Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 575
Filtrar
1.
Pharmaceutics ; 16(7)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39065538

RESUMO

Attalea phalerata Martius ex Spreng is a palm tree that is widely distributed in the Central-West region of Brazil. In this study, we investigated whether the oil-loaded nanocapsules of A. phalerata (APON) have acute and long-lasting antihypertensive effects in male spontaneously hypertensive rats (SHR), as well as explored the underlying molecular mechanisms. APON was prepared using the interfacial polymer deposition method. The particle size, polydispersity index, and zeta potential were investigated using dynamic and electrophoretic light scattering. The antihypertensive effects of APON (administered at doses of 1, 3, and 10 mg/kg) were evaluated after acute intraduodenal administration and after 7 days of oral treatment. To investigate the molecular pathways involved, we used pharmacological antagonists and inhibitors that target prostaglandin/cyclic adenosine monophosphate, nitric oxide/cyclic guanosine monophosphate, and potassium channels. Both acute and prolonged administration of APON (at doses of 3 and 10 mg/kg) resulted in a significant reduction in systolic, diastolic, and mean arterial pressure. Prior treatment with a non-selective nitric oxide synthase inhibitor (Nω-nitro-L-arginine methyl ester), guanylyl cyclase inhibitor (methylene blue), or non-selective calcium-sensitive K+ channel blocker (tetraethylammonium) abolished the antihypertensive effects of APON. Our study showed that A. phalerata oil-loaded nanocapsules have a significant antihypertensive effect in SHR after both short-term and long-term (7-day) use. This effect seems to rely on the vascular endothelium function and involves the NO-cGMP-K+ channel pathway. This research suggests a new direction for future studies to definitively prove the therapeutic benefits of APON in treating cardiovascular disease.

2.
Regen Biomater ; 11: rbae073, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027362

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignant tumor worldwide. Considering its special anatomical site and the progressive resistance to chemotherapy drugs, the development of more effective, minimally invasive and precise treatment methods is urgently needed. Nanomaterials, given their special properties, can be used as drug carrier systems to improve the therapeutic effect and reduce the adverse effects. The drug carrier systems with photothermal effect can promote the killing of cancer cells and help overcome drug resistance through heat stress. We selected dopamine, a simple raw material, and designed and synthesized three different configurations of nano-polydopamine (nPDA) nanomaterials, including nPDA balls, nPDA plates and porous nPDA balls. In addition to the self-polymerization and self-assembly, nPDA has high photothermal conversion efficiency and can be easily modified. Moreover, we loaded cisplatin into three different configurations of nPDA, creating nPDA-cis (the nano-drug carrier system with cisplatin), and comparatively studied the properties and antitumor effects of all the nPDA and nPDA-cis materials in vitro and nPDA-cis in vivo. We found that the photothermal effect of the nPDA-cis balls drug carrier system had synergistic effect with cisplatin, resulting in excellent antitumor effect and good clinical application prospects. The comparison of the three different configurations of drug carrier systems suggested the importance of optimizing the spatial configuration design and examining the physical and chemical properties in the future development of nano-drug carrier systems. In this study, we also noted the duality and complexity of the influences of heat stress on tumors in vitro and in vivo. The specific mechanisms and the synergy with chemotherapy and immunotherapy will be an important research direction in the future.

3.
J Nanobiotechnology ; 22(1): 435, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044265

RESUMO

Neurodegenerative diseases involve progressive neuronal death. Traditional treatments often struggle due to solubility, bioavailability, and crossing the Blood-Brain Barrier (BBB). Nanoparticles (NPs) in biomedical field are garnering growing attention as neurodegenerative disease drugs (NDDs) carrier to the central nervous system. Here, we introduced computational and experimental analysis. In the computational study, a specific IFPTML technique was used, which combined Information Fusion (IF) + Perturbation Theory (PT) + Machine Learning (ML) to select the most promising Nanoparticle Neuronal Disease Drug Delivery (N2D3) systems. For the application of IFPTML model in the nanoscience, NANO.PTML is used. IF-process was carried out between 4403 NDDs assays and 260 cytotoxicity NP assays conducting a dataset of 500,000 cases. The optimal IFPTML was the Decision Tree (DT) algorithm which shown satisfactory performance with specificity values of 96.4% and 96.2%, and sensitivity values of 79.3% and 75.7% in the training (375k/75%) and validation (125k/25%) set. Moreover, the DT model obtained Area Under Receiver Operating Characteristic (AUROC) scores of 0.97 and 0.96 in the training and validation series, highlighting its effectiveness in classification tasks. In the experimental part, two samples of NPs (Fe3O4_A and Fe3O4_B) were synthesized by thermal decomposition of an iron(III) oleate (FeOl) precursor and structurally characterized by different methods. Additionally, in order to make the as-synthesized hydrophobic NPs (Fe3O4_A and Fe3O4_B) soluble in water the amphiphilic CTAB (Cetyl Trimethyl Ammonium Bromide) molecule was employed. Therefore, to conduct a study with a wider range of NP system variants, an experimental illustrative simulation experiment was performed using the IFPTML-DT model. For this, a set of 500,000 prediction dataset was created. The outcome of this experiment highlighted certain NANO.PTML systems as promising candidates for further investigation. The NANO.PTML approach holds potential to accelerate experimental investigations and offer initial insights into various NP and NDDs compounds, serving as an efficient alternative to time-consuming trial-and-error procedures.


Assuntos
Nanopartículas , Nanopartículas/química , Aprendizado de Máquina , Algoritmos , Animais , Doenças Neurodegenerativas/tratamento farmacológico , Neurociências/métodos , Simulação por Computador , Humanos , Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química
4.
ChemMedChem ; : e202400144, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39049537

RESUMO

This study explores various aspects of Metal-Organic Frameworks (MOFs), focusing on synthesis techniques to adjust pore size and key ligands and metals for crafting carrier MOFs. It investigates MOF-drug interactions, including hydrogen bonding, van der Waals, and electrostatic interactions, along with kinetic studies. The multifaceted applications of MOFs in drug delivery systems are elucidated. The morphology and structure of MOFs are intricately linked to synthesis methodology, impacting attributes like crystallinity, porosity, and surface area. Hydrothermal synthesis yields MOFs with high crystallinity, suitable for catalytic applications, while solvothermal synthesis generates MOFs with increased porosity, ideal for gas and liquid adsorption. Understanding MOF-drug interactions is crucial for optimizing drug delivery, affecting charge capacity, stability, and therapeutic efficacy. Kinetic studies determine drug release rates and uniformity, vital for controlled drug delivery. Overall, comprehending drug-MOF interactions and kinetics is essential for developing effective and controllable drug delivery systems.

5.
Drug Deliv ; 31(1): 2381340, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39041383

RESUMO

Pulmonary delivery and formulation of biologics are among the more complex and growing scientific topics in drug delivery. We herein developed a dry powder formulation using disordered mesoporous silica particles (MSP) as the sole excipient and lysozyme, the most abundant antimicrobial proteins in the airways, as model protein. The MSP had the optimal size for lung deposition (2.43 ± 0.13 µm). A maximum lysozyme loading capacity (0.35 mg/mg) was achieved in 150 mM PBS, which was seven times greater than that in water. After washing and freeze-drying, we obtained a dry powder consisting of spherical, non-aggregated particles, free from residual buffer, or unabsorbed lysozyme. The presence of lysozyme was confirmed by TGA and FT-IR, while N2 adsorption/desorption and SAXS analysis indicate that the protein is confined within the internal mesoporous structure. The dry powder exhibited excellent aerodynamic performance (fine particle fraction <5 µm of 70.32%). Lysozyme was released in simulated lung fluid in a sustained kinetics and maintaining high enzymatic activity (71-91%), whereas LYS-MSP were shown to degrade into aggregated nanoparticulate microstructures, reaching almost complete dissolution (93%) within 24 h. MSPs were nontoxic to in vitro lung epithelium. The study demonstrates disordered MSP as viable carriers to successfully deliver protein to the lungs, with high deposition and retained activity.


Assuntos
Pulmão , Muramidase , Tamanho da Partícula , Pós , Dióxido de Silício , Dióxido de Silício/química , Muramidase/administração & dosagem , Muramidase/química , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Porosidade , Pós/química , Portadores de Fármacos/química , Administração por Inalação , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Humanos , Excipientes/química , Animais , Química Farmacêutica/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Liofilização
6.
Methods Enzymol ; 700: 413-454, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38971609

RESUMO

A popular strategy for therapeutic delivery to cells and tissues is to encapsulate therapeutics inside particles that cells internalize via endocytosis. The efficacy of particle uptake by endocytosis is often studied in bulk using flow cytometry and Western blot analysis and confirmed using confocal microscopy. However, these techniques do not reveal the detailed dynamics of particle internalization and how the inherent heterogeneity of many types of particles may impact their endocytic uptake. Toward addressing these gaps, here we present a live-cell imaging-based method that utilizes total internal reflection fluorescence microscopy to track the uptake of a large ensemble of individual particles in parallel, as they interact with the cellular endocytic machinery. To analyze the resulting data, we employ an open-source tracking algorithm in combination with custom data filters. This analysis reveals the dynamic interactions between particles and endocytic structures, which determine the probability of particle uptake. In particular, our approach can be used to examine how variations in the physical properties of particles (size, targeting, rigidity), as well as heterogeneity within the particle population, impact endocytic uptake. These data impact the design of particles toward more selective and efficient delivery of therapeutics to cells.


Assuntos
Clatrina , Endocitose , Endocitose/fisiologia , Humanos , Clatrina/metabolismo , Microscopia de Fluorescência/métodos , Animais , Algoritmos
7.
Nanomedicine ; 60: 102760, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38852882

RESUMO

Neuroblastoma (NB) is the most common extracranial solid tumor in the pediatric population with a high degree of heterogeneity in clinical outcomes. Upregulation of the tumor suppressor miR-204 in neuroblastoma is associated with good prognosis. Although miR-204 has been recognized as a potential therapeutic candidate, its delivery is unavailable. We hypothesized that REP-204, the red blood cell-derived extracellular particles (REP) with miR-204 loading, can suppress neuroblastoma cells in vitro. After miR-204 loading by electroporation, REP-204, but not REP carriers, inhibited the viability, migration, and 3D spheroid growth of neuroblastoma cells regardless of MYCN amplification status. SWATH-proteomics revealed that REP-204 treatment may trigger a negative regulation of mRNA splicing by the spliceosome, suppression of amino acid metabolism and protein production, and prevent SLIT/ROBO signaling-mediated cell migration, to halt neuroblastoma tumor growth and metastasis. The therapeutic efficacy of REP-204 should be further investigated in preclinical models and clinical studies.

8.
Curr Drug Deliv ; 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38867527

RESUMO

Exosomes have emerged as critical mediators of intercellular communication and various physiological processes between cells and their environment. These nano-sized vesicles have been extensively investigated and confirmed to exhibit multifunctionality in animal systems. In particular, they participate in intercellular signaling, influence disease progression, and exhibit biological activity. However, Plant-Derived Exosomes (PDEs), especially therapeutic PDEs, have received relatively limited attention in the past few decades. Recent studies have demonstrated that PDEs are involved in signaling molecule transport in addition to intercellular communication, as they serve as functional molecules in the cellular microenvironment. This characteristic highlights the immense potential of PDEs for a wide array of applications, including antioxidation, anti-inflammation, tumour cell elimination, immune modulation, and tissue regeneration. In addition, PDEs hold substantial promise as efficient drug carriers, enhancing the stability and bioavailability of therapeutic agents and consequently enabling targeted delivery to specific cells or tissues. Therefore, PDEs may serve as effective tools for drug delivery and the treatment of various diseases. This comprehensive review provides an overview of recent studies on therapeutic PDEs, focusing on their extraction, isolation, characterization methods, biological activities, and application prospects. It summarises the research progress of exosome-like nanovesicles derived from medicinal plants, with a specific emphasis on traditional Chinese medicine, and highlights their importance in disease treatment and nanoparticle delivery. The main objective is to accelerate the clinical translation of these nanovesicles while providing novel approaches and methodologies for the research and development of innovative drugs.

9.
Drug Des Devel Ther ; 18: 2189-2202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882051

RESUMO

Research for tumor treatment with significant therapy effects and minimal side-effects has been widely carried over the past few decades. Different drug forms have received a lot of attention. However, systemic biodistribution induces efficacy and safety issues. Intratumoral delivery of agents might overcome these problems because of its abundant tumor accumulation and retention, thereby reducing side effects. Delivering hydrogels, nanoparticles, microneedles, and microspheres drug carriers directly to tumors can realize not only targeted tumor therapy but also low side-effects. Furthermore, intratumoral administration has been integrated with treatment strategies such as chemotherapy, enhancing radiotherapy, immunotherapy, phototherapy, magnetic fluid hyperthermia, and multimodal therapy. Some of these strategies are ongoing clinical trials or applied clinically. However, many barriers hinder it from being an ideal and widely used option, such as decreased drug penetration impeded by collagen fibers of a tumor, drug squeezed out by high density and high pressure, mature intratumoral injection technique. In this review, we systematically discuss intratumoral delivery of different drug carriers and current development of intratumoral therapy strategies.


Assuntos
Antineoplásicos , Sistemas de Liberação de Medicamentos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Animais , Portadores de Fármacos/química , Nanopartículas/química
10.
Int J Pharm ; 658: 124199, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38703928

RESUMO

Dendrimers have emerged as an important group of nanoparticles to transport drugs, DNA, or RNA into target cells in cancer and other diseases. Various functional modifications can be imposed on dendrimers to increase the efficacy and specificity in delivering their cargo to the target cells and decrease their toxicity. In the present work, we evaluated the potential of carbosilane polyphenolic dendrimers modified with caffeic acid (CA) and polyethylene glycol (PEG) to deliver proapoptotic Mcl-1 and Bcl-2 siRNAs to A549 cancer cells. Dendrimers formed stable complexes with siRNAs as assessed by transmission electron microscopy and gel electrophoresis. Modification of dendrimers with PEG reduced the size and the zeta potential of dendrimer/siRNA complexes. The presence of PEG caused a red shift of the CD spectrum, and this effect was the more pronounced, the higher the dendrimer/siRNA ratio was. The nanocomplexes were internalized by A549. All studied dendrimer/siRNA formulations inhibited tumor cell migration and adhesion and caused an increase in the population of early apoptotic cells. Among four tested dendrimers, the polyphenolic compound containing two caffeic acid moieties complexed with siRNA demonstrated the lowest polydispersity index and showed an excellent transfection profile. In conclusion, this dendrimer are a promising candidate for the delivery of siRNA into cancer cells in further in vivo studies.


Assuntos
Apoptose , Dendrímeros , Polietilenoglicóis , Polifenóis , RNA Interferente Pequeno , Humanos , Dendrímeros/química , Dendrímeros/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , Células A549 , Apoptose/efeitos dos fármacos , Polifenóis/química , Polifenóis/farmacologia , Polifenóis/administração & dosagem , Polietilenoglicóis/química , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/administração & dosagem , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Movimento Celular/efeitos dos fármacos , Portadores de Fármacos/química , Silanos/química , Transfecção/métodos , Linhagem Celular Tumoral
11.
Biomed Pharmacother ; 176: 116798, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795642

RESUMO

Cancer is one of the most lethal diseases all over the world. Despite that many drugs have been developed for cancer therapy, they still suffer from various limitations including poor treating efficacy, toxicity to normal human cells, and the emergence of multidrug resistance. In this study, the amphiphilic LHES polymers were prepared using hydroxyethyl starch (HES) and linoleic acid as starting materials. The content and substitution degree of linoleic acid groups in LHES polymers were analyzed. The LHES polymers were used for fabricating LHES-B nanoparticles carrying a linoleic acid modified berberine derivative (L-BBR). The LHES-B nanoparticles showed high drug loading efficiency (29%) and could quickly release L-BBR under acidic pH condition (pH = 4.5). Biological investigations revealed that LHES-B nanoparticles significantly inhibited the proliferation of HepG2 cells and exhibited higher cytotoxicity than L-BBR. In a transgenic Tg(fabp10:rtTA2s-M2; TRE2:EGFP-krasv12) zebrafish model, LHES-B nanoparticles obviously inhibited the expression of krasv12 oncogene. These results indicated that LHES carriers could improve the anticancer activity of L-BBR, and the synthesized LHES-B nanoparticles showed great potential as anticancer drug.


Assuntos
Berberina , Derivados de Hidroxietil Amido , Ácido Linoleico , Nanopartículas , Proteínas Proto-Oncogênicas p21(ras) , Animais , Humanos , Animais Geneticamente Modificados , Antineoplásicos/farmacologia , Antineoplásicos/química , Berberina/farmacologia , Berberina/química , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Células Hep G2 , Derivados de Hidroxietil Amido/farmacologia , Derivados de Hidroxietil Amido/química , Ácido Linoleico/química , Nanopartículas/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Peixe-Zebra , Modelos Animais de Doenças
12.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731823

RESUMO

This study presents the initial attempt at introducing a magnetic molecularly imprinted polymer (MIP) designed specifically for lamotrigine with the purpose of functioning as a drug carrier. First, the composition of the magnetic polymer underwent optimization based on bulk polymer adsorption studies and theoretical analyses. The magnetic MIP was synthesized from itaconic acid and ethylene glycol dimethacrylate exhibiting a drug loading capacity of 3.4 ± 0.9 µg g-1. Structural characterization was performed using powder X-ray diffraction analysis, vibrating sample magnetometry, and Fourier transform infrared spectroscopy. The resulting MIP demonstrated controlled drug released characteristics without a burst effect in the phospahe buffer saline at pH 5 and 8. These findings hold promise for the potential nasal administration of lamotrigine in future applications.


Assuntos
Portadores de Fármacos , Lamotrigina , Polímeros Molecularmente Impressos , Lamotrigina/química , Portadores de Fármacos/química , Polímeros Molecularmente Impressos/química , Polímeros Molecularmente Impressos/síntese química , Impressão Molecular/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Liberação Controlada de Fármacos , Difração de Raios X , Adsorção , Concentração de Íons de Hidrogênio
13.
Int J Nanomedicine ; 19: 3715-3735, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681090

RESUMO

Liposomes, noted for their tunable particle size, surface customization, and varied drug delivery capacities, are increasingly acknowledged in therapeutic applications. These vesicles exhibit surface flexibility, enabling the incorporation of targeting moieties or peptides to achieve specific targeting and avoid lysosomal entrapment. Internally, their adaptable architecture permits the inclusion of a broad spectrum of drugs, contingent on their solubility characteristics. This study thoroughly reviews liposome fabrication, surface modifications, and drug release mechanisms post-systemic administration, with a particular emphasis on drugs crossing the blood-brain barrier (BBB) to address lesions. Additionally, the review delves into recent developments in the use of liposomes in ischemic stroke models, offering a comparative evaluation with other nanocarriers like exosomes and nano-micelles, thereby facilitating their clinical advancement.


Assuntos
Barreira Hematoencefálica , Portadores de Fármacos , AVC Isquêmico , Lipossomos , Lipossomos/química , Humanos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , AVC Isquêmico/tratamento farmacológico , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Animais , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Tamanho da Partícula
14.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612575

RESUMO

Multifunctional delivery systems capable of modulating drug release and exerting adjunctive pharmacological activity have attracted particular attention. Chitosan (CS) and pomegranate seed oil (PO) appear to be attractive bioactive components framing the strategy of complex therapy and multifunctional drug carriers. This research is aimed at evaluating the potential of CS in combination with PO in studies on topical emulgels containing hydrocortisone as a model anti-inflammatory agent. Its particular goal was to distinguish alterations in anti-inflammatory action followed with drug dissolution or penetrative behavior between the designed formulations that differ in CS/PO weight ratio. All formulations favored hydrocortisone release with up to a two-fold increase in the drug dissolution rate within first 5 h as compared to conventional topical preparations. The clear effect of CS/PO on the emulgel biological performance was observed, and CS was found to be prerequisite for the modulation of hydrocortisone absorption and accumulation. In turn, a greater amount of PO played the predominant role in the inhibition of hyaluronidase activity and enhanced the anti-inflammatory effect of preparation E-3. Emulgels showed a negligible reduction in mouse fibroblasts' L929 cell viability, confirming their non-irritancy with skin cells. Overall, the designed formulation with a CS/PO ratio of 6:4 appeared to be the most promising topical carrier for the effective treatment of inflammatory skin diseases among the tested subjects.


Assuntos
Quitosana , Punica granatum , Animais , Camundongos , Humanos , Hidrocortisona/farmacologia , Anti-Inflamatórios/farmacologia , Óleos de Plantas/farmacologia
15.
Med Eng Phys ; 126: 104160, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38621842

RESUMO

In this study, amino-functionalized mesoporous silica/hydroxyapatite nanoparticles (MSNS/HAP) with the property of acid dissociation have been prepared as a traditional Chinese medicine monomer carriers to improve the drug loading rate and antibacterial properties of antimicrobial quercetin (QUE) in vitro. The experimental results confirm that the drug loading rate of MSNs/HAP is 28.94 %, which is about 3.6 times higher than that of aminated mesoporous sililca nanoparticles (MSNs). The drug release of QUE on MSNs/HAP is pH-sensitive in phosphate buffered saline (pH=4.0-7.4). The above fabricated traditional Chinese medicine monomer modified nanocomposites (QUE@MSNs/HAP) displays concentration-dependent inhibitory effect, which shows better antibacterial effect than free QUE. The minimum inhibitory concentration for two tested bacteria, Staphylococcus aureus (S.aureus) and Escherichia coli (E.coli), is 256 mg·L -1. In summary, QUE@MSNs/HAP have successfully prepared, which not only improves the bio-availability of QUE, but also has acid-sensitive drug release properties. Compared with free QUE, its antibacterial performance significantly enhances, which provides a theoretical basis for the application of Chinese medicine molecules in bacterial treatment.


Assuntos
Durapatita , Nanopartículas , Quercetina/farmacologia , Dióxido de Silício/farmacologia , Antibacterianos/farmacologia , Porosidade , Portadores de Fármacos
16.
ACS Appl Mater Interfaces ; 16(15): 18434-18448, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579182

RESUMO

The poor solubility of clotrimazole in the aqueous medium and the uncontrolled removal of the drug-loaded suppository content limit its effectiveness in the treatment of vulvovaginal candidiasis. We present here the aqueous formulations of clotrimazole in the form of non-Newtonian structured fluids, i.e., Bingham plastic or pseudoplastic fluids constructed of hyperbranched polyglycidol, HbPGL, with a hydrophobized core with aryl groups such as phenyl or biphenyl. The amphiphilic constructs were obtained by the modification of linear units containing monohydroxyl groups with benzoyl chloride, phenyl isocyanate, and biphenyl isocyanate, while the terminal 1,2-diol groups in the shell were protected during the modification step, followed by their deprotection. The encapsulation of clotrimazole within internally hydrophobized HbPGLs using a solvent evaporation method followed by water addition resulted in structured fluids formation. Detailed Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) analyses performed for aryl-HbPGLs with clotrimazole revealed the difference in drug compatibility among polymers. Clotrimazole in biphenyl-enriched HbPGL, unlike phenyl derivatives, was molecularly distributed in both the dry and the hydrated states, resulting in transparent formulations. The shear-thinning properties of the obtained fluid formulations make them injectable and thus suitable for the intravaginal application. Permeability tests performed with the usage of the Franz diffusion cell showed a 5-fold increase in the permeability constant of clotrimazole compared to drugs loaded in a commercially available disposable tablet and a 50-fold increase of permeability in comparison to the aqueous suspension of clotrimazole. Furthermore, the biphenyl-modified HbPGL-based drug liquid showed enhanced antifungal activity against both Candida albicans and Candida glabrata that was retained for up to 7 days, in contrast to the phenyl-HbPGL derivatives and the tablet. With their simple formulation, convenient clotrimazole/biphenyl-HbPGL formulation strategy, rheological properties, and enhanced antifungal properties, these systems are potential antifungal therapeutics for gynecological applications. This study points in the synthetic direction of improving the solubility of poorly water-soluble aryl-enriched pharmaceuticals.


Assuntos
Antifúngicos , Compostos de Bifenilo , Clotrimazol , Propilenoglicóis , Clotrimazol/química , Antifúngicos/química , Disponibilidade Biológica , Solubilidade , Água , Comprimidos
17.
Chin J Traumatol ; 27(3): 134-146, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570272

RESUMO

Spinal cord injury (SCI) is a devastating traumatic disease seriously impairing the quality of life in patients. Expectations to allow the hopeless central nervous system to repair itself after injury are unfeasible. Developing new approaches to regenerate the central nervous system is still the priority. Exosomes derived from mesenchymal stem cells (MSC-Exo) have been proven to robustly quench the inflammatory response or oxidative stress and curb neuronal apoptosis and autophagy following SCI, which are the key processes to rescue damaged spinal cord neurons and restore their functions. Nonetheless, MSC-Exo in SCI received scant attention. In this review, we reviewed our previous work and other studies to summarize the roles of MSC-Exo in SCI and its underlying mechanisms. Furthermore, we also focus on the application of exosomes as drug carrier in SCI. In particular, it combs the advantages of exosomes as a drug carrier for SCI, imaging advantages, drug types, loading methods, etc., which provides the latest progress for exosomes in the treatment of SCI, especially drug carrier.


Assuntos
Portadores de Fármacos , Exossomos , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/terapia , Humanos , Células-Tronco Mesenquimais/metabolismo , Animais , Apoptose , Transplante de Células-Tronco Mesenquimais/métodos
18.
Biology (Basel) ; 13(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38534423

RESUMO

The prognosis for cancer patients has declined dramatically in recent years due to the challenges in treating malignant tumors. Tumor immunotherapy, which includes immune target inhibition and chimeric antigen receptor cell treatment, is currently evolving quickly. Among them, natural killer (NK) cells are gradually becoming another preferred cell immunotherapy after T cell immunotherapy due to their unique killing effects in innate and adaptive immunity. NK cell therapy has shown encouraging outcomes in clinical studies; however, there are still some problems, including limited efficacy in solid tumors, inadequate NK cell penetration, and expensive treatment expenses. Noteworthy benefits of nanomaterials include their chemical specificity, biocompatibility, and ease of manufacturing; these make them promising instruments for enhancing NK cell anti-tumor immune responses. Nanomaterials can promote NK cell homing and infiltration, participate in NK cell modification and non-invasive cell tracking and imaging modes, and greatly increase the effectiveness of NK cell immunotherapy. The introduction of NK cell-based immunotherapy research and a more detailed discussion of nanomaterial research in NK cell-based immunotherapy and molecular imaging will be the main topics of this review.

19.
Polymers (Basel) ; 16(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38475324

RESUMO

In recent years, there has been a growing interest in developing smart drug delivery systems based on natural resources combined with stimulus-sensitive elements. This trend aims to formulate innovative and sustainable delivery platforms tailored for topical applications. This work proposed the use of layer-by-layer (LbL) methodology to fabricate biocompatible photo-responsive multilayer systems. These systems are composed of a polyoxometalate inorganic salt (POM) ([NaP5W30O110]14-) and a natural origin polymer, chitosan (CHT). Curcumin (CUR), a natural bioactive compound, was incorporated to enhance the functionality of these systems during the formation of hollow capsules. The capsules produced, with sizes between 2-5µm (SEM), were further dispersed into CHT/VCO (virgin coconut oil) emulsion solutions that were casted into molds and dried at 37 °C for 48 h. The system presented a higher water uptake in PBS than in acidic conditions, still significantly lower than that earlier reported to other CHT/VCO-based systems. The drug release profile is not significantly influenced by the medium pH reaching a maximum of 37% ± 1% after 48 h. The antioxidant performance of the designed structures was further studied, suggesting a synergistic beneficial effect resulting from CUR, POM, and VCO individual bioactivities. The increased amount of those excipients released to the media over time promoted an increase in the antioxidant activity of the system, reaching a maximum of 38.1% ± 0.1% after 48 h. This work represents a promising step towards developing advanced, sustainable drug delivery systems for topical applications.

20.
ACS Appl Mater Interfaces ; 16(12): 14605-14625, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38488848

RESUMO

In the face of severe side effects of systemic chemotherapy used in cervical cancer, topical selective drug carriers with long-lasting effects are being sought. Hydrogels are suitable platforms, but their use is problematic in the case of delivery of hydrophobic drugs with anticancer activity. Herein, hydrogels constructed of unimolecular micelles displaying enhanced solubilization of aromatic lipophilic bioactive compounds are presented. Star-shaped poly(benzyl glycidyl ether)-block-poly(glycidyl glycerol ether) with an aryl-enriched core show high encapsulation capacity of poor water-soluble nifuratel and clotrimazole. Nifuratel attained selectivity against cervical cancer cells, whereas clotrimazole preserved its original selectivity. The combination of unimolecular micelles loaded with both drugs provided synergism; however, they were still selective against cervical cancer cells. The cross-linking of drug-loaded unimolecular micelles via dynamic boronic esters provided injectable and self-healable hydrogel drug carriers also displaying synergistic anticancer activity, suitable for intravaginal administration and assuring the effective coverage of the afflicted tissue area and efficient tissue permeability with hydrophobic bioactive compounds. Here, we show that the combination of star-shaped polyether amphiphiles and boronic ester cross-linking chemistry provides a new strategy for obtaining hydrogel platforms suitable for efficient hydrophobic drug delivery.


Assuntos
Nifuratel , Neoplasias do Colo do Útero , Feminino , Humanos , Micelas , Neoplasias do Colo do Útero/tratamento farmacológico , Hidrogéis/química , Clotrimazol , Portadores de Fármacos/química , Polietilenoglicóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA