RESUMO
Deciduous tooth agenesis is a severe craniofacial developmental defect because it affects masticatory function from infancy and may result in delayed growth and development. Here, we aimed to identify the crucial pathogenic genes and clinical features of patients with deciduous tooth agenesis. We recruited 84 patients with severe deciduous tooth agenesis. Whole-exome and Sanger sequencing were used to identify the causative variants. Phenotype-genotype correlation analysis was conducted. We identified 54 different variants in 8 genes in 84 patients, including EDA (73, 86.9%), PAX9 (2, 2.4%), LRP6 (2, 2.4%), MSX1 (2, 2.4%), BMP4 (1, 1.2%), WNT10A (1, 1.2%), PITX2 (1, 1.2%), and EDARADD (1, 1.2%). Variants in ectodysplasin A (EDA) accounted for 86.9% of patients with deciduous tooth agenesis. Patients with the EDA variants had an average of 15.4 missing deciduous teeth. Mandibular deciduous central incisors had the highest missing rate (100%), followed by maxillary deciduous lateral incisors (98.8%) and mandibular deciduous lateral incisors (97.7%). Our results indicated that EDA gene variants are major pathogenic factors for deciduous tooth agenesis, and EDA is specifically required for deciduous tooth development. The results provide guidance for clinical diagnosis and genetic counseling of deciduous tooth agenesis.
Assuntos
Anodontia , Ectodisplasinas , Dente Decíduo , Humanos , Anodontia/genética , Feminino , Masculino , Ectodisplasinas/genética , Criança , Fator de Transcrição PAX9/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína Morfogenética Óssea 4/genética , Pré-Escolar , Fator de Transcrição MSX1/genética , Estudos de Associação Genética , Proteína Homeobox PITX2 , Fatores de Transcrição/genética , Sequenciamento do Exoma , Fenótipo , Proteína de Domínio de Morte Associada a Edar/genética , Proteínas de Homeodomínio/genética , Mutação , Proteínas WntRESUMO
Directly with arylsulfonyl chlorides, a green and efficient deborylativesulfonylation of aryl(alkenyl)boronic acids has been developed to access both diarylsulfones and vinylarylsulfones in moderate to excellent yields at room temperature under visible-light irradiation. This protocol features broad C(sp2)-arylsulfone applicability, simple operation, accessibility of raw materials and ease of scale-up. The key to the success of this photoredox transformation is introducing catalytic amounts of additives, naphthalen-2-ols, thus boosting the formed electron donor-acceptor (EDA) complexes, which can dramatically improve not only the reaction efficiency but also the selectivity. This strategy was inspired and derived from specific substrates, representing a rare paradigm of how to exploit a more general reaction system. Moreover, extensive control experiments provide insights into the proposed mechanism.
RESUMO
This paper aims to outline the effectiveness of modern universal gate quantum computers when utilizing different configurations to solve the B-SAT (Boolean satisfiability) problem. The quantum computing experiments were performed using Grover's search algorithm to find a valid solution. The experiments were performed under different variations to demonstrate their effects on the results. Changing the number of shots, qubit mapping, and using a different quantum processor were all among the experimental variables. The study also branched into a dedicated experiment highlighting a peculiar behavior that IBM quantum processors exhibit when running circuits with a certain number of shots.
RESUMO
The slowdown of Moore's Law necessitates an exploration of novel computing methodologies, new materials, and advantages in chip design. Thus, carbon-based materials have promise for more energy-efficient computing systems in the future. Moreover, sustainability emerges as a new concern for the semiconductor industry. The production and recycling processes associated with current chips present huge environmental challenges. Electronic waste is a major problem, and sustainable solutions in computing must be found. In this review, we examine an alternative chip design based on nanocellulose, which also features semiconductor properties and transistors. Our review highlights that nanocellulose (NC) is a versatile material and a high-potential composite, as it can be fabricated to gain suitable electronic and semiconducting properties. NC provides ideal support for ink-printed transistors and electronics, including green paper electronics. Here, we summarise various processing procedures for nanocellulose and describe the structure of exclusively nanocellulose-based transistors. Furthermore, we survey the recent scientific efforts in organic chip design and show how fully automated production of such a full NC chip could be achieved, including a Process Design Kit (PDK), expected variation models, and a standard cell library at the logic-gate level, where multiple transistors are connected to perform basic logic operations-for instance, the NOT-AND (NAND) gate. Taking all these attractive nanocellulose features into account, we envision how chips based on nanocellulose can be fabricated using Electronic Design Automation (EDA) tool chains.
RESUMO
The popularity of online shopping in China has increased significantly, creating new development opportunities for the express delivery industry. However, the rapid expansion of the express industry has also created challenges in the parcel sorting process. The demanding nature of parcel sorting work, which is characterized by intense and prolonged repetitive tasks, makes individuals particularly vulnerable to the effects of fatigue. Fatigue is a complex condition that encompasses both physiological and psychological exhaustion. It often results in reduced energy levels and diminished functionality, significantly impacting an individual's performance at work and their overall well-being. This study aimed to investigate how physiological and psychological fatigue affects sorting efficiency and to identify appropriate rest periods that will allow employees to maintain their performance levels. The research involved fifteen participants who took part in a 60 min continuous sorting experiment and a similar experiment with scheduled breaks. During both trials, we collected data on participants' electromyography (EMG) and electrodermal activity (EDA), as well as subjective fatigue ratings (RPE). Signal features such as the median frequency (MF) of EMG and the skin conductance level (SCL) were analyzed to assess physiological and psychological fatigue, respectively. The results show that physiological fatigue mainly affects sorting efficiency in the first 30 min, while psychological fatigue becomes more influential in the following half-hour period. In addition, subjective fatigue levels during the first 30 min are primarily determined by psychological factors, while beyond that point, both physiological and psychological fatigue contribute to subjective fatigue. Rest periods of 415-460 s, based on EDA recovery times, effectively support sorting efficiency and participants' recovery. This study highlights the complex ways in which fatigue affects parcel sorting performance and provides valuable theoretical and practical insights for establishing labor quotas and optimizing work schedules in the parcel sorting industry.
Assuntos
Fadiga , Fadiga Mental , Humanos , Masculino , Adulto , Fadiga/fisiopatologia , Fadiga/psicologia , Feminino , Fadiga Mental/fisiopatologia , Eletromiografia , Adulto Jovem , Resposta Galvânica da Pele/fisiologia , Eficiência/fisiologia , Desempenho ProfissionalRESUMO
Introduction: Food is a vital human need, and the human visual system is finely tuned to detect and respond to food cues in the environment. The omnipresence of food cues across various settings has been linked to the prevalence of obesity in susceptible populations. However, the influence of the post-prandial state on visual attention to food stimuli remains poorly understood. This study aimed to elucidate how a 12 hour fast affects visual attention to food and non-food stimuli in healthy, non-obese individuals. Methods: Visual attention was assessed by measuring the total duration of visual fixations on stimuli presented on a computer screen, using a screen-based eye tracker (Tobii X2-60). Participants were divided into two groups: those who had fasted for 12 hours and those tested within two hours after consuming breakfast (satiated state). Additionally, performance on the Food Stroop task and electrodermal activity (EDA) responses were measured to evaluate attentional interference and physiological arousal, respectively. Salivary samples were also collected to assess levels of alpha-amylase and cortisol. Results: Fasted participants exhibited a progressive decline in visual attention toward food stimuli compared to satiated individuals, reflecting a satiated state. This effect was independent of the palatability of the depicted food items and was not observed with stimuli representing non-food items. The Food Stroop task revealed no differences between fasting and satiated participants, indicating that the presence of food-related stimuli does not differentially impact attentional interference under varying hunger states. Moreover, no significant variations were observed in EDA responses across participant groups and stimulus types, suggesting that the modulation of visual attention to food cues by hunger is independent of physiological arousal. Interestingly, satiated subjects exhibited higher levels of salivary alpha-amylase, which was inversely related to their subjective hunger ratings. No differences in salivary cortisol levels were found between groups. Discussion: The findings indicate a novel influence of mild hunger on the processing of visual food cues, independent of physiological arousal. The decline in visual attention to food stimuli in fasted individuals suggests that satiety modulates visual processing. The lack of differences in attentional interference and physiological arousal between fasting and satiated states further supports the notion that visual attention to food cues is primarily driven by hunger-related mechanisms rather than stress. Additionally, the inverse relationship between salivary alpha-amylase levels and hunger ratings implies that alpha-amylase may serve as a marker of satiety rather than stress.
RESUMO
Estrogenic transformation products (TPs) generated after water chlorination can be considered as an environmental and health concern, since they can retain and even increase the estrogenicity of the parent compound, thus posing possible risks to drinking water safety. Identification of the estrogenic TPs generated from estrogenic precursor during water chlorination is important. Herein, butylparaben (BuP), which was widely used as preservative in food, pharmaceuticals and personal care products (PPCPs), was selected for research. A simplified effect-based analysis (EDA) approach was applied for the identification of estrogenic TPs generated during BuP chlorination. Despite the removal of BuP corresponds to the decrease of estrogenicity in chlorinated samples, an significant increase of estrogenicity was observed (at T = 30 min, presented an estrogenicity equivalent to 17ß-estradiol). Chemical analysis of the estrogenic chlorinated samples that have been previously subjected to biological analysis (in vitro assays), in combination with the principal component analysis (PCA) evaluation, followed by validating the estrogenic potency of most relevant estrogenic TPs through an in silico approach (molecular dynamics simulations), identified that the halogenated TP3 (3,5-Dichloro-butylparaben) increased by 62.5 % and 61.8 % of the estrogenic activity of the parent compound in samples chlorinated with 30 min and 1 h, respectively being classified as a potentially estrogenic activity driver after BuP chlorination. This study provides a scientific basis for the more comprehensive assessment of the environmental and health risk associated with BuP chlorination, highlighting the necessity of identifying the unknown estrogenic TPs generateded from estrogenic precursors chlorination.
RESUMO
In Virtual Reality (VR), a higher level of presence positively influences the experience and engagement of a user. There are several parameters that are responsible for generating different levels of presence in VR, including but not limited to, graphical fidelity, multi-sensory stimuli, and embodiment. However, standard methods of measuring presence, including self-reported questionnaires, are biased. This research focuses on developing a robust model, via machine learning, to detect different levels of presence in VR using multimodal neurological and physiological signals, including electroencephalography and electrodermal activity. An experiment has been undertaken whereby participants (N = 22) were each exposed to three different levels of presence (high, medium, and low) in a random order in VR. Four parameters within each level, including graphics fidelity, audio cues, latency, and embodiment with haptic feedback, were systematically manipulated to differentiate the levels. A number of multi-class classifiers were evaluated within a three-class classification problem, using a One-vs-Rest approach, including Support Vector Machine, k-Nearest Neighbour, Extra Gradient Boosting, Random Forest, Logistic Regression, and Multiple Layer Perceptron. Results demonstrated that the Multiple Layer Perceptron model obtained the highest macro average accuracy of 93 ± 0.03 % . Posthoc analysis revealed that relative band power, which is expressed as the ratio of power in a specific frequency band to the total baseline power, in both the frontal and parietal regions, including beta over theta and alpha ratio, and differential entropy were most significant in detecting different levels of presence.
Assuntos
Eletroencefalografia , Aprendizado de Máquina , Realidade Virtual , Humanos , Masculino , Feminino , Eletroencefalografia/métodos , Adulto , Adulto Jovem , Psicofisiologia/métodos , Resposta Galvânica da Pele/fisiologiaRESUMO
TGFß1 is a powerful regulator of fibrosis; secreted in a latent form, it becomes active after release from the latent complex. During tissue fibrosis, the EDA + isoform of cellular fibronectin is overexpressed. In pulmonary fibrosis it has been proposed that the fibronectin splice variant including an EDA domain (FN EDA+) activates latent TGFß. Our work investigates the potential of blocking the 'splicing in' of EDA with antisense oligonucleotides to inhibit TGFß1-induced EDA + fibronectin and to prevent the cascade of events initiated by TGFß1 in human renal proximal tubule cells (PTEC). Human primary PTEC were treated with TGFß1 for 48 h, medium removed and the cells transfected with RNase H-independent antisense oligonucleotides (ASO) designed to block EDA exon inclusion (ASO5). The efficacy of ASO to block EDA exon inclusion was assessed by EDA + fibronectin RNA and protein expression; the expression of TGFß, αSMA (α smooth muscle actin), MMP2 (matrix metalloproteinse-2), MMP9 (matrix metalloproteinse-9), Collagen I, K Cadherin and connexin 43 was analysed. Targeting antisense oligonucleotides designed to block EDA exon inclusion in fibronectin pre mRNA were effective in reducing the amount of TGFß1 -induced cellular EDA + fibronectin RNA and secreted EDA + fibronectin protein (assessed by western immunoblotting and immunocytochemistry) in human proximal tubule cells in an in vitro cell culture model. The effect was selective for EDA + exon with no effect on EDB + fibronectin RNA and total fibronectin mRNA. Exogenous TGFß1 induced endogenous TGFß, αSMA, MMP2, MMP9 and Col I mRNA. TGFß1 treatment for 48h reduced the expression of K-Cadherin and increased the expression of connexin-43. These TGFß1-induced pro-fibrotic changes were attenuated by ASO5 treatment. 48 h after the removal of exogenous TGFß, further increases in αSMA, MMP2, MMP9 was observed; ASO5 significantly inhibited this subsequent increase. ASO5 treatment also significantly inhibited ability of the cell culture medium harvested at the end of the experiment (96h) to stimulate SMAD3 reporter cells. The role of endogenous TGFß1 was confirmed by the use of a TGFß receptor inhibitor. Our results demonstrate a critical role of FN EDA+ in a cycle of TGFß driven pro-fibrotic responses in human PTEC and blocking its production with ASO technology offers a potential therapy to interrupt this vicious circle and hence limit the progression of renal fibrosis.
Assuntos
Processamento Alternativo , Células Epiteliais , Fibronectinas , Fibrose , Túbulos Renais Proximais , Oligonucleotídeos Antissenso , Fator de Crescimento Transformador beta1 , Humanos , Fibronectinas/metabolismo , Fibronectinas/genética , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/citologia , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/genética , Fibrose/metabolismo , Processamento Alternativo/genética , Fator de Crescimento Transformador beta1/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/efeitos dos fármacos , Células Cultivadas , Comunicação Autócrina , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genéticaRESUMO
Social support from family and friends, albeit associated with beneficial health effects, does not always help to cope with pain. This may be because humans elicit mixed expectations of social support and evaluative judgment. The present studies aimed to test whether pet dogs are a more beneficial source of support in a painful situation than human companions because they are not evaluative. For this, 74 (Study 1) and 50 (Study 2) women completed a cold-pressor task in the presence of either their own (S1) or an unfamiliar (S2) dog, a friend (S1), or an unknown human companion (S2), or alone. In both studies, participants reported less pain and exhibited less pain behavior in the presence of dogs compared to human companions. Reactions to pain were moderated by attitudes towards dogs in S2. This suggests that pet dogs may help individuals to cope with painful situations, especially if the individual in pain generally feels affectionate towards dogs.
Assuntos
Vínculo Humano-Animal , Dor , Animais de Estimação , Cães , Animais , Humanos , Feminino , Adulto , Adulto Jovem , Adaptação Psicológica/fisiologia , Apoio Social , AdolescenteRESUMO
Given the prevalence of pyridine motifs in FDA-approved drugs, selective fluoroalkylation of pyridines and quinolines is essential for preparing diverse bioisosteres. However, challenges are often faced with conventional Minisci reactions in achieving precise regioselectivity owing to competing reaction sites of pyridine and the limited availability of fluoroalkyl radical sources. Herein, we present a light-driven, C4-selective fluoroalkylation of azines utilizing N-aminopyridinium salts and readily available sulfinates. Our approach employs electron donor-acceptor complexes, achieving highly C4-selective fluoroalkylation under mild conditions without an external photocatalyst. This practical method not only enables the installation of CF2H groups but also allows for the incorporation of CF2-alkyl groups with diverse functional entities, surpassing the limitations of previous methods. The versatility of the radical pathway is further demonstrated through straightforward three-component reactions involving alkenes and [1.1.1]propellane. Detailed experimental and computational studies have elucidated the origins of regioselectivity, providing profound insights into the mechanistic aspects.
RESUMO
Emotion influences human life and impacts daily life activities. During emotional processes, physiological signals interact with each other instead of functioning separately. Although unimodal and multimodal approaches have been explored for emotion classification, there is a lack of inclusion of central and peripheral nervous system signal interaction-based approaches. In this study, an attempt has been made to characterize valance emotional states using Electroencephalogram (EEG)- Electrodermal activity (EDA) based coupling. For this, multimodal signals are obtained from the publicly available DEAP database (n=32 subjects). The EEG signals are decomposed into θ, α, ß, and bands and EDA signals are decomposed into phasic and tonic components. Then two EEG, three EDA, and two EEG-EDA coupling-based features are extracted and applied to three classifiers namely Random Forest (RF), Linear discriminant analysis, and Adaptive boosting. In addition, SHAP analysis is performed to explain classifiers' performance with respect to features. The result shows that the proposed approach is able to classify valence emotional states. The feature combination of EEG, EDA, and EEG-EDA coupling-based features with an RF classifier performs best with an F1-score of 68.21%. SHAP analysis in frontal electrodes with γ band obtained better discrimination among different valance states. This study underscores the significance of the coupling studies of EEG with EDA in classifying emotion. Therefore, the proposed approach can be extended to emotional state assessment in clinical settings.
Assuntos
Eletroencefalografia , Emoções , Humanos , Emoções/fisiologia , Emoções/classificação , Resposta Galvânica da Pele/fisiologia , Processamento de Sinais Assistido por ComputadorRESUMO
The orienting reaction (OR) towards a new stimulus is subject to habituation, i.e., progressively attenuates with stimulus repetition. The skin conductance responses (SCRs) are known to represent a reliable measure of OR at the peripheral level. Yet, it is still a matter of debate which of the P3 subcomponents is the most likely to represent the central counterpart of the OR. The aim of the present work was to study habituation, recovery, and dishabituation phenomena intrinsic to a two-stimulus auditory oddball paradigm, one of the most-used paradigms both in research and clinic, by simultaneously recording SCRs and P3 in twenty healthy volunteers. Our findings show that the target stimulus was capable of triggering a more marked OR, as indexed by both SCRs and P3, compared to the standard stimulus, that could be due to its affective saliency and relevance for task completion; the application of temporal principal components analysis (PCA) to the P3 complex allowed us to identify several subcomponents including both early and late P3a (eP3a; lP3a), P3b, novelty P3 (nP3), and both a positive and a negative Slow Wave (+SW; -SW). Particularly, lP3a and P3b subcomponents showed a similar behavior to that observed for SCRs , suggesting them as central counterparts of OR. Finally, the P3 evoked by the first standard stimulus after the target showed a significant dishabituation phenomenon which could represent a sign of the local stimulus change. However, it did not reach a sufficient level to trigger an SCR/OR since it did not represent a salient event in the context of the task.
Assuntos
Estimulação Acústica , Resposta Galvânica da Pele , Habituação Psicofisiológica , Humanos , Masculino , Adulto , Feminino , Resposta Galvânica da Pele/fisiologia , Habituação Psicofisiológica/fisiologia , Estimulação Acústica/métodos , Adulto Jovem , Análise de Componente Principal , Eletroencefalografia/métodos , Tempo de Reação/fisiologiaRESUMO
This research examines the unique Chinese approaches to implementing the Early Childhood Curriculum (ECC) in Shenzhen and Hong Kong, drawing on School-based Curriculum Development (SBCD) studies. A total of 200 administrators and teachers were interviewed in total, and transcripts from those interviews were examined, cross-checked, and assessed using document analysis and classroom observation. Through interviews that have been conducted by administrators and teachers analyzed by document analysis and classroom observation, the influence of Chinese culture on ECC implementation is explored using the Cultural-Historical Activity Theory (CHAT). An exploratory, inferential, and descriptive statistical approach evaluates the sociocultural mechanism of ECC in Chinese society. The proposed framework utilizes K-Nearest Neighbor (KNN) regression analysis to illustrate how social development leads to cultural fusion and conflicts. The overall sociocultural framework promotes cultural growth and inheritance in China's early childhood education settings.
RESUMO
The rapid transport kinetics of divalent magnesium ions are crucial for achieving distinguished performance in aqueous magnesium-ion battery-based energy storage capacitors. However, the strong electrostatic interaction between Mg2+ with double charges and the host material significantly restricts Mg2+ diffusivity. In this study, a new composite material, EDA-Mn2O3, with double-energy storage mechanisms comprising an organic phase (ethylenediamine, EDA) and an inorganic phase (manganese sesquioxide) was successfully synthesized via an organic-inorganic coupling strategy. Inorganic-phase Mn2O3 serves as a scaffold structure, enabling the stable and reversible intercalation/deintercalation of magnesium ions. The organic phase EDA adsorbed onto the surface of Mn2O3 as an elastic matrix, works synergistically with Mn2O3, and utilizes bidentate chelating ligands to capture Mg2+. The robust coordination effect of terminal biprotonic amine in EDA enhances the structural diversity and specific capacity characteristics of the composite material, as further corroborated by density functional theory (DFT) calculations, ex situ XRD, XPS, and Raman spectroscopy. As expected, the EDA-Mn2O3 composite achieved an outstanding specific discharge capacity of 188.97â mAh/g at 0.1â A/g. Additionally, an aqueous magnesium ion capacitor with EDA-Mn2O3 serving as the cathode can reach 110.17â Wh/kg, which stands out among the aqueous magnesium ion capacitors that have been reported thus far. The abundant reversible redox sites are ensured by the strategic design concept based on the synergistic structure and composition advantages of organic and inorganic phases. This study aimed to explore the practical application value of organic-inorganic composite electrodes with double-energy storage mechanisms.
RESUMO
Accurate calculation of non-covalent interaction energies in nucleotides is crucial for understanding the driving forces governing nucleic acid structure and function, as well as developing advanced molecular mechanics forcefields or machine learning potentials tailored to nucleic acids. Here, we dissect the nucleotides' structure into three main constituents: nucleobases (A, G, C, T, and U), sugar moieties (ribose and deoxyribose), and phosphate group. The interactions among these fragments and between fragments and water were analyzed. Different quantum mechanical methods were compared for their accuracy in capturing the interaction energy. The non-covalent interaction energy was decomposed into electrostatics, exchange-repulsion, dispersion, and induction using two ab initio methods: Symmetry-Adapted Perturbation Theory (SAPT) and Absolutely Localized Molecular Orbitals (ALMO). These calculations provide a benchmark for different QM methods, in addition to providing a valuable understanding of the roles of various intermolecular forces in hydrogen bonding and aromatic stacking. With SAPT, a higher theory level and/or larger basis set did not necessarily give more accuracy. It is hard to know which combination would be best for a given system. In contrast, ALMO EDA2 did not show dependence on theory level or basis set; additionally, it is faster.
Assuntos
Ligação de Hidrogênio , Nucleotídeos , Teoria Quântica , Nucleotídeos/química , Eletricidade Estática , Modelos Moleculares , Água/química , TermodinâmicaRESUMO
The rapid increase in the production and global use of chemicals and their mixtures has raised concerns about their potential impact on human and environmental health. With advances in analytical techniques, in particular, high-resolution mass spectrometry (HRMS), thousands of compounds and transformation products with potential adverse effects can now be detected in environmental samples. However, identifying and prioritizing the toxicity drivers among these compounds remain a significant challenge. Effect-directed analysis (EDA) emerged as an important tool to address this challenge, combining biotesting, sample fractionation, and chemical analysis to unravel toxicity drivers in complex mixtures. Traditional EDA workflows are labor-intensive and time-consuming, hindering large-scale applications. The concept of high-throughput (HT) EDA has recently gained traction as a means of accelerating these workflows. Key features of HT-EDA include the combination of microfractionation and downscaled bioassays, automation of sample preparation and biotesting, and efficient data processing workflows supported by novel computational tools. In addition to microplate-based fractionation, high-performance thin-layer chromatography (HPTLC) offers an interesting alternative to HPLC in HT-EDA. This review provides an updated perspective on the state-of-the-art in HT-EDA, and novel methods/tools that can be incorporated into HT-EDA workflows. It also discusses recent studies on HT-EDA, HT bioassays, and computational prioritization tools, along with considerations regarding HPTLC. By identifying current gaps in HT-EDA and proposing new approaches to overcome them, this review aims to bring HT-EDA a step closer to monitoring applications.
RESUMO
Introduction: Hypohidrotic ectodermal dysplasia (HED) is a genetic disorder that influences structures of ectodermal origin, such as teeth, hair, and sweat glands. Compared with autosomal recessive and dominant modes of inheritance, the X-linked HED (XLHED) characterized by Hypodontia/Oligodontia teeth, Absent/sparse hair, Anhidrosis/hypohidrosis, and characteristic facial features, is the most frequent and its primary cause is the mutation of ectodysplasin A (EDA) gene. This research aimed to expound the clinical and molecular features of a Chinese male with XLHED and to summarize and compare several previous findings. Methods: Genomic DNA was obtained from the peripheral blood of the proband and his family members, then Sanger sequencing was used to perform a mutational analysis of EDA. Real-time quantitative PCR and Western blotting were used to detect EDA expression. The transcriptional activity of NF-κB was detected using a luciferase assay. Results: The probandwith XLHED was identified a novel EDA mutation, c.1119G>C(p.M373I), that affected the molecular analysis of transmembrane protein exon8 mutations, inherited from the mother. He showed a severe multiple-tooth loss, with over 20 permanent teeth missing and sparse hair and eyebrows, dry, thin, and itching skin. Furthermore, his sweating function was abnormal to a certain extent. Discussion: The functional study showed that this novel mutant led to a significant decrease in the EDA expression level and transcriptional activity of NF-κB. Our findings extend the range of EDA mutations in XLHED patients, which provides the basis and idea for further exploring the pathogenesis of XLHED.
RESUMO
BACKGROUND: The use of both edaravone (EDA) and hyperbaric oxygen therapy (HBOT) is increasingly prevalent in the treatment of delayed encephalopathy after carbon monoxide poisoning (DEACMP). This meta-analysis aims to evaluate the efficacy of using EDA and HBOT in combination with HBOT alone in the treatment of DEACMP. METHODS: We searched and included all randomized controlled trials (RCTs) published before November 6, 2023, from 12 Chinese and English databases and clinical trial centers in China and the United States. The main outcome indicator was the total effective rate. The secondary outcome indicators included the Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), National Institutes of Health Stroke Scale (NIHSS), Barthel Index (BI), Hasegawa Dementia Scale (HDS), Fugl-Meyer Assessment (FMA), Superoxide Dismutase (SOD), and Malondialdehyde (MDA). Statistical measures utilized include risk ratios (RR), weighted mean difference (WMD), and 95 % confidence intervals (95 % CI). RESULTS: Thirty studies involving a combined total of 2075 participants were ultimately incorporated. It was observed that the combination of EDA with HBOT for the treatment of DEACMP demonstrated an improvement in the total effective rate (RR: 1.25; 95 % CI: 1.20-1.31; P < 0.01), MMSE (WMD: 3.67; 95 % CI: 2.59-4.76; P < 0.01), MoCA (WMD: 4.38; 95 % CI: 4.00-4.76; P < 0.01), BI (WMD: 10.94; 95 % CI: 5.23-16.66; P < 0.01), HDS (WMD: 6.80; 95 % CI: 4.05-9.55; P < 0.01), FMA (WMD: 8.91; 95 % CI: 7.22-10.60; P < 0.01), SOD (WMD: 18.45; 95 % CI: 16.93-19.98; P < 0.01); and a reduction in NIHSS (WMD: -4.12; 95 % CI: -4.93 to -3.30; P < 0.01) and MDA (WMD: -3.05; 95 % CI: -3.43 to -2.68; P < 0.01). CONCLUSION: Low-quality evidence suggests that for DEACMP, compared to using HBOT alone, the combined use of EDA and HBOT may be associated with better cognition and activity of daily living. In the future, conducting more meticulously designed multicenter and large-sample RCTs to substantiate our conclusions is essential.
Assuntos
Intoxicação por Monóxido de Carbono , Edaravone , Oxigenoterapia Hiperbárica , Oxigenoterapia Hiperbárica/métodos , Humanos , Edaravone/uso terapêutico , Intoxicação por Monóxido de Carbono/complicações , Intoxicação por Monóxido de Carbono/terapia , Terapia Combinada/métodos , Encefalopatias/etiologia , Encefalopatias/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto , Sequestradores de Radicais Livres/uso terapêuticoRESUMO
Electrodermal Activity (EDA), which primarily indicates arousal through sympathetic nervous system activity, serves as a tool to measure constructs like engagement, cognitive load, performance, and stress. Despite its potential, empirical studies have often yielded mixed results and found it of limited use. To better understand EDA, we conducted a mixed-methods study in which quantitative EDA profiles and survey data were investigated using qualitative interviews. This study furnishes an EDA dataset measuring the engagement levels of seven participants who watched three videos for 4-10 min. The subsequent interviews revealed five EDA morphologies with varying short-term signatures and long-term trends. We used this dataset to demonstrate the moving average crossover, a novel metric for EDA analysis, in predicting engagement-disengagement dynamics in such data. Our contributions include the creation of the detailed dataset, comprising EDA profiles annotated with qualitative data, the identification of five distinct EDA morphologies, and the proposition of the moving average crossover as an indicator of the beginning of engagement or disengagement in an individual.