inhibitor, dicyandiamide (DCD) using electrogenerated chlorine assisted polymerization through azo bond, under acidic conditions and at a preanodized screen printed carbon electrode (SPCE*) is presented. The role of chloride containing support electrolyte in acidic medium along with oxygen functionalities/edge sites are found to be crucial for the successful oxidative polymerization and subsequent adsorption of oxidized products on the electrode surface. The SEM, cyclic voltammetry and X-ray photoelectron spectroscopy studies were used to characterize the polymer film formation. The system exhibited a linear range between 20 and 170 µM with a detection limit of 3 µM (S/N = 3). The method was successfully tested for the detection of DCD in dairy and water samples. Simultaneous detection of DCD in the presence of melamine has also been demonstrated.

5.
Environ Pollut ; 319: 120992, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36596378

RESUMO

Repeated and high-dose carbendazim applications have caused serious soil carbendazim contamination, and eco-friendly and economical approaches have been suggested to promote carbendazim removal in agricultural soil. Spent mushroom substrate (SMS) is a special recycled resource after harvesting mushrooms and can be utilized in contaminated soil amendment. The SMS application into agricultural soil might increase antibiotic resistance gene abundances, and the health risks of SMS application might be reduced with reasonable management to adjust the related electron transport of soil nitrification or denitrification. In this study, the SMS and nitrification inhibitor dicyandiamide were used to remediate agricultural soil contaminated with the carbendazim, and the carbendazim contents, soil microbial biomass, activities and community and human disease genes were determined. Compared to the control treatment, the combined applications of SMS and dicyandiamide significantly decreased soil carbendazim content by 38.14% but significantly enhanced soil ß-glucosidase, chitinase, arylsulfatase, urease and electron transfer system activities. The relative abundances of Proteobacteria and Actinobacteria were increased by 11.0% and 8.2% with the SMS application, respectively. The carbendazim residues were negatively correlated with the soil pH, electron transfer system activities and relative abundances of Proteobacteria and Actinobacteria. The relative abundances of human disease genes were also dramatically increased with the SMS application, but compared to the SMS alone, extra dicyandiamide application significantly reduced the relative abundances of human disease genes in soils. The SMS applications into fungicide-contaminated soils could generate double-edged sword effects of facilitating fungicide dissipation but leading to potential health risk increase, while applying the dicyandiamide with SMS might be an effective strategy to decrease the negative effect of health risk.


Assuntos
Agaricales , Fungicidas Industriais , Poluentes do Solo , Humanos , Solo/química , Agaricales/química , Fungicidas Industriais/toxicidade , Fungicidas Industriais/análise , Microbiologia do Solo , Poluentes do Solo/análise
6.
Sci Total Environ ; 846: 157487, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35870587

RESUMO

This study investigated the effects of dicyandiamide, phosphogypsum and superphosphate on greenhouse gas emissions and compost maturity during pig manure composting. The results indicated that the addition of dicyandiamide and phosphorus additives had no negative effect on organic matter degradation, and could improve the compost maturity. Adding dicyandiamide alone reduced the emissions of ammonia (NH3), methane (CH4) and nitrous oxide (N2O) by 9.37 %, 9.60 % and 31.79 %, respectively, which was attributed that dicyandiamide effectively inhibited nitrification to reduce the formation of N2O. Dicyandiamide combined with phosphogypsum or superphosphate could enhance mitigation of the total greenhouse gas (29.55 %-37.46 %) and NH3 emission (18.28 %-21.48 %), which was mainly due to lower pH value and phosphoric acid composition. The combination of dicyandiamide and phosphogypsum exhibited the most pronounced emission reduction effect, simultaneously decreasing the NH3, CH4 and N2O emissions by 18.28 %, 38.58 % and 36.14 %, respectively. The temperature and C/N content of the compost were significantly positively correlated with greenhouse gas emissions.


Assuntos
Compostagem , Gases de Efeito Estufa , Amônia/análise , Animais , Sulfato de Cálcio , Compostagem/métodos , Difosfatos , Guanidinas , Esterco , Metano/análise , Óxido Nitroso/análise , Fósforo/metabolismo , Solo/química , Suínos
7.
J Environ Manage ; 318: 115560, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35738130

RESUMO

This study aimed to evaluate the impact of mitigation practices (slurry application methods and inhibitors applications) on gas emissions and identify the soil N2O production pathways in cattle slurry applied soil using isotopocule mapping approach. First, we compared the NH3 and N2O emissions of cattle slurry applied soil in a summer maize field experiment in north China plain (NCP) with four treatments: control (CK, no fertilization), slurry application using surface (SA-S), slurry application using band application (BA-S), and chemical fertilizer application using band application (BA-C). Then, an incubation experiment was conducted to investigate the mitigation effect of nitrification inhibitors (dicyandiamide, DCD) and denitrification inhibitors (procyanidins, PC) and their combination (DCD + PC) on gaseous N emissions with slurry applied using incorporation (IA) or surface application (SA) methods. The results showed that the total gaseous N emissions (N2O-N and NH3-N) in field were in the order of SA-S (1534 mg m-2) > BA-S (338 mg m-2) > BA-C (128 mg m-2) > CK (55 mg m-2), and the dominant N loss contributor varied from NH3 in SA-S (∼89%) to N2O in BA-S (∼94%) and BA-C (∼88%). Moreover, the isotopocule mapping approach indicated that emitted N2O of the slurry applied soil in field appeared to have lower rN2O values and led to more N2O + N2 emissions at the initial fertilization period. The incubation experiment indicated that the N2O emissions of slurry-applied soil were significantly reduced by DCD (∼45%) and DCD + PC (∼67%) application in comparison with CK (p < 0.05), and the stronger contributions of bacterial denitrification/nitrifier denitrification to N2O production were revealed by the lower δ15NSP in N2O using the isotopocule mapping approach. In conclusion, in NCP the gaseous losses of the slurry applied field can be largely reduced by using incorporation method, and greater reduction could be achieved given the simultaneous application of nitrification/denitrification inhibitors.


Assuntos
Gases , Solo , Agricultura/métodos , Animais , Bovinos , Cinnamomum zeylanicum , Fertilizantes/análise , Pradaria , Nitrogênio , Óxido Nitroso/análise
8.
Se Pu ; 40(3): 289-295, 2022 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-35243839

RESUMO

Sulfur-doped graphene quantum dots (S-GQDs) were prepared by the pyrolysis of citric acid and mercaptopropionic acid. Compared with graphene quantum dots (GQDs), the S-GQDs have improved surface state and chemical reactivity, and thus, exhibited stronger interaction with cations. Based on its excellent affinity for cations, a dual preconcentration technique combining field-amplified sample injection (FASI) and S-GQDs as multianalyte carriers was developed for the determination of melamine and dicyandiamide by capillary electrophoresis (CE). During the FASI process, a large quantity of analytes was introduced into the capillary and accumulated at the capillary inlet. Concurrently, the S-GQDs migrated to the anode and captured the analytes on its surface at the boundary of the sample and buffer solution. The use of S-GQDs allows the capture of abundant analytes, which can amplify the detection signal. This new protocol was evaluated by the quantitative determination of melamine and dicyandiamide in metformin hydrochloride preparations. The effect of volume fraction of the S-GQDs in the buffer solution, the composition and pH of the buffer, and the sample injection time on the preconcentration and separation were investigated. By controlling the pH at 4.6, the sample injection time was prolonged to 450 s. A very large amount of melamine and dicyandiamide, bearing positive electric charges, were injected into the capillary and were captured by S-GQDs. The assay using FASI preconcentration and S-GQDs as enhancer resulted in a 1.6×105-fold improved sensitivity compared with that obtained with traditional 10-kV electrokinetic injection for 10 s. The calibration curves of melamine and dicyandiamide were obtained in the concentration range from 1.0×10-14 to 1.0×10-8mol/L, with correlation coefficients (r2) >0.999. The detection limits (S/N=3) were 2.6×10-15mol/L for melamine and 5.7×10-15mol/L for dicyandiamide. The recoveries of the two analytes were 95.9%-102.4% and 92.0%-106.0%, respectively, with relative standard deviations (RSDs) of no more than 5%. The RSD values of peak height, peak area, and migration time were all less than 5.6%. This method is reliable, easy, and exhibits a good separation effect. This proves that the S-GQD-enhanced CE method could be developed into a new and sensitive technique for the determination of melamine and dicyandiamide in different preparations of metformin hydrochloride.


Assuntos
Grafite , Pontos Quânticos , Eletroforese Capilar/métodos , Grafite/química , Guanidinas , Pontos Quânticos/química , Triazinas
9.
Materials (Basel) ; 14(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34772017

RESUMO

In this paper, a dicyandiamide-impregnated mesoporous carbon (N-CMK-3), electrochemically modified in situ with lead film (Pb-N-CMK-3), was tested as an electrode material for U(VI) ultratrace determination. The prepared carbon material was characterized by XRD, SEM-EDX, Raman, FT-IR, XPS analysis and nitrogen sorption measurements. The changes of electrochemical properties of glassy carbon electrodes (GCE) after the N-CMK-3 and Pb-N-CMK-3 modification were studied using CV and EIS methods. The modification of the GCE surface by the N-CMK-3 material and Pb film increases the electroactive area of the electrode and decreases the charge transfer residence and is likely responsible for the electrochemical improvement of the U(VI) analytical signal. Using square-wave adsorptive stripping voltammetry (SWAdSV), two linear calibration ranges extending from 0.05 to 1.0 nM and from 1.0 to 10.0 nM were observed, coupled with the detection and quantification limits of 0.014 and 0.047 nM, respectively. The Pb-N-CMK-3/GCE was successfully applied for U(VI) determination in reference materials (estuarine water SLEW-3 and trace elements in natural water SRM 1640a).

10.
Artigo em Inglês | MEDLINE | ID: mdl-34281066

RESUMO

Nitrification inhibitors (NIs) such as dicyandiamide (DCD), 3,4-dimethylpyrazole phosphate (DMPP), and allylthiourea (AT) are commonly used to suppress ammonia oxidization at different time scales varying from a few hours to several months. Although the responses of NIs to edaphic and temperature conditions have been studied, the influence of the aforementioned factors on their inhibitory effect remains unknown. In this study, laboratory-scale experiments were conducted to assess the short-term (24 h) influence of eight abiotic and biotic factors on the inhibitory effects of DCD, DMPP, and AT across six cropped and non-cropped soils at two temperature conditions with three covariates of soil texture. Simultaneously, the dominant contributions of ammonia-oxidizing archaea (AOA) and bacteria (AOB) to potential ammonia oxidization (PAO) were distinguished using the specific inhibitor 2 phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO). Our results revealed that AT demonstrated a considerably greater inhibitory effect (up to 94.9% for an application rate of 75 mg of NI/kg of dry soil) than DCD and DMPP. The inhibitory effect of AT was considerably affected by the relative proportions of silt, sand, and clay in the soil and total PAO. In contrast to previous studies, the inhibitory effects of all three NIs remained largely unaffected by the landcover type and temperature conditions for the incubation period of 24 h. Furthermore, the efficacy of all three tested NIs was not affected by the differential contributions of AOA and AOB to PAO. Collectively, our results suggested a limited influence of temperature on the inhibitory effects of all three NIs but a moderate dependence of AT on the soil texture and PAO. Our findings can enhance the estimation of the inhibitory effect in soil, and pure cultures targeting the AOA and AOB supported ammonia oxidization and, hence, nitrogen dynamics under NI applications.


Assuntos
Nitrificação , Solo , Amônia/análise , Guanidinas , Oxirredução , Fosfatos , Pirazóis , Microbiologia do Solo , Tioureia/análogos & derivados
11.
Environ Res ; 201: 111500, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34147465

RESUMO

MOFs-derived metal/carbon materials have been considered as promising candidates for the electrochemical detection of micropollutants. However, the aggregation of metal nanoparticles and structure collapse of precursor MOFs during pyrolysis significantly hamper the improvement on detecting performance. Herein, a dicyandiamide-assisted strategy is utilized to synthesize well-dispersed Cu/N-doped porous carbon nanoarchitecture (CuNC) for the electrochemical detection of acetaminophen (AP). The constructed CuNC sensor exhibits excellent electro-analytical performance for monitoring AP with linear range from 0.01 µM to 921.2 µM, and the low detection limit of 2.46 nM (S/N = 3). The improved performance of CuNC sensor is ascribed to the introduction of dicyandiamide, which can prevent HKUST-1 framework breakage and reduce the aggregation tendency of Cu, leading to the evenly distributed small Cu nanoparticles, abundant N species, hierarchical channel structure, and high conductivity carbon framework. These advantages endow predominant repeatability, stability, and selectivity of CuNC sensor. This strategy provided a novel approach to preparing MOFs-derived carbon nanoarchitectures with excellent electroanalysis performance to monitor micropollutants.


Assuntos
Acetaminofen , Carbono , Técnicas Eletroquímicas , Guanidinas , Estruturas Metalorgânicas , Porosidade
12.
J Colloid Interface Sci ; 593: 204-213, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33744531

RESUMO

Rational construction of advanced bifunctional catalysts with dual-active-sites is still challenging for both oxygen reduction (ORR) and oxygen evolution reactions (OER). Herein, metal-doped dicyandiamide formaldehyde resin is innovatively exploited to synthesize N/Co/Fe/Ni multi-doped carbon nanotubes (denoted as CoFeNi@CNT) with metal-nitrogen-carbon (MNC) and CoFeNi nanoparticles as the ORR and OER active sites, respectively. Abundant active sites and high degree of graphitization enable CoFeNi@CNT with a high ORR half-wave potential of 0.82 V and a low OER overpotential of 440 mV at 10 mA cm-2, which are comparable or superior to noble-metal catalysts. Particularly, the CoFeNi@CNT air electrode of rechargeable Zn-air batteries shows remarkable open circuit potential (1.46 V), discharge power density (152.3 mW cm-2), specific capacity (814 mAh g-1), and cycling stability for more than 250 h. It is worth emphasizing that this synthesis strategy is rather simple, low-cost, high yield, and the proportion and amount of doped metal ions can be easily adjusted according to the needs for different applications.

13.
Materials (Basel) ; 14(2)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435436

RESUMO

A facile and environmentally friendly fabrication is proposed to prepare nitrogen-doped hierarchical porous activated carbon via normal-pressure popping, one-pot activation and nitrogen-doping process. The method adopts paddy as carbon precursor, KHCO3 and dicyandiamide as the safe activating agent and nitrogen dopant. The as-prepared activated carbon presents a large specific surface area of 3025 m2·g-1 resulting from the synergistic effect of KHCO3 and dicyandiamide. As an electrode material, it shows a maximum specific capacitance of 417 F·g-1 at a current density of 1 A·g-1 and very good rate performance. Furthermore, the assembled symmetric supercapacitor presents a large specific capacitance of 314.6 F·g-1 and a high energy density of 15.7 Wh·Kg-1 at 1 A·g-1, maintaining 14.4 Wh·Kg-1 even at 20 A·g-1 with the energy density retention of 91.7%. This research demonstrates that nitrogen-doped hierarchical porous activated carbon derived from paddy has a significant potential for developing a high-performance renewable supercapacitor and provides a new route for economical and large-scale production in supercapacitor application.

14.
Food Res Int ; 136: 109543, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32846598

RESUMO

Milk is regarded as one of the top food products susceptible to adulteration where its valuable components are specifically identified as high-risk indicators for milk fraud. The current study explores the impact of common milk adulterants on the apparent compositional parameters of milk from the Dutch market as measured by standardized Fourier transform infrared (FTIR) spectroscopy. More precisely, it examines the detectability of these adulterants at various concentration levels using the compositional parameters individually, in a univariate manner, and together in a multivariate approach. In this study we used measured boundaries but also more practical variance-adjusted boundaries to set thresholds for detection of adulteration. The potential economic impact of these adulterations under a milk payment scheme is also evaluated. Twenty-four substances were used to produce various categories of milk adulterations, each at four concentration levels. These substances comprised five protein-rich adulterants, five nitrogen-based adulterants, seven carbohydrate-based adulterants, six preservatives and water, resulting in a set of 360 samples to be analysed. The results showed that the addition of protein-rich adulterants, as well as dicyandiamide and melamine, increased the apparent protein content, while the addition of carbohydrate-based adulterants, whey protein isolate, and skimmed milk powder, increased the apparent lactose content. When considering the compositional parameters univariately, especially protein- and nitrogen-based adulterants did not raise a flag of unusual apparent concentrations at lower concentration levels. Addition of preservatives also went unnoticed. The multivariate approach did not improve the level of detection. Regarding the potential profit of milk adulteration, whey protein and corn starch seem particularly interesting. Combining the artificial inflation of valuable components, the resulting potential profit, and the gaps in detection, it appears that the whey protein isolates deserve particular attention when thinking like a criminal.


Assuntos
Contaminação de Alimentos , Leite , Animais , Contaminação de Alimentos/análise , Análise de Fourier , Lactose , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Sci Total Environ ; 743: 140500, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32653704

RESUMO

Biochar and inhibitors applications have been proposed for mitigating soil greenhouse gas emissions. However, how biochar, inhibitors and the combination of biochar and inhibitors affect CH4 emissions remains unclear in paddy soils. The objective of this study was to explore the effects of biochar application alone, and in combination with urease (hydroquinone) and nitrification inhibitors (dicyandiamide) on CH4 emissions and yield-scaled CH4 emissions during three rice growing seasons in the Taihu Lake region (Suzhou and Jurong), China. In Suzhou, N fertilization rates of 120-280 kg N ha-1 increased CH4 emissions compared to no N fertilization (Control) (P < 0.05), and the highest emission was observed at 240 kg N ha-1, possibly due to the increase in rice-derived organic carbon (C) substrates for methanogens. Biochar amendment combined with N fertilization reduced CH4 emissions by 13.2-27.1% compared with optimal N (ON, Suzhou) and conventional N application (CN-J, Jurong) (P < 0.05). This was related to the reduction in soil dissolved organic C and the increase in soil redox potential. Addition of urease and nitrification inhibitor (ONI) decreased CH4 emissions by 15.7% compared with ON treatment. Combined application of biochar plus urease, nitrification and double inhibitors further decreased CH4 emissions by 22.2-51.0% compared with ON and CN-J treatment. ON resulted in the highest yield-scaled CH4 emissions, while combined application of biochar alone and in combination with the inhibitors decreased yield-scaled CH4 emissions by 12.7-54.9% compared with ON and CN-J treatment (P < 0.05). The lowest yield-scaled CH4 emissions were observed under combined application of 7.5 t ha-1 biochar with both urease and nitrification inhibitors. These findings suggest that combined application of biochar and inhibitors could mitigate total CH4 and yield-scaled CH4 emissions in paddy fields in this region.


Assuntos
Oryza , Agricultura , Carvão Vegetal , China , Fertilizantes , Metano/análise , Nitrificação , Óxido Nitroso/análise , Solo , Urease
16.
Environ Sci Pollut Res Int ; 27(24): 30405-30418, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32458307

RESUMO

Composting is an emerging strategy for swine slurry treatment; nonetheless, significant greenhouse gases (GHG) emissions may occur during this process. We carried out two separate assays with increasing doses of dicyandiamide (DCD; up to 1.1% w/w) as a nitrification inhibitor and solutions of MgCl2 and H3PO4 (Mg/P; up to 0.09/0.06 mol kg-1) to promote struvite crystallization in order to assess their efficiencies as additives to decrease GHG emission during swine slurry cocomposting with sawdust (1:1v/v). We monitored the nitrous oxide (N2O-N), methane (CH4-C), and carbon dioxide (CO2-C) emissions and the ammonia (NH4+-N) and nitrate/nitrite (NOx-N) concentrations in compost reactors (35 L) during the first 4-5 weeks of composting. DCD had no effect on CH4-C and CO2-C emissions but decreased N2O-N losses by up to 56% compared with control. However, DCD inactivation was favored by thermophilic conditions and N2O-N emissions increased to same levels of control after 13 days. Mg/P was effective to decrease N2O-N losses only at the highest dose, which also sustained higher [NH4+-N] in the compost by the end of the assessment. Nonetheless, the use of 0.09/0.06 mol kg-1 of Mg/P also decreased CH4-C and CO2-C emissions compared with lower doses of Mg/P and unamended treatments. Overall, DCD and Mg/P amendments decreased the global warming potential (GWP) of swine slurry composting by up to 46 and 28%, respectively. The Mg/P application may be also interesting to increase the compost quality by increasing its NH4+-N availability. Graphical abstract.


Assuntos
Aquecimento Global , Gases de Efeito Estufa , Animais , Dióxido de Carbono/análise , Guanidinas , Metano/análise , Óxido Nitroso/análise , Solo , Suínos
17.
Artigo em Inglês | MEDLINE | ID: mdl-32126860

RESUMO

The synthesis and characterization on four rhodium(II) complexes with the formula [Rh2(CH3COO)2(AMUH)2(dcda)2](CH3COO)2(1),[Rh2(CH3COO)2(AEUH)2(dcda)2](CH3COO)2(2),[Rh2(CH3COO)2(APrnUH)2(dcda)2](CH3COO)2(3),[Rh2(CH3COO)2(ABnUH)2(dcda)2](CH3COO)2(4), where AMUH = 1-amidino-O-methylurea, AEUH = 1-amidino-O-ethylurea, APrnUH = 1-amidino-O-n-propylurea, ABnUH = 1-amidino-O-n-butylurea, dcda = dicyandiamide are reported. The complexes were prepared by the reaction of dicyandiamide with rhodium(II) acetate in methanol (1), ethanol (2), n-propanol (3) and n-butanol (4) respectively and characterized by various techniques such as C, H, N analysis, FTIR, UV-Visible, EPR, conductance, SEM, EDX, powder XRD pattern and mass spectral studies. The interaction studies of the complexes with CT-DNA suggested the non-intercalative mode of binding for these complexes. The antimicrobial activity of the complexes against the tested microorganisms viz. Bacillus subtilis, Enterococcus faecium, Staphylococcus aureus and Escherichia coli, using the standard antibiotics streptomycin as positive control is also reported.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Guanidinas/química , Ródio/química , DNA/química , Avaliação Pré-Clínica de Medicamentos , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos , Estreptomicina/farmacologia , Relação Estrutura-Atividade
18.
Polymers (Basel) ; 12(3)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151007

RESUMO

Versatile product protective coatings that deliver faster drying times and shorter minimum overcoat intervals that enable curing at faster line speeds and though lower energy consumption are often desired by coating manufacturers. Product protective coatings, based on silsesquioxane-modified diglycidyl ether of bisphenol-A (DGEBA) epoxy resin, are prepared through a glycidyl ring-opening polymerization using dicyandiamide (DICY) as a curing agent. As silsesquioxane modifier serves the octaglycidyl-polyhedral oligomeric silsesquioxane (GlyPOSS). To decrease the operational temperature of the curing processes, three different accelerators for crosslinking are tested, i.e., N,N-benzyl dimethylamine, 2-methylimidazole, and commercial Curezol 2MZ-A. Differential scanning calorimetry, temperature-dependent FT-IR spectroscopy, and rheology allow differentiation among accelerators' effectiveness according to their structure. The former only contributed to epoxy ring-opening, while the latter two, besides participate in crosslinking. The surface roughness of the protective coatings on aluminum alloy substrate decreases when the accelerators are applied. The scanning electron microscopy (SEM) confirms that coatings with accelerators are more homogeneous. The protective efficiency is tested with a potentiodynamic polarization technique in 0.5 M NaCl electrolyte. All coatings containing GlyPOSS, either without or with accelerators, reveal superior protective efficiency compared to neat DGEBA/DICY coating.

19.
J Sep Sci ; 43(12): 2401-2408, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32160648

RESUMO

A dispersive liquid-liquid extraction based on Pickering emulsion stabilized with ferroferric oxide grafted nitrogen-doped graphitized carbon black has been developed to simultaneously determine seven aldehydes in environmental water samples, in combination with pentafluorobenzyl hydroxylamine precolumn derivatization gas chromatography-tandem mass spectrometry. The nitrogen-doped graphitized carbon was prepared from dicyandiamide waste residue with a simple acid wash process. The effects of magnetic emulsifier amount, extraction time, solution pH, and oil/water volume ratio on the formation of magnetically responsive Pickering emulsion and the extraction efficiency of the proposed dispersive liquid-liquid extraction were also investigated. Under the optimized conditions, satisfactory linearities were obtained for all aldehydes with correlation coefficients larger than 0.9984. The limits of detection and quantitation of seven aldehydes were in the range of 17.3-30.1 ng/L and 54.3-103.4 ng/L, respectively, with intra- and interday relative standard deviations less than 8.6%. The mean recoveries at three spiked levels ranged from 70.0 to 101.4%. With the Pickering emulsion as a "minimized extractor", the extraction was accomplished within 5 min. After extraction, the magnetic disperser could be recovered for reuse at least five times by an external magnetic field. The proposed method was demonstrated to be feasible, simple, and economic for the trace analysis of the aldehydes in environmental water samples.

20.
Food Chem ; 317: 126429, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32109658

RESUMO

Existing methods for contaminants detection in liquid milk are complex, requires chemicals and time-consuming experimental procedure. In this study, SERS based on bimetallic core shelled nanoparticles was employed for simultaneous and fast detection of thiram and dicyandiamide (DCD) in the milk. Spectra ranging from 400 to 1700 cm-1 were selected to examine thiram (0.5, 1, 2, 5 and 10 ppm) and DCD (20, 40, 80,160 and 320 ppm), by employing 28 nm gold cores and silver-shell thickness of 8 nm. A strong peak at 1379 cm-1 was ascribed to thiram with LOD of 0.21 ppm and R2 of 0.9896, whereas a band at 929 cm-1 was associated with DCD, delivering LOD of 14.88 ppm and R2 of 0.9956. The proposed method could achieve results within 34 min and this ecofriendly method can be further employed for simultaneous and rapid screening of other accidental contaminants in milk.


Assuntos
Contaminação de Alimentos/análise , Guanidinas/análise , Nanopartículas Metálicas/química , Leite/química , Análise Espectral Raman/métodos , Tiram/análise , Animais , Análise de Alimentos/métodos , Ouro , Limite de Detecção , Prata/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA