Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.753
Filtrar
1.
Bull Environ Contam Toxicol ; 113(2): 21, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096383

RESUMO

Imazethapyr is the most common herbicide used for weed management in pulses. A field trial was carried out with imazethapyr 10% SL formulation at 100 and 150 g a.i./ha application rates, as pre-and post-emergence, to study dissipation of imazethapyr in soil, persistence in urdbean plant, terminal residues in urdbean grains and effect on soil microbes. An acetate buffered- quick, easy, cheap, effective, rugged, and safe (QuEChERS) method in combination with high-performance liquid chromatography (HPLC) was validated for imazethapyr residue analysis. The half-life of imazethapyr in soil ranged from 15.12 to 18.02 days. The residues of imazethapyr persist up to 60 days in soil and up to 7-15 days in urdbean plant. Residues were not detected in grains at the time of harvest. Persistence of imazethapyr residues in soil significantly impact soil microbial populations depending on herbicide application rates and timing.


Assuntos
Herbicidas , Ácidos Nicotínicos , Resíduos de Praguicidas , Microbiologia do Solo , Poluentes do Solo , Solo , Vigna , Herbicidas/análise , Poluentes do Solo/análise , Vigna/química , Ácidos Nicotínicos/análise , Resíduos de Praguicidas/análise , Solo/química , Cinética , Cromatografia Líquida de Alta Pressão , Meia-Vida
2.
Geosci Lett ; 11(1): 36, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39157275

RESUMO

The Indonesian seas, with their complex passages and vigorous mixing, constitute the only route and are critical in regulating Pacific-Indian Ocean interchange, air-sea interaction, and global climate events. Previous research employing remote sensing and numerical simulations strongly suggested that this mixing is tidally driven and localized in narrow channels and straits, with only a few direct observations to validate it. The current study offers the first comprehensive temporal microstructure observations in the south of Lombok Strait with a radius of 0.05° and centered on 115.54oE and 9.02oS. Fifteen days of tidal mixing observations measured potential temperature and density, salinity, and turbulent energy dissipation rate. The results revealed significant mixing and verified the remotely sensed technique. The south Lombok temporal and depth averaged of the turbulent kinetic energy dissipation rate, and the diapycnal diffusivity from 20 to 250 m are ε  = 4.15 ± 15.9) × 10-6 W kg-1 and K ρ = (1.44 ± 10.7) × 10-2 m2s-1, respectively. This K ρ is up to 104 times larger than the Banda Sea [ K ρ  = (9.2 ± 0.55) × 10-6 m2s-1] (Alford et al. Geophys Res Lett 26:2741-2744, 1999) or the "open ocean" K ρ = 0.03 × 10-4 m2s-1 within 2° of the equator to (0.4-0.5) × 10-4 m2s-1 at 50°-70° (Kunze et al. J Phys Oceanogr 36:1553-1576, 2006). Therefore, nonlinear interactions between internal tides, tidally induced mixing, and ITF plays a critical role regulating water mass transformation and have strong implications to longer-term variations and change of Pacific-Indian Ocean water circulation and climate. Supplementary Information: The online version contains supplementary material available at 10.1186/s40562-024-00349-3.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39102378

RESUMO

Supervised field trial studies were conducted to understand dissipation kinetics and harvest time residues of a combination product of fluxapyroxad and pyraclostrobin in cumin plant/leaves and seeds at different locations in India. The results showed initial accumulation of fluxapyroxad at the levels of 15.4 and 20.2 mg kg-1 and pyraclostrobin at the level of 21.2 and 33.4 mg kg-1 in cumin leaves/plant in Anand, Gujarat. Fluxapyroxad and pyraclostrobin followed zero-order and first-order dissipation kinetics in cumin plant/leaves samples respectively. The residues translocated to cumin seeds. As the hazard quotient (HQ) was <1 in all cases consumer health risk may be negligible.

4.
Int J Mol Sci ; 25(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39125937

RESUMO

As new pesticides continue to emerge in agricultural systems, understanding their environmental behavior is crucial for effective risk assessment. Tiafenacil (TFA), a promising novel pyrimidinedione herbicide, was the focus of this study. We developed an efficient QuEChERS-UHPLC-QTOF-MS/MS method to measure TFA and its transformation products (TP1, TP2, TP3, TP4, and TP5) in soil. Our calibration curves exhibited strong linearity (R2 ≥ 0.9949) ranging from 0.015 to 2.0 mg/kg within a low limit of quantification (LOQ) of 2.0 µg/kg. Inter-day and intra-day recoveries (0.10 to 2.0 mg/kg, 80.59% to 110.05%, RSD from 0.28% to 12.93%) demonstrated high sensitivity and accuracy. Additionally, TFA dissipation under aerobic conditions followed first-order kinetics, mainly yielding TP1 and TP4. In contrast, TP1 and TP2 were mainly found under sterilized and anaerobic conditions, and TFA dissipation followed second-order kinetics. Moreover, we predicted the transformation pathways of TFA using density functional theory (DFT) and assessed the toxicity levels of TFA and its TPs to aquatic organisms using ECOSAR. Collectively, these findings hold significant implications for a better understanding of TFA fate in diversified soil, benefiting its risk assessment and rational utilization.


Assuntos
Poluentes do Solo , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Poluentes do Solo/análise , Poluentes do Solo/química , Herbicidas/análise , Herbicidas/química , Solo/química , Pirimidinonas , Sulfonamidas
5.
Zoology (Jena) ; 166: 126195, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39128254

RESUMO

For small non-hibernating mammals, a high thermogenic capacity is important to increase activity levels in the cold. It has been previously reported that lactating females decrease their thermogenic activity of brown adipose tissue (BAT), whereas their capacity to cope with extreme cold remains uncertain. In this study we examined food intake, body temperature and locomotor behavior, resting metabolic rate, non-shivering thermogenesis, and cytochrome c oxidase activity, and the rate of state 4 respiration of liver, skeletal muscle, and BAT in striped hamsters (Cricetulus barabensis) at peak lactation and non- breeding hamsters (controls). The lactating hamsters and non- breeding controls were acutely exposed to -15°C, and several markers indicative of thermogenic capacity were examined. In comparison to non-breeding females, lactating hamsters significantly increased food intake and body temperature, but decreased locomotor behavior, and the BAT mass, indicative of decreased BAT thermogenesis at peak lactation. Unexpectedly, lactating hamsters showed similar body temperature, resting metabolic rate, non-shivering thermogenesis with non-breeding females after acute exposure to -15°C. Furthermore, cytochrome c oxidase activity of liver, skeletal muscle and BAT, and serum thyroid hormone concentration, and BAT uncoupling protein 1 expression, in lactating hamsters were similar with that in non-breeding hamsters after acute extreme cold exposure. This suggests that lactating females have the same thermogenic capacity to survive cold temperatures compared to non-breeding animals. This is particularly important for females in the field to cope with cold environments during the period of reproduction. Our findings indicate that the females during lactation, one of the highest energy requirement periods, do not impair their thermogenic capacity in response to acute cold exposure.

6.
Heliyon ; 10(15): e35387, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170270

RESUMO

As one of the key components of electric vehicles, the enhancement of the performance of the power battery is closely intertwined with an efficient Battery Thermal Management System (BTMS). In the realm of BTMS, Flat Heat Pipes (FHP) have garnered considerable attention due to their lightweight structure and excellent thermal conductivity. Thus, a BTMS configuration scheme based on FHP is proposed in this study. Utilizing orthogonal design and fuzzy grey relational analysis as the evaluation methods, coupled with numerical simulations, an investigation into the influence of four structural parameters of the novel biomimetic fins (namely, the diameter, height, spacing of protrusions, and height of cooling fins) on the temperature distribution of the battery pack is conducted. The research findings indicate that to maintain the battery within an optimal operational temperature range, the optimal dimensional parameters should be controlled at 17.5 mm, 4 mm, 13 mm, and 90 mm, respectively. Subsequent sensitivity analysis reveals that the height of the protrusions exhibits the most significant influence on the maximum temperature of the module, whereas the height of the cooling fins exerts a considerable impact on the consistency of the module temperature. The optimized maximum temperature is determined to be 36.52 °C, with a temperature difference of 2.65 °C.

7.
Artigo em Inglês | MEDLINE | ID: mdl-39141264

RESUMO

Industrial solid waste (mine tailings) management has emerged as the key universal ecological challenge as a result of the unceasing creation of rising waste by-products. Employing tailings makes mine fill production economical and assists resolve disposal problems. Foamed cement-based tailings backfill (FCTB) is a mine fill consisting of tailing, cement, water, and foaming agents. It provides certain advantages such as lightweight, good fluidity, and thermal insulation yet is relatively weak in strength. Additionally, FCTB's strength properties can be intensely improved by adding fibers. A total of three diverse fibers: polypropylene (PP), glass (G), and basalt (B) as well as dodecyltrimethylammonium bromide (DTAB) as a foaming agent were used to prepare fiber-reinforced foamed cementitious tailings backfill (FR-FCTB). The mechanical properties, energy evolution, ductility, and microstructure of FR-FCTB were elaborately investigated by uniaxial compression tests (UCS) and SEM. Laboratory findings demonstrate the reinforcing effect of three fibers on FCTB specimens: glass > polypropylene > basalt. FR-FCTB showed the best strength features as a fiber content of 0.3% was adopted in FCTB. At this time, the UCS performance of glass fiber-reinforced FCTBs was 0.85 MPa increased by 18.1%. The addition of fibers can increase the fill's energy storage limit, slow down the discharge of elastic strain energy within the backfill, and enhance the fill's ductility and toughness. The ductility factor evaluates the degree of deterioration of filling in terms of post-peak drop, with all FR-FCTB values being greater than CTB. FR-FCTB's chief hydration product is the C-S-H gel. Fiber's bridging effect significantly rallies crack extension and thus fill's strength features. Lastly, the study's main results are instructive for the industrial application of FR-FCTB used in metallic mines.

8.
Food Res Int ; 192: 114679, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147536

RESUMO

Studies on nitenpyram determination and behavior within tea remain limited despite its widespread use as a neonicotinoid. An organic-saving analytical approach tailored for the detection of nitenpyram in tea was established. Nitenpyram was extracted by boiling water and cleaned up by Cleanert PCX solid-phase. The average recoveries were 75.1-94.5 %, with relative standard deviations (RSDs) of 0.7-8.6 % for saving 34.5-88.6 % organic solvent. The limits of quantification (LOQs) were 0.002 mg·kg-1 in fresh tea shoots, 0.005 mg·kg-1 in made tea, and 0.001 mg·L-1 in tea brew, satisfying the current minimum Maximum Residue Limit (MRL). Nitenpyram dissipated rapidly with half-lives of 1.2-1.4 days at the recommended dosage (27 g a.i. ha-1) in two locations. Remarkably, 20-110 % of nitenpyram was leached out from made tea in different brewing modes. This work provides insights into nitenpyram's rational application in tea cultivation and offers considerations to institutions tasked with unestablished MRLs in tea.


Assuntos
Contaminação de Alimentos , Neonicotinoides , Resíduos de Praguicidas , Chá , Chá/química , Resíduos de Praguicidas/análise , Neonicotinoides/análise , Contaminação de Alimentos/análise , Extração em Fase Sólida/métodos , Limite de Detecção , Camellia sinensis/química
9.
Sci Rep ; 14(1): 17325, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068282

RESUMO

The present work investigates the water wave interaction with bottom-standing thick porous trapezoidal-shaped structures and shore-side vertical rigid wall in the presence of uniform ocean currents. This study has been done to understand the impact of different physical parameters like friction, porosity, and ocean currents along with different structural parameters (width and height) on different phenomena like wave energy reflection, wave forces, wave energy dissipation, etc. The quadratic boundary element method-based numerical technique has been used to solve the boundary value problem. The structural porosity is modeled using Sollitt and Cross's model of water wave interaction with thick porous structures. Several results associated with the wave energy reflection and energy dissipation have been analyzed. Also, the wave force exerted by the incoming waves has been investigated to check the stability and sustainability of the right vertical rigid wall and porous structure. The Doppler-shift effect is observed in wave transformation characteristics due to the presence of ocean currents. The impact of following and opposing ocean currents can be seen in the graph of wave energy reflection, dissipation, and wave forces. The periodic patterns can be observed clearly in wave characteristics like wave energy reflection, dissipation, and wave forces when plotted against the non-dimensional separation gap between the porous breakwater and shore-side rigid seawall.

10.
Heliyon ; 10(13): e33949, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071554

RESUMO

The development on entropy generation in fluid flows has applications in many medical equipment such as cryogenic devices and therapeutic heat apparatus. This study looks at how porous medium, multi-slips, and entropy formation affect the pumping of Jeffrey nanofluid flow through an asymmetric channel containing motile microorganims. A lubrication theory is used to neglect the fluctuation effects in the flow. Numerical simulations are utilized to generate data for specific physical features of the problem utilizing the Shooting approach on Mathematica. Following a thorough research, it is appropriate to conclude that the porous medium's permeability reduces flow speed along the walls while increases at the center of the flow region. Graphical representation of the results further reveals that entropy production can be decreased by including high thermal slip and low viscous slip elements. It is also worth noting that the Brinkman number reduces the thermal distribution in the flow while it helps in increasing the flow speed.

11.
Photochem Photobiol ; 100(4): 1140-1150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39073163

RESUMO

We explore the photothermal response of methanol, ethylene glycol, and glycerol using the femtosecond laser-induced thermal lens spectroscopy (FTLS) technique. A mode mismatched pump-probe spectroscopic technique was utilized to analyze the influence of localized thermal heating on the photothermal response of solvents. The findings revealed a strong dependence on both the input pump power and the molecular characteristics of the solvents. At significantly high pump power, the excess heat load deposited to the solvent is found to be responsible for the induction of the convection currents in the heat transfer mechanisms. Our results highlight that the influence of pump power on photothermal and thermal lens characteristics is intricately linked to the natural drifting and heat transfer mechanisms of solvent molecules. The molecular motion and existing connective processes were correlated with the molecular characteristics of the samples. The present finding reveals that FTLS is a sensitive probe for comprehending the impact of input laser power, molecular structure, and intermolecular H bonding on the photothermal characteristics and thermo-optical properties of the alcoholic medium.

12.
Sci Total Environ ; 947: 174729, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39002601

RESUMO

Adjustment of daily discharge and sediment content in the Lower Jinsha River Basin has changed dramatically. However, the adjustment mechanism of daily sediment content under reservoir operation remains unclear. The Double Mass Curve (DMS) method was used to divide different periods of daily discharge-sediment content relationship change, and the Flow Duration Curve (FDC) was used to calculate the energy dissipation of streamflow by reservoirs. With the operation of large reservoirs, the average flood discharge and its proportion significantly decreased. With the variation in flow regime, the quantile relationship and Lower boundary relationship of daily discharge and sediment content both showed a downward trend, from 1999 to 2019. Under different periods, adjustment of the cross-flow profile was decreased with larger daily discharge, which was characterized by the ratio of sediment content to the lower boundary. An improved flow duration curve method was proposed to calculate the energy dissipation of streamflow. We discovered a novel model between the relative reduction of sediment content and relative energy dissipation of the daily discharge regime, with a good fitness of 0.97. In this study, the effect of the flow regime constructed on sediment content change was emphasized. It is helpful to evaluate the sediment reduction of the total basin caused by reservoirs.

13.
Discov Nano ; 19(1): 113, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970688

RESUMO

In this paper, we propose the use of punch-through nMOS (PTnMOS) as an alternative to pMOS in complementary metal oxide semiconductor (CMOS) circuits. According to the TCAD simulation results, PTnMOS exhibit sub-threshold characteristics similar to those of pMOS and can be formed by simply changing the doping concentration of the source and drain. Without the need for sizing, which solves the area occupation problem caused by the need to increase the width of pMOS due to insufficient hole mobility. In addition, we compose a PTnMOS and nMOS without sizing to form a single-carrier CMOS in which only electrons are transmitted, and We extract its performance for comparison with conventional CMOS (Wp/Wn = 1). The results indicate that single-carrier CMOS has symmetric noise margin and 29% faster delay time compared to conventional CMOS (Wp/Wn = 1). If III-V or II-VI group materials could be applied to single-carrier CMOS, not only could costs be reduced and wafer area occupancy minimized, but also significant improvements in the performance and bandwidth application of microwave circuits could be achieved.

14.
Heliyon ; 10(12): e32869, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975100

RESUMO

Currently, although energy conservation related research in buildings is a matter of great urgency in the context of an ever more serious energy crisis, people seem to pay more attention on the field of civil engineering, such as the design, construction, monitoring and maintenance management of building structures. This is also evidenced by the authors' extensive research and strong practical engineering experience in infrastructure projects such as bridges. This study first presents the general building energy situation. The state of the art of the energy in buildings is then reviewed, followed by pointing out the intelligent monitoring-based future direction, and then the final goal towards the smart city can be expected. Specifically, more than one hundred published papers are selected for sample analysis, taking into account different research topics and different publication dates etc. The research topics, research methods and research conclusions of these published papers are very different, and they have not yet produced results that could be generally accepted. Actually, most of the published papers focus on the analysis and conservation of building energy, including the energy model for analysis and prediction, the energy affected by resident behavior and building forms, the renewable energy utilization and zero energy building. While a small part of the published papers is concerned with the resilient structural energy dissipation and collapse-resistant. Furthermore, the intelligent monitoring of building energy, supported by advanced sensor development and big data analysis technology, is also providing us a more promising future on the way to the smart city. It should be further noted that the design and construction codes or standards related to building energy have not yet been retrieved, and these have a strong guiding significance for engineering practice. Therefore, more research needs to be done to expect a better practical outcome.

15.
J Evol Equ ; 24(3): 63, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989137

RESUMO

In this paper, we consider a dynamic model of fracture for viscoelastic materials, in which the constitutive relation, involving the Cauchy stress and the strain tensors, is given in an implicit nonlinear form. We prove the existence of a solution to the associated viscoelastic dynamic system on a prescribed time-dependent cracked domain via a discretization-in-time argument. Moreover, we show that such a solution satisfies an energy-dissipation balance in which the energy used to increase the crack does not appear. As a consequence, in analogy to the linear case this nonlinear model exhibits the so-called viscoelastic paradox.

16.
Artigo em Inglês | MEDLINE | ID: mdl-39038065

RESUMO

The present study was undertaken to understand the dissipation behaviour/kinetics of fluoxapiprolin and its metabolites in cucumber and tomato under field conditions. A QuEChERS based extraction method followed by liquid chromatography coupled to mass spectrometry (LC-MS/MS) analysis showed that all method validation parameters were within the acceptable range as per international standards with a limit of quantitation (LOQ) of 0.01 mg kg-1 for all analytes. As significant matrix effects were observed with a few metabolites, matrix matched standards were used for the whole study. Residues of fluoxapiprolin in cucumber at standard dose were steady from 0 to 3 day after application and were below LOQ on the 5th day after application. In cucumber fruit at double dose and in tomato at both the doses the residues followed second-order kinetics and were respectively ≤ LOQ from days 7 and 14 onwards. Pre-harvest intervals (PHI) of 5 days and 14 days are proposed for cucumber and tomato fruits respectively. All the metabolites were ≤ LOQ from day 0 in all the matrices. The consumer risk, assessed as Hazard Quotient (HQ), showed that HQ was ≤1 in all the cases. The results of the present study and earlier studies on other similar fungicides suggest that the use of fluoxapiprolin in cucumber and tomato fruits may not pose health or environmental hazards provided that good agricultural practices are followed and the proposed waiting period is observed. The data from the present study can be used by regulatory bodies in establishing maximum residue limits.

17.
Sci Rep ; 14(1): 16726, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030345

RESUMO

This research delves into the transfer and loss of energy in a discrete mass when subjected to forced vibration. Using discrete element method (DEM), we analyzed the dynamic behavior of regular spherical granular assemblies and the energy distribution characteristics under different excitation frequencies and reduced accelerations. Moreover, the energy transfer and dissipation process of granular assemblies under different vibration states are studied using an experimental method. The results show that the granular assemblies will produce collision energy dissipation, thermal energy dissipation, acoustic energy dissipation and other forms of energy dissipation in the forced vibration state and the proportion of different energy dissipation under different excitation is given. The collision and friction of granular assemblies are the key to affecting other forms of energy dissipation. When the excitation increases, the energy dissipation forms are generated inside the granular assemblies, and the proportion of collision energy dissipation of the granular assemblies increases. The acoustic energy above 20 kHz occupies the main part of the acoustic energy dissipation. Thermal energy consumption always exists, which takes a long time to play a role. The granular also have other forms of energy loss, which is hard to be measured, including Rayleigh waves generated by granular collision. In this study, the relationship between the forced vibration state of the granular assemblies and the energy loss distribution is established. Various types of energy transfer and conversion distribution which further enriches the energy dissipation of discrete element calculation of the granular assemblies is discussed and provides a reference for the energy loss analysis of the granular assemblies.

18.
Small ; : e2404556, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032001

RESUMO

Silicon (Si) is a promising anode material for high-energy-density lithium-ion batteries, but the significant volume change of Si particles during alloying/dealloying with lithium (Li) undermines the mechanical integrity of Si anode, causing electrode fracture, delamination and rapid capacity decay. Herein, a robust triple crosslinked network (TCN) binder with high ionic conductivity and hierarchical stress dissipation is reported for Si anodes, which is prepared by in situ chemical crosslinking polyacrylic acid (PAA) and melamine (MA). The triple interactions of hydrogen bonds, electrostatic interactions, and covalent amide bonds enhance the adhesion of binder to Si and synergistically promote stress dissipation within Si anodes, thus strengthening the dynamic structural stability of Si anodes during cycling. Moreover, the rapid coupling/decoupling of Li+ with the TCN binder enables an impressive Li+ transference number of 0.63 and high ionic conductivity of 1.2 × 10-4 S cm-1. Consequently, the Si-TCN anode delivers specific capacity of 2268 mAh g-1 with a high mass loading of 2 mg cm-2, high-rate performance of 1673 mAh g-1 at 5 A g-1, and stable cycling for 250 cycles at 1 A g-1, thus showing great prospects for high-energy-density Si-based batteries.

19.
J Mech Behav Biomed Mater ; 157: 106660, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39033558

RESUMO

Enhancing friction force in lubricated, compliant contacts is of particular interest due to its wide application in various engineering and biological systems. In this study, we have developed bioinspired surfaces featuring film-terminated ridges, which exhibit a significant increase in lubricated friction force compared to flat samples. We propose that the enhanced sliding friction can be attributed to the energy dissipation at the lubricated interface caused by elastic hysteresis resulting from cyclic terminal film deformation. Furthermore, increasing inter-ridge spacing or reducing terminal film thickness are favorable design criteria for achieving high friction performance. These findings contribute to our understanding of controlling lubricated friction and provide valuable insights into surface design strategies for novel functional devices.


Assuntos
Fricção , Propriedades de Superfície , Lubrificação , Materiais Biomiméticos/química , Teste de Materiais , Lubrificantes/química , Fenômenos Mecânicos
20.
Beilstein J Nanotechnol ; 15: 767-780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979526

RESUMO

An often observed artifact in atomic force microscopy investigations of individual monolayer flakes of 2D materials is the inaccurate height derived from topography images, often attributed to capillary or electrostatic forces. Here, we show the existence of a Joule dissipative mechanism related to charge dynamics and supplementing the dissipation due to capillary forces. This particular mechanism arises from the surface conductivity and assumes significance specially in the context of 2D materials on insulating supports. In such scenarios, the oscillating tip induces in-plane charge currents that in many circumstances constitute the main dissipative contribution to amplitude reduction and, consequently, affect the measured height. To investigate this phenomenon, we conduct measurements on monolayer flakes of co-deposited graphene oxide and reduced graphene oxide. Subsequently, we introduce a general model that elucidates our observations. This approach offers valuable insights into the dynamics of surface charges and their intricate interaction with the tip.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA