Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 406: 130957, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876283

RESUMO

The osmotic membrane bioreactor (OMBR) is a novel wastewater treatment and resource recovery technology combining forward osmosis (FO) and membrane bioreactor. It has attracted attention for its low energy consumption and high contaminant removal performance. However, in the long-term operation, OMBR faces the problem of salt accumulation due to high salt rejection and reverse salt flux, which affects microbial activity and contaminants removal efficiency. This review analyzed the feasibility of screening salt-tolerant microorganisms and determining salinity thresholds to improve the salt tolerance of OMBR. Combined with recent research, the inhibition strategies for salt accumulation were reviewed, including the draw solution, FO membrane, operating conditions and coupling with other systems. It is hoped to provide a theoretical basis and practical guidance for the further development of OMBR. Finally, future research directions were prospected. This review provides new insights for achieving stable operation of OMBR and promotes its wide application.


Assuntos
Reatores Biológicos , Membranas Artificiais , Osmose , Tolerância ao Sal/fisiologia , Purificação da Água/métodos , Águas Residuárias/química , Salinidade
2.
Sci Total Environ ; 934: 173368, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38777064

RESUMO

Perfluorooctanoic acid (PFOA) is a persistent compound, raising considerable global apprehension due to its resistance to breakdown and detrimental impacts on human health and aquatic environments. Pressure-driven membrane technologies treating PFAS-contaminated water are expensive and prone to fouling. This study presented a parametric investigation of the effectiveness of cellulose triacetate membrane in the forward osmosis (FO) membrane for removing PFOA from an aqueous solution. The study examined the influence of membrane orientation modes, feed pH, draw solution composition and concentration, and PFOA concentration on the performance of FO. The experimental results demonstrated that PFOA rejection was 99 % with MgCl2 and slightly >98 % with NaCl draw solutions due to the mechanism of PFOA binding to the membrane surface through Mg2+ ions. This finding highlights the crucial role of the draw solution's composition in PFOA treatment. Laboratory results revealed that membrane rejection of PFOA was 99 % at neutral and acidic pH levels but decreased to 95 % in an alkaline solution at pH 9. The decrease in membrane rejection is attributed to the dissociation of the membrane's functional groups, consequently causing pore swelling. The results were confirmed by calculating the average pore radius of the CTA membrane, which increased from 27.94 nm at pH 5 to 30.70 nm at pH 9. Also, variations in the PFOA concentration from 5 to 100 mg/L did not significantly impact the membrane rejection, indicating the process's capability to handle a wide range of PFOA concentrations. When seawater was the draw solution, the FO membrane rejected 99 % of PFOA concentrations ranging from 5 mg/L to 100 mg/L. The CTA FO treating PFOA-contaminated wastewater from soil remediation achieved a 90 % recovery rate and water flux recovery of 96.5 % after cleaning with DI water at 40 °C, followed by osmotic backwash. The results suggest the potential of using abundant and cost-effective natural solutions in the FO process, all without evident membrane fouling.

3.
Membranes (Basel) ; 14(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38786941

RESUMO

This study assesses the technical feasibility of a forward-osmosis-based system for concentrating produced water and extracting freshwater. Forward osmosis was combined with nanofiltration, the latter system used to restore the initial osmotic pressure of the diluted draw solutions while concurrently obtaining the final freshwater product. Three draw solutions, namely, MgCl2, NaCl, and C3H5NaO2, were initially tested against a synthetic water mimicking a pretreated produced water effluent having an osmotic pressure equal to 16.3 bar. MgCl2 was thus selected for high-recovery experiments. Different combinations of draw solution osmotic pressure (30, 40, 60, 80, and 120) and draw-to-feed initial volume ratios (1, 1.6, and 2.2) were tested at the laboratory scale, achieving recovery rates between roughly 35% and 70% and water fluxes between 4 and 8 L m-2h-1. One-dimensional, system-wide simulations deploying the analytical FO water flux equation were utilized to validate the experiments, investigate co-current and counter-current configurations, and understand the system potential. The diluted draw solutions were then transferred to nanofiltration to regenerate their original osmotic pressure. There, the highest observed rejection was 96.6% with an average flux of 21 L m-2h-1, when running the system to achieve 100% relative recovery.

4.
Environ Sci Pollut Res Int ; 30(39): 91355-91368, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37479923

RESUMO

The forward osmosis (FO) desalination process has recently acknowledged a lot of attention as a promising solution for reducing the disadvantages of existing desalination systems. This work aimed to investigate the effect of a selected liquid organic fertilizer a novel draw solution produced from "microalgae Spirulina platensis" on the biofouling mechanism of FO membrane. Different draw solution (DS) concentrations ranging 240-480 g/L were examined, obtained water flux ranging from 6.5 to 3.4 Lm2h-1. A high flux decline was observed when using higher DS concentrations due to fouling layer accumulated throughout the membrane area which lowers the effective osmotic pressure difference. Different cleaning strategies were examined. The biofouled membrane was cleaned on-line with deionized water (DI) and externally using ultrasound (US) and HCl. Baseline experiments were done to investigate the efficiency of the cleaning strategies. After cleaning using the deionized water (DI) water, it was found that the water flux progressed from 3.4 to 7 Lm2h-1, while when using acid cleaning the flux recovered to 15 Lm-2h-1. The efficacy and amount of foulant removed by each cleaning stage were assessed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX).


Assuntos
Incrustação Biológica , Microalgas , Incrustação Biológica/prevenção & controle , Fertilizantes , Água
5.
Materials (Basel) ; 16(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37297272

RESUMO

Polyacrylic acid (PAA)-coated magnetic nanoparticles (MNP@PAA) were synthesized and evaluated as draw solutes in the forward osmosis (FO) process. MNP@PAA were synthesized by microwave irradiation and chemical co-precipitation from aqueous solutions of Fe2+ and Fe3+ salts. The results showed that the synthesized MNPs have spherical shapes of maghemite Fe2O3 and superparamagnetic properties, which allow draw solution (DS) recovery using an external magnetic field. Synthesized MNP, coated with PAA, yielded an osmotic pressure of ~12.8 bar at a 0.7% concentration, resulting in an initial water flux of 8.1 LMH. The MNP@PAA particles were captured by an external magnetic field, rinsed in ethanol, and re-concentrated as DS in repetitive FO experiments with deionized water as a feed solution (FS). The osmotic pressure of the re-concentrated DS was 4.1 bar at a 0.35% concentration, resulting in an initial water flux of 2.1 LMH. Taken together, the results show the feasibility of using MNP@PAA particles as draw solutes.

6.
Sci Total Environ ; 886: 163901, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37146807

RESUMO

Forward osmosis (FO) has become a promising membrane technology for desalination and water treatment due to its simplicity, low energy consumption, and low fouling tendency compared to pressure-driven membrane processes. Therefore, the advancement in FO process modelling was one of the main objectives of this paper. On the other hand, the membrane characteristics and draw solute type represent the main FO process factors determining its technical performance and economical perspectives. Thus, this review mainly highlights the commercially available FO membrane characteristics and the development of lab-scale fabricated membranes based on cellulose triacetate and thin-film nanocomposite membranes. These membranes were discussed by considering their fabrication and modification techniques. Additionally, the novelty of different draw agents and their effects on FO performance have been analyzed in this study. Moreover, the review touched upon different pilot-scale studies on the FO process. Finally, this paper has stated the overall FO process advances along with its drawbacks. This review is anticipated to benefit the research and desalination scientific community by having an overview of the major FO components that require additional attention and development.


Assuntos
Membranas Artificiais , Purificação da Água , Osmose , Purificação da Água/métodos , Soluções
7.
Membranes (Basel) ; 13(4)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37103806

RESUMO

Forward osmosis (FO) is a low-energy treatment process driven by osmosis to induce the separation of water from dissolved solutes/foulants through the membrane in hydraulic pressure absence while retaining all of these materials on the other side. All these advantages make it an alternative process to reduce the disadvantages of traditional desalination processes. However, several critical fundamentals still require more attention for understanding them, most notably the synthesis of novel membranes that offer a support layer with high flux and an active layer with high water permeability and solute rejection from both solutions at the same time, and a novel draw solution which provides low solute flux, high water flux, and easy regeneration. This work reviews the fundamentals controlling the FO process performance such as the role of the active layer and substrate and advances in the modification of FO membranes utilizing nanomaterials. Then, other aspects that affect the performance of FO are further summarized, including types of draw solutions and the role of operating conditions. Finally, challenges associated with the FO process, such as concentration polarization (CP), membrane fouling, and reverse solute diffusion (RSD) were analyzed by defining their causes and how to mitigate them. Moreover, factors affecting the energy consumption of the FO system were discussed and compared with reverse osmosis (RO). This review will provide in-depth details about FO technology, the issues it faces, and potential solutions to those issues to help the scientific researcher facilitate a full understanding of FO technology.

8.
Membranes (Basel) ; 13(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36837713

RESUMO

The applicability of ionic liquids (ILs) as the draw solute in a forward osmosis (FO) system was investigated through a study on the effect of the structural change of the anion on the FO performance. This study evaluated ILs composed of tetrabutylphosphonium cation ([P4444]+) and benzenesulfonate anion ([BS]-), para-position alkyl-substituted benzenesulfonate anions (p-methylbenzenesulfonate ([MBS]-) and p-ethylbenzenesulfonate ([EBS-]), and methanesulfonate anion ([MS]-). The analysis of the thermo-responsive properties suggested that the [P4444][MBS] and [P4444][EBS] ILs have lower critical solution temperatures (LCSTs), which play a beneficial role in terms of the reusability of the draw solute from the diluted draw solutions after the water permeation process. At 20 wt% of an aqueous solution, the LCSTs of [P4444][MBS] and [P4444][EBS] were approximately 36 °C and 25 °C, respectively. The water flux and reverse solute flux of the [P4444][MBS] aqueous solution with higher osmolality than [P4444][EBS] were 7.36 LMH and 5.89 gMH in the active-layer facing the draw solution (AL-DS) mode at osmotic pressure of 25 atm (20 wt% solution), respectively. These results indicate that the [P4444]+-based ionic structured materials with LCST are practically advantageous for application as draw solutes.

9.
Water Res ; 230: 119524, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36584660

RESUMO

This experimental study explores the feasibility of the reuse of dyes recovered from denim and polyester dyebath effluents using forward osmosis (FO) system to achieve zero hazardous material discharge. In batch experiments, the sodium dodecyl sulfate (SDS) at 0.5 M concentration generated an average flux of 3.5 L/m2/h (LMH) and reverse salt flux (RSF) of only 0.012 g/m2/h (GMH), while maintaining 100% dye rejection. This flux stability comes from the property of surfactants to form micelles and exert a stable osmotic pressure (π) above their critical micelle concentration (CMC). The low RSF is due to the greater micelle size. A colored fouling layer was formed on the membrane active layer (AL), which was easily removed using sodium hydroxide (NaOH) and citric acid. According to Fourier transform infrared spectra and atomic forces microscopy images of the AL, the interaction between foulants and membrane active groups did not significantly affect the physiochemical properties of the membrane. In the semi-continuous experiment, a very stable average flux of 7.3 LMH and RSF of 0.03 GMH was obtained using 0.75 M SDS as draw solution. The stacked 1D proton nuclear magnetic resonance analysis (1HNMR) spectra of both original and recovered disperse dyes showed 100% similarity, which validates the concept that the recovered dyes maintained their integrity during reconcentration and can be reused in the next batch dyeing process. Importantly, the diluted SDS concentration can be directly reused within the same textile industry in scouring and finishing processes. The processes of dye recovery and reuse developed in this study do not produce any waste or hazardous by-products and are suitable for scale-up and onsite industrial applications.


Assuntos
Tensoativos , Purificação da Água , Micelas , Purificação da Água/métodos , Membranas Artificiais , Osmose , Corantes , Têxteis
10.
Environ Sci Pollut Res Int ; 30(7): 19224-19233, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36227491

RESUMO

In this study, poly(acrylic acid) sodium (PAA-Na) salt was selected as representative polymer additive and the effect on forward osmosis (FO) performance of traditional draw solute NaCl was investigated. Results showed that PAA-Na increased water flux in both FO and PRO mode at 25 °C (up to 50%). Water flux and specific RSF firstly increased and then kept stable with the increasing concentration of PAA-Na additive. However, PAA-Na cannot enhance water permeation effectively at 35 and 45 °C. PAA-Na influenced FO performance by (1) increasing membrane hydrophilicity, which can increase water permeation, and was dominant at low temperature, and (2) causing pore-clogging, leading water flux decline, which was significant at high temperature. Furthermore, the influence of PAA-Na was compared with another polymer PAM and divalent salts MgCl2. The addition of PAM increased water flux slightly (lower than 25%), but increased RSF at the same time, due to the negative charge. Although MgCl2 decreased RSF and kept water flux fixed, its role was not obvious. In all, PAA-Na had advantages to improve FO performance.


Assuntos
Sódio , Purificação da Água , Purificação da Água/métodos , Cloreto de Sódio , Resinas Acrílicas , Água , Osmose , Membranas Artificiais
11.
Membranes (Basel) ; 12(8)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36005724

RESUMO

This study is to evaluate the athermal forward osmosis (FO) concentration process of blueberry juice using food additives as a draw solution (DS). The effects of food additives, including citric acid, sodium benzoate, and potassium sorbate, on the concentration processes are studied, and their effects on the products and membranes are compared. Results show that all these three food additives can be alternative DSs in concentration, among which citric acid shows the best performance. The total anthocyanin content (TAC) of blueberry juice concentrated by citric acid, sodium benzoate, and potassium sorbate were 752.56 ± 29.04, 716.10 ± 30.80, and 735.31 ± 24.92 mg·L-1, respectively, increased by 25.5%, 17.8%, and 19.9%. Meanwhile, the total phenolic content (TPC) increased by 21.0%, 10.6%, and 16.6%, respectively. Citric acid, sodium benzoate, and potassium sorbate all might reverse into the concentrated juice in amounts of 3.083 ± 0.477, 1.497 ± 0.008, and 0.869 ± 0.003 g/kg, respectively. These reversed food additives can make the TPC and TAC in juice steadier during its concentration and storage. Accordingly, food additives can be an excellent choice for DSs in the FO concentration process of juices, not only improving the concentration efficiency but also increasing the stability of blueberry juice.

12.
Sci Total Environ ; 847: 157573, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35882325

RESUMO

Forward osmosis (FO), a membrane separation process driven by a natural concentration gradient, is served as a potential strategy in the aspect of wastewater treatment. In this work, a worthy attempt at aquaculture wastewater treatment using a self-made FO system was conducted, confirming it was a promising approach to treating aquaculture wastewater. Optimization of operational parameters of the FO system, including draw solution (DS) concentration, cross-flow velocity, and DS temperature, was systematically investigated to enhance the running efficiency. Different selected parameters highly influenced the water flux during the single-factor experiments, and the findings indicated that the optimal conditions were DS of 1.5 M, cross-flow velocity of 15 cm/s, and temperature of 32 °C with consideration of FO performance and economical cost. An excellent linear relationship between chemical oxygen demand (COD) changing multiples and operational parameters was obtained from experimental results, offering a great interception performance of organic contamination. On the basis of optimal operating conditions, membrane fouling experiments with different running time were conducted, and the microscopic morphology and element composition of the fouled membrane were also analyzed. The results demonstrated that a layer of cake was coated on the surface of the membrane, and the main elements in the fouling cake included C, O, Na, and S, which were highly determined by the component of the feed solution (FS) and working time. Afterward, the 60-h FO fouled membrane was cleaned under the method which combined hydraulic power and chemical agents, and the water flux recovered to 12.79 Lm-2 h-1, proving a good performance for the recovery of water flux. This investigation showed that employing sucrose as DS was effective for reducing wastewater volume, and it provided an alternative choice and a sustainable way for the separation of organic pollutants from water resources.


Assuntos
Poluentes Ambientais , Purificação da Água , Aquicultura , Membranas Artificiais , Osmose , Sacarose , Águas Residuárias/química , Água , Purificação da Água/métodos
13.
Polymers (Basel) ; 14(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35808754

RESUMO

This review considers the forward osmosis (FO) membrane process as one of the feasible solutions for water desalination. Different aspects related to the FO process are reviewed with an emphasis on ultrasound assisted FO membrane processes. The different types of membranes used in FO are also reviewed and discussed; thus, their configuration, structure and applications are considered. Coupling ultrasound with FO enhances water flux through the membrane under certain conditions. In addition, this review addresses questions related to implementation of an ultrasound/FO system for seawater desalination, such as the impact on fouling, flow configuration, and location of fouling. Finally, the mechanisms for the impact of ultrasound on FO membranes are discussed and future research directions are suggested.

14.
Membranes (Basel) ; 12(5)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35629802

RESUMO

Biogas slurry poses a severe challenge to the sustainable management of livestock farms. The technology of the forward osmosis (FO) membrane has a good application prospect in the field of biogas slurry concentration. Further research is needed to verify the effects of different draw solutions on FO membranes in biogas slurry treatment and the related membrane fouling characteristics. In this study, three different draw solutions were selected to evaluate the performance of FO membranes for biogas slurry concentration. Membrane fouling was investigated by characterization after FO membrane treatment to identify fouling contaminants. The result showed that FO membrane treatment can realize the concentration of biogas slurry and MgCl2 as the draw solution has the best effect on the concentration of biogas slurry. The different draw solutions all contributed to the efficient retention of most organics and TP while each treatment was ineffective at retaining nitrogen. The cake layer that appeared after the biogas slurry was concentrated covered the surface of the FO membrane. Some functional groups were detected on the surface after membrane fouling, such as C-O and C=C. Moreover, the C element accounts for 57% of the main components of the cake layer after the membrane fouling. Membrane fouling is caused by both organic fouling and inorganic fouling, of which organic fouling is the main reason. This study provides a technical reference for the high-value utilization of biogas slurry.

15.
Chemosphere ; 296: 134002, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35181424

RESUMO

This study investigated the feasibility of applying a novel protocol for constructing a fertilizer draw solution (DS) index used in osmotic membrane bioreactor (OMBR) for simultaneous wastewater treatment and sustainable fertigation. The results indicated that system performance (i.e., water flux, reverse salt flux, contaminant removal) varied critically under different fertilizers. In which, the highest water recovery (∼60%) was observed with potassium chloride (KCl), whereas the lowest value (∼20%) was observed with ammonium nitrate (NH4NO3), which corresponded to the highest reverse salt flux. With all fertilizers, the membrane fouling layer thickness was in the range of 15.7-45.7 µm. The foulant were mostly irreversible and hydrophilic, with protein and polysaccharides were the dominant compounds. NH4NO3 and NH4H2PO4 (MAP) fertilizers caused the highest and lowest fouling resistances, respectively. Based on the matrix of performance aspects, the very first DSI was constructed for the assessment of fertilizer suitability. Principal component analysis (PCA) showed that fouling resistance played a pivotal role in the total variation of the system. The multi-criteria decision analysis (MCDA) suggested MAP as the most appropriate fertilizer with the highest fertilizer DS index (0.90), followed by KH2PO4 (0.67), KCl (0.65), NaNO3 (0.58), and NH4NO3 (0.16). A numerical simulation using an artificial intelligence-based technique revealed that MAP is also capable of maintaining high performance during long-term operations.


Assuntos
Fertilizantes , Purificação da Água , Agricultura/métodos , Inteligência Artificial , Reatores Biológicos , Fertilizantes/análise , Membranas Artificiais , Osmose , Cloreto de Sódio , Águas Residuárias , Água , Purificação da Água/métodos
16.
Environ Sci Pollut Res Int ; 29(30): 46226-46242, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35167023

RESUMO

This research project aims at investigating the performance of hydroponic nutrient solutions as draw solutions for desalination using the fertilizer drawn forward osmosis (FDFO) process. Six different lettuce and leafy greens hydroponic nutrient stock solutions were prepared according to the literature and used in this study and tested on a bench-scale forward osmosis unit as draw solutions for the process. The feed solution for the process was deionized water mixed with NaCl in different concentrations, to represent different salinities of brackish groundwater. The draw efficiency of each solution was measured based on water flux, specific reverse solute flux, water recovery, and salt rejection. It was concluded that of the six tested nutrient solutions, the "Resh Florida, California" solution is the recommended solution to be used as draw solution for fertilizer drawn forward osmosis, due to its high performance in terms of water recovery (15.75%), flux (11 L/m2/h), salt rejection (92%), and SRSF (highest recorded SRSF for a specific ion (SO42-) was 7.3 g/L), as well as its low cost, relative to the other highly performing draw solution "Chekli" ($1.07/L vs. $3.73/L).


Assuntos
Fertilizantes , Purificação da Água , Fertilizantes/análise , Hidroponia , Membranas Artificiais , Nutrientes , Osmose , Cloreto de Sódio , Soluções , Água
17.
Sci Total Environ ; 820: 153376, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35077789

RESUMO

Fertilizer driven forward osmosis (FDFO) process would be feasible due to the possible prevention of the drainage of dewatered and concentrated pesticide effluent from agricultural pesticide industries to the environment. Instead, it would be possible to return the concentrated pesticide solution to the processing cycle, and on the other hand, employ directly the obtained diluted fertilizer draw solution for irrigation. This study investigated the performance of zinc-nitrate/amino-acids blends as fertilizer type draw solution, and distilled water, saline water (seawater), and synthetic wastewater containing pesticides as feed. The results indicated that the synergetic effect of blended type fertilizer presented significantly higher osmotic pressure and water flux than the sum of their individual ones, especially when the amount of amino acid increased. Conversely, an ignorable reverse flux of blended fertilizer draw solute was observed. The fertilizer blend with a molar ratio of 1:6 zinc-nitrate/amino-acid achieved the higher average fluxes of 34.7 and 23.92 L/m2h from distilled and saline waters compared to common draw solutions such as metal salts. Furthermore, the FDFO exhibited a high rejection (over 99%) of bentazon and imidacloprid in feed solutions compared to other agricultural pesticides due to their larger molecular weight and molecular size. The applied FDFO represented a significant reduction in specific energy consumption (from 0.17 to 0.049 kWh/m3) in a bench-scale setup as compared to the RO process almost at the same water permeation flux and the rejection of bentazon.


Assuntos
Praguicidas , Purificação da Água , Fertilizantes/análise , Membranas Artificiais , Nitratos , Osmose , Água do Mar , Soluções , Purificação da Água/métodos , Zinco
18.
Environ Res ; 205: 112521, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902380

RESUMO

Regeneration and reuse of draw solute (DS) is a key challenge in the application of forward osmosis (FO) technologies. Herein, EDTA-Na2 was studied as a recoverable DS for water extraction by taking advantages of its pH-responsive property. The FO system using EDTA DS achieved a higher water flux of 2.22 ± 0.06 L m-2 h-1 and a significantly lower reverse salt flux (RSF) of 0.06 ± 0.01 g m-2 h-1, compared to that with NaCl DS having either the same DS concentration or the same Na+ concentration. The suitable pH range for the application of EDTA DS was between 4.0 and 10.5. A simple recovery method via combined pH adjustment and microfiltration was employed to recover EDTA DS and could achieve the recovery efficiency (at pH 2) of 96.26 ± 0.48%, 97.13 ± 1.03% and 98.56 ± 1.40% by using H2SO4, H3PO4 and HCl, respectively. The lowest acid cost for DS recovery was estimated from 0.0012 ± 0.0001 to 0.0162 ± 0.0003 $ g-1 by using H2SO4. The recovered EDTA DS could be reused in the subsequent FO operation and the overall recovery efficiency was 94.4% for four reuse cycles. These results have demonstrated the feasible of EDTA-Na2 DS and a potentially cost-effective recovery approach, and encouraged further exploration of using EDTA-based compounds as a draw solute for FO applications.


Assuntos
Purificação da Água , Água , Ácido Edético/química , Membranas Artificiais , Osmose , Águas Residuárias , Purificação da Água/métodos
19.
Environ Technol ; 43(21): 3309-3318, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33882775

RESUMO

In this study, D-Xylose coated MNPs were synthesized and used as draw agent in forward osmosis (FO) process for water purification. Response surface methodology (RSM) was utilized for the design and optimization of synthesis parameters. In order to characterize the synthesized MNPs, FTIR, TEM, VSM, and UV characterization techniques were performed. The effect of independent parameters including D-Xylose mass, MNPs mass, and synthesis time on the osmotic pressure was investigated. Based on the optimization results, the osmotic pressure of a 2 wt./v% draw solution using 2.66 g D-Xylose, 0.13 g MNPs, and a 7.11 h synthesis time was 0.81 bar as the highest value. Using D-Xylose coated MNPs as draw agent and deionized water as the feed, the initial FO water flux was 2.98 LMH. Reusing the recovered MNP draw agent in two more consecutive tests resulted in the reduction of water flux to 2.68 and 2.30 LMH, respectively. Moreover, using 0.01 M NaCl solution as the feed, the initial water flux was reported as 1.3 LMH. To remove the draw agents from suspension, external magnetic field was applied to obtain a water turbidity of 0.08 NTU.


Assuntos
Nanopartículas de Magnetita , Purificação da Água , Membranas Artificiais , Osmose , Purificação da Água/métodos , Xilose
20.
Environ Technol ; 43(14): 2113-2123, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33332242

RESUMO

Forward osmosis is an emerging membrane technology in water desalination. In this study, desalination of saline water via forward osmosis was investigated using a new magnetic osmotic agent. For this purpose, Fe3O4 nanoparticles covalently functionalised with tri-sodium citrate was synthesised and characterised. The structural examinations revealed that the sodium citrate had been immobilised onto the magnetic nanoparticles. The highest water flux was obtained 17.1 L M-2 h (LMH) per 80 g L-1 osmotic agent solution against deionised water, while the ratio of salt flux to water flux was very low (0.088 g L-1). The osmotic solution was evaluated for saline water desalination using different concentrations of sodium chloride (NaCl) as feed solutions. The average water fluxes of 6.2, 4.5, and 2.7 LMH was obtained for 0.1, 0.2, and 0.5 M salt solutions, respectively. The magnetic osmotic agent was separated by a magnet and re-used for several times without considerable decrease in the water flux.


Assuntos
Nanopartículas de Magnetita , Purificação da Água , Ácido Cítrico , Íons , Membranas Artificiais , Osmose , Águas Salinas , Cloreto de Sódio , Citrato de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA