Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202410625, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982877

RESUMO

Electrosynthesis of urea from CO2 and NO3- is a sustainable alternative to energy-intensive industrial processes. The challenge hindering the progress is the development of advanced electrocatalysts that yield urea with both high Faradaic efficiency (FE) and current density. In this work, we designed a new two-dimensional MOF, namely PcNi-Fe-O, constructed by nickel-phthalocyanine (NiPc) ligands and square-planar FeO4 nodes. PcNi-Fe-O exhibits remarkable performance to yield urea at a high current density of 10.1 mA cm-2 with a high FE(urea) of 54.1% in a neutral aqueous solution, surpassing those of most reported electrocatalysts. No obvious performance degradation was observed over 20 hours of continuous operation at the current density of 10.1 mA cm-2. By expanding the electrode area to 25 cm2 and operating for 8 hours, we obtained 0.164 g of high-purity urea, underscoring its potential for industrial applications. Mechanism study unveiled the enhanced performance might be ascribed to the synergistic interaction between NiPc and FeO4 sites. Specifically, NH3 produced at the FeO4 site can efficiently migrate and couple with the *NHCOOH intermediate adsorbed on the urea-producing site (NiPc). This synergistic effect results in a lower energy barrier for C-N bond formation than those of the reported catalysts with single active sites.

2.
J Colloid Interface Sci ; 674: 834-840, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38955014

RESUMO

Urea electrosynthesis has appeared to meet the nitrogen cycle and carbon neutrality with energy-saving features. Copper can co-electrocatalyze among CO2 and nitrogen species to generate urea, however developing effective electrocatalysts is still an obstacle. Here, we developed a nitrogen-doped porous carbon loaded with FeCu clusters that convert CO2 and NO3- into urea, with the highest Faradaic efficiency of 39.8 % and yield rate of 1024.6 µg h-1 mgcat.-1, under optimized ambient conditions, exceeding that at the Fe or Cu homogeneous sites. Furthermore, a favorable CN coupling pathway originates from *NHCO and *NHCONO two intermediates with lower free energy barriers on FeCu dual active sites are verified through in-situ Fourier transform infrared spectroscopy and theoretical calculations. This research might provide deep insights into coupling mechanisms and investigation of efficient catalysts for green urea production.

3.
Small ; : e2403743, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973074

RESUMO

Photocatalytic hydrogen peroxide production from water and oxygen offers a clean and sustainable alternative to the conventional energy-intensive anthraquinone oxidation method. Compared to powdered covalent triazine frameworks (CTFs), the film morphology of CTFs provides better connectivity in 2D, yielding several advantages: more efficient connections between active sites, reduced electron-hole pair recombination, increased resistance to superoxide radical induced corrosion, and decreased light scattering. Leveraging these benefits, it has incorporated dual active sites for both the oxygen reduction reaction (ORR) and the water oxidation reaction (WOR) into a CTF film system. This dual-active CTF film demonstrated an exceptional hydrogen peroxide production rate of 19 460 µmol h⁻¹ m⁻2 after 1 h and 17 830 µmol h⁻¹ m⁻2 after 5 h under visible light irradiation (≥420 nm) without the need for sacrificial agents.

4.
Small ; : e2402447, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940363

RESUMO

Lithium-carbon dioxide (Li-CO2) battery represents a high-energy density energy storage with excellent real-time CO2 enrichment and conversion, but its practical utilization is hampered by the development of an excellent catalytic cathode. Here, the synergistic catalytic strategy of designing CoRu bimetallic active sites achieves the electrocatalytic conversion of CO2 and the efficient decomposition of the discharge products, which in turn realizes the smooth operation of the Li-CO2 battery. Moreover, obtained support based on metal-organic frameworks precursors facilitates the convenient diffusion and adsorption of CO2, resulting in higher reaction concentration and lower mass transfer resistance. Meanwhile, the optimization of the interfacial electronic structure and the effective transfer of electrons are achieved by virtue of the strong interaction of CoRu at the support interface. As a result, the Li-CO2 cell assembled based on bimetallic CoRu active sites achieved a discharge capacity of 19,111 mA h g-1 and a steady-state discharge voltage of 2.58 V as well as a cycle life of >175 cycles at a rate of 100 mA g-1. Further experiments combined with density-functional theory calculations achieve a deeply view of the connection between cathode and electrochemical performance and pave a way for the subsequent development of advanced Li-CO2 catalytic cathodes.

5.
Biomater Adv ; 162: 213919, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38861801

RESUMO

Tumor microenvironment (TME)-responsive chemodynamic therapy (CDT) is severely hindered by insufficient intracellular H2O2 level that seriously deteriorates antitumor efficacy, albeit with its extensively experimental and theoretical research. Herein, we designed atomically dispersed FeCo dual active sites anchored in porous carbon polyhedra (termed FeCo/PCP), followed by loading with glucose oxidase (GOx) and anticancer doxorubicin (DOX), named FeCo/PCP-GOx-DOX, which converted glucose into toxic hydroxyl radicals. The loaded GOx can either decompose glucose to self-supply H2O2 or provide fewer nutrients to feed the tumor cells. The as-prepared nanozyme exhibited the enhanced in vitro cytotoxicity at high glucose by contrast with those at less or even free of glucose, suggesting sufficient accumulation of H2O2 and continual transformation to OH for CDT. Besides, the FeCo/PCP-GOx-DOX can subtly integrate starvation therapy, the FeCo/PCP-initiated CDT, and DOX-inducible chemotherapy (CT), greatly enhancing the therapeutic efficacy than each monotherapy.


Assuntos
Doxorrubicina , Glucose Oxidase , Peróxido de Hidrogênio , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Humanos , Animais , Microambiente Tumoral/efeitos dos fármacos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Glucose/metabolismo , Domínio Catalítico
6.
J Colloid Interface Sci ; 671: 15-33, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38788421

RESUMO

The exploration of bifunctional electrocatalysts with high activity, stability, and economy is of great significance in promoting the development of water splitting. Herein, a dual active sites heterostructure NiCoS/NC was designed to be derived in situ on 3D N-doped porous carbon (NC) using gelatin as a nitrogen and carbon source. The characterization of experiments suggests that nanoflower-like Ni2CoS4 (abbreviated as NiCoS) was randomly distributed on the NC substrate, and the sheet-like NC formed a highly open porous network structure resembling a honeycomb, which provided more accessible active sites for electrolyte ions. In addition, the special nanostructures of the catalyst materials help to promote the surface reconstruction to the real active substance NiOOH/CoOOH, and the double active sites synergistically reduce the overpotential of OER and improve its kinetics. DFT (Density-functional theory) calculations reveal the electronic coupling of NiCoS/NC in atomic orbitals, modulation of electrons by the heterointerface and N-doping, and synergistic effect of dual active sites improving the inherent catalytic activity. The NiCoS/NC composite electrocatalyst exhibited a 177 mV small OER overpotential and a 132 mV small HER overpotential with Faraday efficiencies as high as 96 % and 98 % at 10 mA cm-2 current density. In the two-electrode system, it also requires only an ultra-low voltage of 1.52 V to achieve a 10 mA cm-2 current density, and it shows excellent long-term water splitting stability. This provides a new idea for the development of transition metal-based bifunctional electrocatalysts.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38607228

RESUMO

Bisphenol compounds [bisphenol A (BPA), etc.] are one class of the most important and widespread pollutants in food and environment, which pose severe endocrine disrupting effect, reproductive toxicity, immunotoxicity, and metabolic toxicity on humans and animals. Simultaneous rapid determination of BPA and its analogues (bisphenol S, bisphenol AF, etc.) with extraordinary potential resolution and sensitivity is of great significance but still extremely challenging. Herein, a series of single-atom catalysts (SACs) were synthesized by anchoring different metal atoms (Mg, Co, Ni, and Cu) on N-doped carbon materials and used as sensing materials for simultaneous detection of bisphenols with similar chemical structures. The Mg-based SAC enables the potential discrimination and simultaneous rapid detection of multiple bisphenols, showing outstanding analytical performances, outperforming all other SACs and traditional electrode materials. Our experiments and density functional theory calculations show that pyrrolic N serves as the adsorption site for the adsorption of bisphenols and the Mg atom serves as the active site for the electrocatalytic oxidation of bisphenols, which play a synergistic role as dual active centers in improving the sensing performance. The results of this work may pave the way for the rational design of SACs as advanced sensing and catalytic materials.

8.
Angew Chem Int Ed Engl ; 63(20): e202401568, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38506189

RESUMO

Maintaining high conversion under the premise of high oxygenates selectivity in syngas conversion is important but a formidable challenge in Rh catalysis. Monometallic Rh catalysts provide poor oxygenate conversion efficiency, and efforts have been focused on constructing adjacent polymetallic sites; however, the one-pass yields of C2+ oxygenates over the reported Rh-based catalysts were mostly <20 %. In this study, we constructed a monometallic Rh catalyst encapsulated in UiO-67 (Rh/UiO-67) with enhanced proximity to dual-site Rh1,2-Rhn ensembles. Unexpectedly, this catalyst exhibited high efficacy for oxygenate synthesis from syngas, giving a high oxygenate selectivity of 72.0 % with a remarkable CO conversion of 50.4 %, and the one-pass yield of C2+ oxygenates exceeded 25 %. The state-of-the-art characterizations further revealed the spontaneous formation of an ensemble of Rh single atoms/dimers (Rh1,2) in the proximity of ultrasmall Rh clusters (Rhn) confined within the nanocavity of UiO-67, providing adjacent Rh+-Rh0 dual sites dynamically during the reaction that promote the relay of the undissociated CHO species to the CHx species. Thus, our results open a new route for designing highly efficient Rh catalysts for the conversion of syngas to oxygenates by precisely tuning the ensemble and proximity of the dual active sites in a confined space.

9.
J Colloid Interface Sci ; 661: 46-58, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38295702

RESUMO

In the process of photocatalytic ammonia synthesis, efficient activation of nitrogen molecules constitutes a fundamental challenge. During the N2 activation, the close interdependence between the acceptance and donation of electron results in their mutual limitation, leading to high energy barrier for N2 activation and unsatisfactory photocatalytic performance. This work decoupled the electron acceptance and donation processes by constructing Fe-Bi dual active sites, resulting in enhancing N2 activation through the high electron trapping ability of Fe3+ and strong electron donating ability of Bi2+. The photocatalytic nitrogen reduction efficiency of 3%Fe/Bi2O2.33 (118.71 µmol gcat-1h-1) is 5.3 times that of Bi2O2.33 (22.41 µmol gcat-1h-1). In-situ Fourier transform infrared (In situ FTIR) spectroscopy and density functional theory (DFT) calculations manifest that Fe3+-Bi2+ dual active sites work together to promote nitrogen adsorption and activation, and the reaction path is more inclined toward alternate hydrogenation path. N2 adsorption and activation properties are optimized by heteronuclear bimetallic active sites, which offers a new way for the rational design of nitrogen-fixing photocatalysts.

10.
Adv Sci (Weinh) ; 11(4): e2307424, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38037255

RESUMO

Due to their atomically dispersed active centers, single-atom nanozymes (SAzymes) have unparalleled advantages in cancer catalytic therapy. Here, loaded with chlorin e6 (Ce6), a hydrothermally mass-produced bimetallic silicate-based nanoplatforms with atomically dispersed manganese/gadolinium (Mn/Gd) dual sites and oxygen vacancies (OVs) (PMnSA GMSNs-V@Ce6) is constructed for tumor glutathione (GSH)-triggered chemodynamic therapy (CDT) and O2 -alleviated photodynamic therapy. The band gaps of silica are significantly reduced from 2.78 to 1.88 eV by doping with metal ions, which enables it to be excited by a 650 nm laser to produce electron-hole pairs, thereby facilitating the generation of reactive oxygen species. The Gd sites can modulate the local electrons of the atom-catalyzed Mn sites, which contribute to the generation of superoxide and hydroxyl radicals (• OH). Tumor GSH-triggered Mn2+ release can convert endogenous H2 O2 to • OH and realize GSH-depletion-enhanced CDT. Significantly, the hydrothermally generated OVs can not only capture Mn and Gd atoms to form atomic sites but also can elongate and weaken the O-O bonds of H2 O2 , thereby improving the efficacy of Fenton reactions. The degraded Mn2+ /Gd3+ ions can be used as tumor-specific magnetic resonance imaging contrast agents. All the experimental results demonstrate the great potential of PMnSA GMSNs-V@Ce6 as cancer theranostic agent.


Assuntos
Manganês , Oxigênio , Gadolínio , Linhagem Celular Tumoral , Silicatos , Íons/química
11.
J Colloid Interface Sci ; 658: 739-747, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142624

RESUMO

Developing affluent dual-metal active sites bifunctional electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is essential to achieve large-scale water electrolysis, whereas still remains challenging. Herein, a novel nitrogen-doped cobalt-vanadium oxide with abundant Co-N and V-N dual active sites supported on nickel foam (N-Co3V2O8@NF) is constructed by a controllable impregnation-thermal nitridation strategy. The staggered nanosheet structure ensures optimal exposure of active sites. More importantly, N doping effectively regulates the electronic structure of the metal centers and induces the formation of Co-N and V-N dual active sites, which is conducive to improving the conductivity and hydrophilicity, thus synergistically enhancing the electrocatalytic efficiency. Consequently, the optimized N-Co3V2O8@NF exhibits prominent HER (63 mV@10 mA cm-2) and OER (256 mV@10 mA cm-2) activities, surpassing most contemporary bifunctional electrocatalysts. In practical application, the assembled N-Co3V2O8@NF(+/-) electrolyzer consistently achieved ultra-low cell voltages of 1.97 and 2.03 V at 500 and 1000 mA cm-2, respectively, superior to the benchmark RuO2@NF(+) || Pt/C@NF(-) and showcasing robust durability. This paves the way for its prospective adoption in industrial water electrolysis applications.

12.
Small ; : e2307180, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054789

RESUMO

Despite the unique advantages of single-atom catalysts, molecular dual-active sites facilitate the C-C coupling reaction for C2 products toward the CO2 reduction reaction (CO2 RR). The Ni/Cu proximal dual-active site catalyst (Ni/Cu-PASC) is developed, which is a harmonic catalyst with dual-active sites, by simply mixing commercial Ni-phthalocyanine (Ni-Pc) and Cu-phthalocyanine (Cu-Pc) molecules physically. According to scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM) energy dispersive spectroscopy (EDS) data, Ni and Cu atoms are separated, creating dual-active sites for the CO2 RR. The Ni/Cu-PASC generates ethanol with an FE of 55%. Conversely, Ni-Pc and Cu-Pc have only detected single-carbon products like CO and HCOO- . In situ X-ray absorption spectroscopy (XAS) indicates that CO generation is caused by the stable Ni active site's balanced electronic state. The CO production from Ni-Pc consistently increased the CO concentration over Cu sites attributed to subsequent reduction reaction through a C-C coupling on nearby Cu. The CO bound (HCOO- ) peak, which can be found on Cu-Pc, vanishes on Ni/Cu-PASC, as shown by in situ fourier transformation infrared (FTIR). The characteristic intermediate of *CHO instead of HCOO- proves to be the prerequisite for multi-carbon products by electrochemical CO2 RR. The work demonstrates that the harmonic dual-active sites in Ni/Cu-PASC can be readily available by the cascading proximal active Ni- and Cu-Pc sites.

13.
Angew Chem Int Ed Engl ; 62(48): e202313784, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37819255

RESUMO

Infrared light driven photocatalytic reduction of atmospheric CO2 is challenging due to the ultralow concentration of CO2 (0.04 %) and the low energy of infrared light. Herein, we develop a metallic nickel-based metal-organic framework loaded with Pt (Pt/Ni-MOF), which shows excellent activity for thermal-photocatalytic conversion of atmospheric CO2 with H2 even under infrared light irradiation. The open Ni sites are beneficial to capture and activate atmospheric CO2 , while the photogenerated electrons dominate H2 dissociation on the Pt sites. Simultaneously, thermal energy results in spilling of the dissociated H2 to Ni sites, where the adsorbed CO2 is thermally reduced to CO and CH4 . The synergistic interplay of dual-active-sites renders Pt/Ni-MOF a record efficiency of 9.57 % at 940 nm for converting atmospheric CO2 , enables the procurement of CO2 to be independent of the emission sources, and improves the energy efficiency for trace CO2 conversion by eliminating the capture media regeneration and molecular CO2 release.

14.
Angew Chem Int Ed Engl ; 62(37): e202305661, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37479952

RESUMO

The low-temperature reverse water-gas shift (RWGS) reaction faces the following obstacles: low activity and unsatisfactory selectivity. Herein, the dual-active sites of platinum (Pt) clusters and frustrated Lewis pair (FLP) on porous CeO2 nanorods (Ptcluster /PN-CeO2 ) provide an interface-independent pathway to boost high performance RWGS reaction at low temperatures. Mechanistic investigations illustrate that Pt clusters can effectively activate and dissociate H2 . The FLP sites, instead of the metal and support interfaces, not only enhance the strong adsorption and activation of CO2 , but also significantly weaken CO adsorption on FLP to facilitate CO release and suppress the CH4 formation. With the help of hydrogen spillover from Pt to PN-CeO2 , the Ptcluster /PN-CeO2 catalysts achieved a CO yield of 29.6 %, which is very close to the thermodynamic equilibrium yield of CO (29.8 %) at 350 °C. Meanwhile, the Ptcluster /PN-CeO2 catalysts delivered a large turnover frequency of 8720 h-1 . Moreover, Ptcluster /PN-CeO2 operated stably and continuously for at least 840 h. This finding provides a promising path toward optimizing the RWGS reaction.

15.
Small ; 19(42): e2302739, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37322318

RESUMO

Dual-Active-Sites Single-Atom catalysts (DASs SACs) are not only the improvement of SACs but also the expansion of dual-atom catalysts. The DASs SACs contains dual active sites, one of which is a single atomic active site, and the other active site can be a single atom or other type of active site, endowing DASs SACs with excellent catalytic performance and a wide range of applications. The DASs SACs are categorized into seven types, including the neighboring mono metallic DASs SACs, bonded DASs SACs, non-bonded DASs SACs, bridged DASs SACs, asymmetric DASs SACs, metal and nonmetal combined DASs SACs and space separated DASs SACs. Based on the above classification, the general methods for the preparation of DASs SACs are comprehensively described, especially their structural characteristics are discussed in detail. Meanwhile, the in-depth assessments of DASs SACs for variety applications including electrocatalysis, thermocatalysis and photocatalysis are provided, as well as their unique catalytic mechanism are addressed. Moreover, the prospects and challenges for DASs SACs and related applications are highlighted. The authors believe the great expectations for DASs SACs, and this review will provide novel conceptual and methodological perspectives and exciting opportunities for further development and application of DASs SACs.

16.
Adv Sci (Weinh) ; 10(22): e2301869, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37261961

RESUMO

The structural properties of octahedral sites (BOh ) in spinel oxides (AB2 O4 ) play vital roles in the electrochemical performance of oxygen-related reactions. However, the precise manipulation of AB2 O4 remains challenging due to the complexity of their crystal structure. Here, a simple and versatile molten-salt-mediated strategy is reported to introduce Ni2+ in Boh sites intentionally on the surface of zinc ferrite (ZnFe2 O4 , ZFO) to promote the active sites for photoelectrochemical (PEC) water splitting. The as-created photoanode (ZFO-MSNi) shows a remarkable cathodic shift of ≈ 450 mV (turn-on voltage of ≈ 0.6 VRHE ) as well as three times the 1-sun photocurrent density at 1.23 VRHE for PEC water oxidation in comparison with bare ZFO. A comprehensive structural characterization clearly reveals the local structure of the introduced Ni2+ in ZFO-MSNi. Fewer surface trapping states are observed while the precisely introduced Ni2+ and associated neighboring Fe(3-σ)+ (0<σ<1) sites unite in an edge-sharing octahedral configuration to function as NiFe dual active sites for PEC water oxidation. Moreover, open circuit potential measurements and rapid-scan voltammetry investigation give further insight into the enhanced PEC performance. Overall, this work displays a versatile strategy to regulate the surface active sites of photoelectrodes for increasing performance in PEC solar energy conversion systems.

17.
J Environ Sci (China) ; 131: 162-172, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37225377

RESUMO

CO2 hydrogenation to methanol is a significant approach to tackle the problem of global warming and simultaneously meet the demand for the portable fuel. Cu-ZnO catalysts with various kinds of promoters have received wide attention. However, the role of promoter and the form of active sites in CO2 hydrogenation are still in debate. Here, various molar ratios of ZrO2 were added into the Cu-ZnO catalysts to tune the distributions of Cu0 and Cu+ species. A volcano-like trend between the ratio of Cu+/ (Cu+ + Cu0) and the amount of ZrO2 is presented, among which the CuZn10Zr (the molar ratio of ZrO2 is 10%) catalyst reaches the highest value. Correspondingly, the maximum value of space-time yield to methanol with 0.65 gMeOH/(gcat·hr) is obtained on CuZn10Zr at reaction conditions of 220°C and 3 MPa. Detailed characterizations demonstrate that dual active sites are proposed during CO2 hydrogenation over CuZn10Zr catalyst. The exposed Cu0 takes participate in the activation of H2, while on the Cu+ species, the intermediate of formate from the co-adsorption of CO2 and H2 prefers to be further hydrogenated to CH3OH than decomposing into the by-product of CO, yielding a high selectivity of methanol.


Assuntos
Metanol , Óxido de Zinco , Dióxido de Carbono , Domínio Catalítico , Hidrogenação
18.
Small ; 19(30): e2302266, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37178389

RESUMO

Electroreduction of nitrate to ammonia reaction (NO3 - RR) is considered as a promising carbon-free energy technique, which can eliminate nitrate from waste-water also produce value-added ammonia. However, it remains a challenge for achieving satisfied ammonia selectivity and Faraday efficiency (FE) due to the complex multiple-electron reduction process. Herein, a novel Tandem electrocatalyst that Ru dispersed on the porous graphitized C3 N4 (g-C3 N4 ) encapsulated with self-supported Cu nanowires (denoted as Ru@C3 N4 /Cu) for NO3 - RR is presented. As expected, a high ammonia yield of 0.249 mmol h-1  cm-2 at -0.9 V and high FENH3 of 91.3% at -0.8 V versus RHE can be obtained, while achieving excellent nitrate conversion (96.1%) and ammonia selectivity (91.4%) in neutral solution. In addition, density functional theory (DFT) calculations further demonstrate that the superior NO3 - RR performance is mainly resulted from the synergistic effect between the Ru and Cu dual-active sites, which can significantly enhance the adsorption of NO3 - and facilitate hydrogenation, as well as suppress the hydrogen evolution reaction, thus lead to highly improved NO3 - RR performances. This novel design strategy would pave a feasible avenue for the development of advanced NO3 - RR electrocatalysts.

19.
Small ; 19(29): e2208281, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37026655

RESUMO

The "shuttle effect" and slow conversion kinetics of lithium polysulfides (LiPSs) are stumbling block for high-energy-density lithium-sulfur batteries (LSBs), which can be effectively evaded by advanced catalytic materials. Transition metal borides possess binary LiPSs interactions sites, aggrandizing the density of chemical anchoring sites. Herein, a novel core-shelled heterostructure consisting of nickel boride nanoparticles on boron-doped graphene (Ni3 B/BG), is synthesized through a graphene spontaneously couple derived spatially confined strategy. The integration of Li2 S precipitation/dissociation experiments and density functional theory computations demonstrate that the favorable interfacial charge state between Ni3 B and BG provides smooth electron/charge transport channel, which promotes the charge transfer between Li2 S4 -Ni3 B/BG and Li2 S-Ni3 B/BG systems. Benefitting from these, the facilitated solid-liquid conversion kinetics of LiPSs and reduced energy barrier of Li2 S decomposition are achieved. Consequently, the LSBs employed the Ni3 B/BG modified PP separator deliver conspicuously improved electrochemical performances with excellent cycling stability (decay of 0.07% per cycle for 600 cycles at 2 C) and remarkable rate capability of 650 mAh g-1 at 10 C. This study provides a facile strategy for transition metal borides and reveals the effect of heterostructure on catalytic and adsorption activity for LiPSs, offering a new viewpoint to apply boride in LSBs.

20.
Adv Mater ; 35(25): e2300902, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36977472

RESUMO

In the energy transition context, the design and synthesis of high-performance Pt-based photocatalysts with low Pt content and ultrahigh atom-utilization efficiency for hydrogen production are essential. Herein, a facile approach for decorating atomically dispersed Pt cocatalysts having single-atom (SA) and atomic cluster (C) dual active sites on CdS nanorods (PtSA+C /CdS) via atomic layer deposition is reported. The size of the cocatalyst and the spatial intimacy of the cocatalyst active sites are precisely engineered at the atomic scale. The PtSA+C /CdS photocatalysts show the optimized photocatalytic hydrogen evolution activity, achieving a reaction rate of 80.4 mmol h-1 g-1 , which is 1.6- and 7.3-fold higher than those of the PtSA /CdS and PtNP /CdS photocatalysts, respectively. Thorough characterization and theoretical calculations reveal that the enhanced photocatalytic activity is due to a remarkable synergy between SAs and atomic clusters as dual active sites, which are responsible for water adsorption-dissociation and hydrogen desorption, respectively. A similar synergetic effect is found in a representative Pt/TiO2 system, indicating the generality of the strategy. This study demonstrates the significance of the synergy between active sites for enhancing the reaction efficiency, opening a new avenue for the rational design of atomically dispersed photocatalysts with high efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA