Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biochim Biophys Acta Bioenerg ; 1864(2): 148950, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509127

RESUMO

The F1FO-ATP synthase uses the energy stored in the electrochemical proton gradient to synthesize ATP. This complex is found in the inner mitochondrial membrane as a monomer and dimer. The dimer shows higher ATPase activity than the monomer and is essential for cristae folding. The monomer-monomer interface is constituted by subunits a, i/j, e, g, and k. The role of the subunit g in a strict respiratory organism is unknown. A gene knockout was generated in Ustilago maydis to study the role of subunit g on mitochondrial metabolism and cristae architecture. Deletion of the ATP20 gene, encoding the g subunit, did not affect cell growth or glucose consumption, but biomass production was lower in the mutant strain (gΔ strain). Ultrastructure observations showed that mitochondrial size and cristae shape were similar in wild-type and gΔ strains. The mitochondrial membrane potential in both strains had a similar magnitude, but oxygen consumption was higher in the WT strain. ATP synthesis was 20 % lower in the gΔ strain. Additionally, the mutant strain expressed the alternative oxidase in the early stages of growth (exponential phase), probably as a response to ROS stress. Dimer from mutant strain was unstable to digitonin solubilization, avoiding its isolation and kinetic characterization. The isolated monomeric state activated by n-dodecyl-ß-D-maltopyranoside showed similar kinetic constants to the monomer from the WT strain. A decrease in mitochondrial ATP synthesis and the presence of the AOX during the exponential growth phase suggests that deletion of the g gene induces ROS stress.


Assuntos
Peróxido de Hidrogênio , ATPases Mitocondriais Próton-Translocadoras , Peróxido de Hidrogênio/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trifosfato de Adenosina/metabolismo
2.
Biochim Biophys Acta Bioenerg ; 1862(7): 148429, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33862003

RESUMO

Transduction of electrochemical proton gradient into ATP synthesis is performed by F1FO-ATP synthase. The reverse reaction is prevented by the regulatory subunit Inh1. Knockout of the inh1 gene in the basidiomycete Ustilago maydis was generated in order to study the function of this protein in the mitochondrial metabolism and cristae architecture. Deletion of inh1 gen did not affect cell growth, glucose consumption, and biomass production. Ultrastructure and fluorescence analyzes showed that size, cristae shape, network, and distribution of mitochondria was similar to wild strain. Membrane potential, ATP synthesis, and oxygen consumption in wild type and mutant strains had similar values. Kinetic analysis of ATPase activity of complex V in permeabilized mitochondria showed similar values of Vmax and KM for both strains, and no effect of pH was observed. Interestingly, the dimeric state of complex V occurs in the mutant strain, indicating that this subunit is not essential for dimerization. ATPase activity of the isolated monomeric and dimeric forms of complex V indicated Vmax values 4-times higher for the mutant strain than for the WT strain, suggesting that the absence of Inh1 subunit increased ATPase activity, and supporting a regulatory role for this protein; however, no effect of pH was observed. ATPase activity of WT oligomers was stimulated several times by dodecyl-maltoside (DDM), probably by removal of ADP from F1 sector, while DDM induced an inactive form of the mutant oligomers.


Assuntos
Trifosfato de Adenosina/metabolismo , Basidiomycota/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Multimerização Proteica , Metabolismo Energético , Estabilidade Enzimática , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , Fosforilação Oxidativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA