RESUMO
Machine learning (ML) has increasingly been applied to predict properties of drugs. Particularly, metabolism can be predicted with ML methods, which can be exploited during drug discovery and development. The prediction of metabolism is a crucial bottleneck in the early identification of toxic metabolites or biotransformation pathways that can affect elimination of the drug and potentially hinder the development of future new drugs. Metabolism prediction can be addressed with the application of ML models trained on large and validated dataset, from early stages of lead optimization to latest stage of drug development. ML methods rely on molecular descriptors that allow to identify and learn chemical and molecular features to predict sites of metabolism (SoMs) or activity associated with mechanism of inhibition (e.g., CYP inhibition). The application of ML methods in the prediction of drug metabolism represents a powerful resource to be exploited during drug discovery and development. ML allows to improve in silico screening and safety assessments of drugs in advance, steering their path to marketing authorization. Prediction of biotransformation reactions and metabolites allows to shorten the time, save the cost, and reduce animal testing. In this context, ML methods represent a technique to fill data gaps and an opportunity to reduce animal testing, calling for the 3R principles within the Big Data era.
Assuntos
Descoberta de Drogas , Aprendizado de Máquina , Descoberta de Drogas/métodos , Humanos , Preparações Farmacêuticas/metabolismo , Biotransformação , Simulação por Computador , Animais , Desenvolvimento de Medicamentos/métodosRESUMO
Dermatomyositis (DM) is a rare autoimmune condition involving skin manifestations often resistant to standard treatments such as immunosuppressants and antimalarials. Biopsies show elevated inflammatory cells such as CD4+ T cells, dendritic cells, and cytokines. Lenabasum, a selective cannabinoid receptor 2 agonist, has demonstrated significant benefits in treating autoimmune skin diseases. OBJECTIVES: This study utilizes data from the open-label extension (OLE) phase of the lenabasum phase 2 trial and additional post-OLE follow-up data. Key aims include evaluating the drug's long-term effectiveness and assessing disease manifestation recurrence. METHODS: The phase 2 lenabasum trial enrolled patients with treatment-resistant, skin-predominant DM. The OLE consisted of a 3-year period during which 20 patients were on the drug for the entire duration, with assessments every 8 weeks to evaluate drug safety and efficacy. Subsequently, a follow-up retrospective chart review was performed on patients who completed the OLE as well as on control subjects with DM who did not participate in the lenabasum trial. RESULTS: By week 68, patients exhibited reductions in Cutaneous Dermatomyositis Disease Area and Severity Index activity score (-21.8), Patient Skin Activity Visual Analog Scale (-3.0), and Skindex-29 (-28.0) from OLE baseline. After OLE, 58.3% maintained stable disease, significantly higher than controls (P = .035), with 41.7% not experiencing flares compared with 91.6% of controls. In addition, 50% of patients reported sustained pruritus improvement. CONCLUSIONS: Data from OLE and subsequent follow-up periods demonstrate lenabasum's efficacy in maintaining disease stability, reducing flares, and improving DM symptoms, suggesting that it is a promising option for patients with treatment-resistant skin-predominant DM. TRIAL REGISTRATION: This study was registered at clinicaltrials.gov, with NCT02466243. Study registration was first submitted on June 2, 2015.
RESUMO
The expression and release of cysteine proteases by Leishmania spp. and their virulence factors significantly influence the modulation of host immune responses and metabolism, rendering cysteine proteases intriguing targets for drug development. This review article explores the substantial role of cysteine protease B (CPB) in medicinal chemistry from 2001 to 2024, particularly concerning combatting Leishmania parasites. We delve into contemporary advancements and potential prospects associated with targeting cysteine proteases for therapeutic interventions against leishmaniasis, emphasizing drug discovery in this context. Computational analysis using the pkCSM tool assessed the physicochemical properties of compounds, providing valuable insights into their molecular characteristics and drug-like potential, enriching our understanding of the pharmacological profiles, and aiding rational inhibitor design. Our investigation highlights that while nonpeptidic compounds constitute the majority (69.2%, 36 compounds) of the dataset, peptidomimetic- based derivatives (30.8%, 16 compounds) also hold promise in medicinal chemistry. Evaluating the most promising compounds based on dissociation constant (Ki) and half maximal inhibitory concentration (IC50) values revealed notable potency, with 41.7% and 80.0% of nonpeptidic compounds exhibiting values < 1 µM, respectively. On the other hand, all peptidic compounds evaluated for Ki (43.8%) and IC50 (31.3%) obtained values < 1 µM, respectively. Further analysis identified specific compounds within both categories (nonpeptidic: 1, 2, and 4; peptidic: 48-52) as particularly promising, warranting deeper investigation into their structure-activity relationships. These findings underscore the diverse landscape of inhibitors in medicinal chemistry and highlight the potential of both nonpeptidic and peptide-based compounds as valuable assets in therapeutic development against leishmaniasis.
RESUMO
Introduction: Monoiodoacetate (MIA)-induced osteoarthritis (OA) is the most commonly used rodent model for testing anti-OA drug candidates. Herein, we investigated the effects of our patented multitarget drug candidate SZV-1287 (3-(4,5-diphenyl-1,3-oxazol-2-yl) propanal oxime) that is currently under clinical development for neuropathic pain and characterized the mouse model through complex functional, in vivo imaging, and morphological techniques. Methods: Knee OA was induced by intraarticular MIA injection (0.5 and 0.8 mg). Spontaneous pain was assessed based on weight distribution, referred pain by paw mechanonociception (esthesiometry), edema by caliper, neutrophil myeloperoxidase activity by luminescence, matrix metalloproteinase activity, vascular leakage and bone remodeling by fluorescence imaging, bone morphology by micro-CT, histopathological alterations by semiquantitative scoring, and glia activation by immunohistochemistry. Then, SZV-1287 (20 mg/kg/day) or its vehicle was injected intraperitoneally over a 21-day period. Results: MIA induced remarkably decreased thresholds of weight bearing and paw withdrawal, alterations in the tibial and femoral structures (reactive sclerosis, increased trabeculation, and cortical erosions), histopathological damage (disorganized cartilage structure, hypocellularity, decreased matrix staining and tidemark integrity, and increased synovial hyperplasia and osteophyte formation), and changes in the astrocyte and microglia density in the lumbar spinal cord. There were no major differences between the two MIA doses in most outcome measures. SZV-1287 inhibited MIA-induced weight bearing reduction, hyperalgesia, edema, myeloperoxidase activity, histopathological damage, and astrocyte and microglia density. Conclusion: SZV-1287 may have disease-modifying potential through analgesic, anti-inflammatory, and chondroprotective effects. The MIA mouse model is valuable for investigating OA-related mechanisms and testing compounds in mice at an optimal dose of 0.5 mg.
RESUMO
Lung cancer remains one of the leading causes of cancer-related mortality worldwide, necessitating innovative research methodologies to improve treatment outcomes and develop novel strategies. The advent of three-dimensional (3D) cell cultures has marked a significant advancement in lung cancer research, offering a more physiologically relevant model compared to traditional two-dimensional (2D) cultures. This review elucidates the various types of 3D cell culture models currently used in lung cancer pharmacology, including spheroids, organoids and engineered tissue models, having pivotal roles in enhancing our understanding of lung cancer biology, facilitating drug development, and advancing precision medicine. 3D cell culture systems mimic the complex spatial architecture and microenvironment of lung tumours, providing critical insights into the cellular and molecular mechanisms of tumour progression, metastasis and drug responses. Spheroids, derived from commercialized cell lines, effectively model the tumour microenvironment (TME), including the formation of hypoxic and nutrient gradients, crucial for evaluating the penetration and efficacy of anti-cancer therapeutics. Organoids and tumouroids, derived from primary tissues, recapitulate the heterogeneity of lung cancers and are instrumental in personalized medicine approaches, supporting the simulation of in vivo pharmacological responses in a patient-specific context. Moreover, these models have been co-cultured with various cell types and biomimicry extracellular matrix (ECM) components to further recapitulate the heterotypic cell-cell and cell-ECM interactions present within the lung TME. 3D cultures have been significantly contributing to the identification of novel therapeutic targets and the understanding of resistance mechanisms against conventional therapies. Therefore, this review summarizes the latest findings in drug research involving lung cancer 3D models, together with the common laboratory-based assays used to study drug effects. Additionally, the integration of 3D cell cultures into lung cancer drug development workflows and precision medicine is discussed. This integration is pivotal in accelerating the translation of laboratory findings into clinical applications, thereby advancing the landscape of lung cancer treatment. By closely mirroring human lung tumours, these models not only enhance our understanding of the disease but also pave the way for the development of more effective and personalized therapeutic strategies.
RESUMO
INTRODUCTION: The autoimmune hair loss condition alopecia areata (AA) exacts a substantial psychological and socioeconomic toll on patients. Biotechnology companies, dermatology clinics, and research institutions are dedicated to understanding AA pathogenesis and developing new therapeutic approaches. Despite recent efforts, many knowledge gaps persist, and multiple treatment development avenues remain unexplored. AREAS COVERED: This review summarizes key AA disease mechanisms, current therapeutic methods, and emerging treatments, including Janus Kinase (JAK) inhibitors. The authors determine that innovative drug discovery strategies for AA are still needed due to continued unmet medical needs and the limited efficacy of current and emerging therapeutics. For prospective AA treatment developers, the authors identify the pre-clinical disease models available, their advantages, and limitations. Further, they outline treatment development opportunities that remain largely unmapped. EXPERT OPINION: While recent advancements in AA therapeutics are promising, challenges remain, including the lack of consistent treatment efficacy, long-term use and safety issues, drug costs, and patient compliance. Future drug development research should focus on patient stratification utilizing robust biomarkers of AA disease activity and improved quantification of treatment response. Investigating superior modes of drug application and developing combination therapies may further improve outcomes. Spirited innovation will be needed to advance more effective treatments for AA.
Alopecia areata (AA) is an autoimmune condition that causes hair loss. It significantly affects a patient's emotional well-being and quality of life. Companies, clinics, and researchers are working hard to understand AA and create better treatments. Despite these efforts, there are still many unanswered questions, and new treatment methods still need to be explored.This review summarizes how AA develops, current treatment options, and new therapies like Janus Kinase (JAK) inhibitor drugs. JAK inhibitors show promise, but they are not fully effective for everyone. We emphasize that there is still a need for new and innovative drug discovery strategies to meet the medical needs of AA patients, as current treatments often fall short.For researchers and developers of AA treatments, we discuss the available pre-clinical models used to test new drugs, highlighting their strengths and weaknesses. We also point out new areas for treatment development that have not been thoroughly investigated.Although recent advancements in AA treatments are encouraging, several challenges remain. These include inconsistent effectiveness of treatments, safety concerns with long-term use, high drug costs, and issues with patient adherence to treatment programs. We believe future research should focus on identifying biomarkers that can help tailor treatments to individual patients and improving measurements of treatment success. Additionally, exploring better ways to apply drugs and combining different therapies together may enhance treatment outcomes.Ultimately, innovative approaches and spirited efforts will be required to develop more effective treatments for AA to improve the lives of those affected by this challenging condition.
RESUMO
The development of targeted drugs in the Eastern Asia region is going through a flourishing stage. With the continuous advancement of technology and medical research, biotechnology companies and research institutions in the region have made significant progress in cancer field. The Eastern Asian region not only actively participates in clinical trials, but is also committed to developing personalized medical plans to meet the diverse genotypes and phenotypes of patients. The governments and enterprises are increasingly valuing innovation, strengthening international cooperation, and promoting drug development. This paper summarizes the development of genetic testing technology, targeted drugs approval, ongoing promising clinical trials in the field of lung cancer and the important progress made by governments in the Eastern Asian region, and proposed key factors that will contribute to the promising future prospects in the region. The targeted drug market in the Eastern Asian region is expected to drive the medical field forward.
RESUMO
Malaria remains a devastating but preventable infectious disease that disproportionately affects the African continent. Emerging resistance to current frontline therapies means that not only are new treatments urgently required, but also novel validated antimalarial targets to circumvent cross-resistance. Fortunately, tremendous efforts have been made by the global drug discovery community over the past decade. In this chapter, we will highlight some of the antimalarial drug discovery and development programmes currently underway across the globe, charting progress in the identification of new targets and the development of new classes of drugs to prosecute them. These efforts have been complemented by the development of valuable tools to accelerate target validation such as the NOD scid gamma (NSG) humanized mouse efficacy model and progress in predictive modelling and open-source software. Among the medicinal chemistry programmes that have been conducted over the past decade are those targeting Plasmodium falciparum ATPase4 (ATP4) and acetyl-CoA synthetase (AcAS) as well as proteins disrupting parasite protein translation such as the aminoacyl-tRNA synthetases (aaRSs) and eukaryotic elongation factor 2 (eEF2). The benefits and challenges of targeting Plasmodium kinases will be examined, with a focus on Plasmodium cyclic GMP-dependent protein kinase (PKG), cyclin-dependent-like protein kinase 3 (CLK3) and phosphatidylinositol 4-kinase (PI4K). The chapter concludes with a survey of incipient drug discovery centres in Africa and acknowledges the value of recent international meetings in galvanizing and uniting the antimalarial drug discovery community.
Assuntos
Antimaláricos , Descoberta de Drogas , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/uso terapêutico , Humanos , Animais , Malária/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacosRESUMO
Despite breakthroughs in the development of cancer diagnosis and therapy, most current therapeutic approaches lack precise specificity and sensitivity, resulting in damage to healthy cells. Selective delivery of anti-cancer agents is thus an important goal of cancer therapy. Scorpion venom (SV) and/or body parts have been used since early civilizations for medicinal purposes, and in cultures, SV is still applied to the treatment of several diseases including cancer. SV contains numerous active micro and macromolecules with diverse pharmacological effects. These include potent anti-microbial, anti-viral, anti-inflammatory, and anti-cancer properties. This review focuses on the recent advances of SV-derived peptides as promising anti-cancer agents and their diagnostic and therapeutic potential applications in cancers such as glioma, breast cancer, prostate cancer, and colon cancer. Well-characterized SV-derived peptides are thus needed to serve as potent and selective adjuvant therapy for cancer, to significantly enhance the patients' survival and wellbeing.
RESUMO
INTRODUCTION: Recent research has raised questions about potential unintended consequences of the Inflation Reduction Act's Drug Price Negotiation Program (DPNP), suggesting that the timelines introduced by the law may reduce manufacturer incentives to invest in post-approval research towards additional indications. Given the role of multiple indications in expanding treatment options in patients with cancer, IRA-related changes to development incentives are especially relevant in oncology. This study aimed to describe heterogeneous drug-level trajectories and timelines of subsequent indications in a cohort of recently approved, multi-indication oncology drugs, including overall, across subgroups of drugs characterized by the timing and pace of additional indications, and by drug type (i.e., small molecule vs. biologic). METHODS: This cross-sectional study evaluated oncology drugs first approved by the FDA from 2008 to 2018 and later approved for one or more additional indications. Numbers, types, and approval timelines of subsequent indications were recorded at the drug level, with drugs grouped by quartile based on the pacing of post-approval development (i.e., "rapid pace" to "measured pace"). RESULTS: Multi-indication oncology drugs (N = 56/86, 65.1%) had one or more subsequent indication approved in a new: cancer type (60.7%), line of treatment (50.0%), combination (41.1%), mutation (32.1%), or stage (28.6%). The median time between FDA approvals for indications increased from 0.6 years (IQR: 0.48, 0.74) in the "rapid pace" group to 1.6 years (IQR: 1.32, 1.66), 2.4 years (IQR: 2.29, 2.61), and 4.9 years (IQR: 3.43, 6.23) in the "moderate," "measured-moderate," and "measured" pace groups, respectively. Drugs in the "rapid pace" group often received their first subsequent indication approval within 9 months of initial approval (median: 0.7 years; IQR: 0.54, 1.59), whereas the "measured pace" group took a median of 5.7 years (IQR: 3.43, 6.98). Across all multi-indication drugs, the median time to the most recent approval for a subsequent indication was 5.5 years (IQR: 3.18, 7.95). One quarter (25%) of drugs were approved for their most recent subsequent indication after the time at which they would be DPNP-eligible. CONCLUSION: Approval histories of new oncology drugs demonstrate the role of post-approval indications in expanding treatment options towards new cancer types, stages, lines, combinations, and mutations. Heterogeneous clinical development pathways provide insights into potential unintended consequences of IRA-related changes surrounding post-approval research and development.
RESUMO
The US Food and Drug Administration recognizes the unmet medical need for antibacterial drugs to treat serious bacterial diseases caused by resistant pathogens for which effective therapies are limited or lacking. The agency also recognizes that designing and conducting clinical trials to assess the safety and efficacy of drugs to treat resistant infections is challenging, especially for drugs only active against a single or a few bacterial species, and that a more flexible development program might be appropriate. In this article, we discuss several regulatory considerations for flexible development programs for antibacterial drugs intended to meet an unmet medical need. As an example, we use the recent approval of sulbactam for injection and durlobactam for injection (XACDURO) for the treatment of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia caused by susceptible isolates of Acinetobacter baumannii-calcoaceticus complex.
Assuntos
Antibacterianos , Desenvolvimento de Medicamentos , Humanos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Estados Unidos , United States Food and Drug Administration , Farmacorresistência Bacteriana , Acinetobacter baumannii/efeitos dos fármacosRESUMO
The Neuropeptide S receptor (NPSR) has been identified as a potential therapeutic target for anxiety and post-traumatic stress disorder. Central administration of Neuropeptide S (NPS) in male mice produces anxiolytic-like effects, hyperlocomotion, and memory enhancement. Currently, the literature is limited in the number of studies investigating the effects of NPS in female test subjects despite females facing a higher prevalence of anxiety-related pathology, as well as greater risk for adverse effects while taking psychoactive drugs. Moreover, no previous studies have considered the influence of estrous cycle on the effects of NPS. The current study investigates whether NPS-mediated behavioral phenotypes seen in males translate to females, and whether they are affected by estrous cycle stage. Female C57BL/6NCr mice were intracerebroventricularly (ICV) cannulated and underwent behavioral paradigms to test locomotion, anxiety, and memory. Estrous cycle stage was determined through examination of vaginal cytology. Our results provide evidence that NPS-mediated behaviors are influenced by the estrous cycle. Administration of NPS decreased anxiety-like behaviors more robustly when the female mice were in high estrogen stages of the estrous cycle. Therefore, the desired anxiolytic-like effects of targeting the NPSR are intact in female mice. However, these effects may to be influenced by the stage of the estrous cycle. The NPSR remains a strong potential drug target for new anxiolytic compounds and based on our initial observations further studies exploring the interaction of estrous cycle and the NPS-system are warranted. Significance Statement The neuropeptide S (NPS) receptor has been identified as a potential target for treating anxiety, a condition that is most prevalent in females. Therefore, the potential interaction of estrous cycle with the NPS-system described in the current study is an important first step in understanding the function of the NPS-system in females.
RESUMO
The landscape of drug product development and regulatory sciences is evolving, driven by the increasing application of systems thinking and modeling and simulation (M&S) techniques, especially from a biopharmaceutics perspective. Patient-centric quality standards can be achieved within this context through the application of quality by design (QbD) principles and M&S, specifically by defining clinically relevant dissolution specifications (CRDS). To this end, it is essential to bridge in vitro results to drug product in vivo performance, emphasizing the need to explore the translational capacity of biopharmaceutics tools. Physiologically based M&S analyses offer a unique avenue for integrating the drug, drug product, and biological properties of a target organism to study their interactions on the pharmacokinetic response. Accordingly, Physiologically Based Biopharmaceutics Modeling (PBBM) has seen increasing use to support drug development and regulatory applications globally. In Brazil, a Model-Informed Drug Development (MIDD) policy and strategic project are not yet established, limiting applicability of M&S techniques. Drawing from the experience of the ANVISA-Academia PBBM Working Group (WG), this article assesses the opportunities and challenges for pharmacometrics (PMx) in Brazil and proposes strategies to advance the adoption of M&S analyses into regulatory decision-making.
RESUMO
Enzymatic reaction-mediated microbial transformation has emerged as a promising technology with significant potential in various industries. These technologies offer the ability to produce enzymes on a large scale, optimize their functionality, and enable sustainable production processes. By utilizing microbial hosts and manipulating their genetic makeup, enzymes can be synthesized efficiently and tailored to meet specific industrial requirements. This leads to enhanced enzyme performance and selectivity, facilitating the development of novel processes and the production of valuable compounds. Moreover, microbial transformation and biosynthesis offer sustainable alternatives to traditional chemical methods, reducing environmental impact and promoting greener production practices. Microbial transformations enrich drug candidate diversity and enhance active ingredient potency, benefiting the pharmaceutical industry. Continued advancements in genetic engineering and bioprocess optimization drive further innovation and application development in Enzymatic reaction-mediated microbial transformation. The integration of AI for predicting enzymatic reactions and optimizing pathways marks a promising direction for future research. In summary, these technologies have the potential to revolutionize several industries by providing cost-effective, sustainable solutions.
RESUMO
Cancer is a multifaceted disease with high mortality rates, and current treatments face challenges such as chemoresistance and tumor adaptation. Since Virchow reported the first case of cancer-related chronic inflammation, numerous clinical and epidemiological studies have indicated that around 15-20% of malignant tumors are caused by inflammation. Cyclooxygenase-2 (COX-2), which is the key enzyme in inflammation, has been implicated in tumorigenesis through various mechanisms, including promoting angiogenesis, inhibiting apoptosis, and enhancing the invasiveness of cancer cells. Moreover, COX inhibitors have demonstrated a substantial reduction in death rates associated with esophageal and colon cancer. In this context, targeting COX-2 is an effective strategy for cancer prevention and treatment. This review focuses on the analysis of studies conducted between 2014 and 2024, which evaluate the structure-activity relationship of molecules intended to exhibit cytotoxic activity through COX inhibition. The studies followed both classical and non-classical COX-2 selective drug design strategies. While some focused on the classical approach, utilizing diaryl heterocyclic structures, others explored non-classical designs with a cyclic central scaffold and a linear core. Additionally, several manuscripts employed well-known COX inhibitors, including licofelone, indomethacin, naproxen, tolfenamate, celecoxib, flumizole, and ketoprofen, as starting points for further derivatization and optimization. Cytotoxic activity was evaluated using various cell lines, including MCF- 7, HCT-116, and A549, through assays such as MTT, CellTiter, and MTS. Additionally, studies examined the relationship between COX-2 inhibition and key cancer pathways, including apoptosis and the involvement of enzymes like HDAC, EGFR, and topoisomerase. The majority of studies reported promising cytotoxic activity in COX-2 selective inhibitors. Compounds synthesized with diphenyl heterocyclic scaffolds exhibited enhanced COX-2 selectivity and anticancer efficacy. In particular, derivatives in studies 9, 16, and 24 demonstrated significant activity comparable to standard drugs like celecoxib and doxorubicin. However, only a few studies indicated a weak correlation between COX-2 inhibition and cytotoxicity, suggesting the need for further investigation into other cancer-related mechanisms. This review highlights the potential of COX-2 selective inhibitors in anticancer drug development. The findings support the development of selective COX-2 inhibitors with diverse chemical structures as a promising strategy for cancer therapy.
RESUMO
BACKGROUND: The lack of label information for the pediatric population has been a global issue, leading to the introduction of several countermeasures by major health authorities. Despite various efforts by Japanese health authorities, some drugs are approved only for adults in Japan, while the United States (US) label includes information on pediatric usage for the same drugs. This suggests a potential for pediatric-specific drug loss in Japan, where overall drug loss has recently become a major concern. METHODS: In this study, we compared the pediatric usage status between Japan and the US, focusing on the indications approved in both countries. RESULTS: Of the 404 indications, 70 (17.3%) and 102 (25.2%) included pediatric usage in Japan and the US, respectively. The proportion of indications, including pediatric usage, was significantly higher in the US than in Japan (χ2 test, p < 0.001). Multivariate analysis of indications for pediatric usage in the US demonstrated that simultaneous development with adults (odds ratio (OR), 24.9; 95% confidence interval (CI), 6.79-91.1) and Japan-first development (OR, 31.5; 95% CI, 2.59-384) were significantly affecting the inclusion of pediatric usage in Japan. CONCLUSIONS: Our results suggest that there was pediatric-specific drug loss in Japan compared to that in the US. The multivariate analysis demonstrated that US-first development and non-simultaneous development had a negative impact on the inclusion of pediatric usage in Japan; however, pediatric assessment request was not a significant factor. Further frameworks to promote pediatric drug development should be introduced in Japan to address pediatric-specific drug loss issues.
RESUMO
Alternative innovation models have emerged to address failures of the traditional pharmaceutical system, particularly for diseases where market incentives do not attract sufficient research and development efforts. However, the feasibility of such models for diseases with significant markets is not well-established. This article analyses the development of a novel drug (ravidasvir) for the treatment of hepatitis C, a highly profitable market. Data from qualitative research methods, including literature reviews and semi-structured interviews, was analyzed using a novel conceptual framework focusing on actors, resources, organizational practices, and outcomes. Dissimilar to other projects, ravidasvir did not involve any major pharmaceutical companies. Rather, it leveraged the capacities of actors less traditionally involved in the development of novel medicines by constructing a collaborative network of private and public partners from low- and middle-income countries with a shared goal. The collaboration was successful in developing a highly effective, easy-to-use, and affordable medicine and contributed significantly to capacity-strengthening. However, the case also highlighted that strategic behavior by competing for-profit firms could pose significant challenges and that changing external conditions reduced the potential public health impact of the drug. Lessons from ravidasvir can inform future efforts to develop alternative innovation models for therapeutic areas with significant commercial interest.
RESUMO
Background: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) play an important role in the treatment of type 2 diabetes (T2D) and obesity. The relationship between efficacy and dosing regimen has been studied extensively for this class of molecules. However, a comprehensive analysis of the translation of in vitro data to in vivo efficacious exposure is still lacking. Methods: We collected clinical pharmacokinetics for five approved GLP-1RAs to enable the simulation of exposure profiles and compared published clinical efficacy endpoints (HbA1c and body weight) with in-house in vitro potency values generated in different cell-based assays. Additionally, we investigated the correlation with target coverage, expressed as a ratio between the steady state drug exposure and unbound potency, body weight, or HbA1c reduction in patients with T2D. Results: We found that the best correlation with in vivo efficacy was seen for in vitro potency data generated in cellular assays performed in the absence of any serum albumin or using ovalbumin. Residual variability was larger using in vitro potency data generated in endogenous cell lines or in the presence of human serum albumin. For the human receptor assay with no albumin, exposures above 100-fold in vitro EC50 resulted in >1.5% point HbA1c reduction, while a 5% BW reduction was related to approximately 3× higher exposures. A similar relationship was seen in the ovalbumin assay. Conclusions: Overall, the relationship established for in vitro potency and in vivo efficacy will help to increase confidence in human dose prediction and trial design for new GLP-1RAs in the discovery and early clinical phases.