Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
J Nutr Sci ; 12: e108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37964979

RESUMO

Although elevated blood levels of trimethylamine N-oxide (TMAO) have been associated with atherosclerosis development in humans, the role of its gut microbiota-derived precursor, TMA, in this process has not been yet deciphered. Taking this into account, and the fact that increased intestinal fatty acid absorption contributes to atherosclerosis onset and progression, this study aimed to evaluate the effect of TMA on fatty acid absorption in a cell line that mimics human enterocytes. Caco-2 cells were treated with TMA 250 µM for 24 h. Fatty acid absorption was assessed by measuring the apical-to-basolateral transport and the intracellular levels of BODIPY-C12, a fluorescently labelled fatty acid analogue. Gene expression of the main intestinal fatty acid transporters was evaluated by real-time quantitative reverse transcription PCR. Compared to control conditions, TMA increased, in a time-dependent manner and by 20-50 %, the apical-to-basolateral transport and intracellular levels of BODIPY-C12 fatty acid in Caco-2 cells. Fatty acid transport protein 4 (FATP4) and fatty acid translocase (FAT)/CD36 gene expression were not stimulated by TMA, suggesting that TMA-induced increase in fatty acid transport may be mediated by an increase in FAT/CD36 and/or FATP4 activity and/or fatty acid passive transport. This study demonstrated that TMA increases the intestinal absorption of fatty acids. Future studies are necessary to confirm if this may constitute a novel mechanism that partially explains the existing positive association between the consumption of a diet rich in TMA sources (e.g. red meat) and the increased risk of atherosclerotic diseases.


Assuntos
Aterosclerose , Compostos de Boro , Ácidos Graxos , Metilaminas , Humanos , Ácidos Graxos/farmacologia , Ácidos Graxos/metabolismo , Células CACO-2 , Absorção Intestinal , Antígenos CD36 , Técnicas de Cultura de Células
2.
IBRO Neurosci Rep ; 14: 253-263, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36880055

RESUMO

Rehabilitative exercise following a brain stroke has beneficial effects on the morphological plasticity of neurons. Particularly, voluntary running exercise after focal cerebral ischemia promotes functional recovery and ameliorates ischemia-induced dendritic spine loss in the peri-infarct motor cortex layer 5. Moreover, neuronal morphology is affected by changes in the perineuronal environment. Glial cells, whose phenotypes may be altered by exercise, are known to play a pivotal role in the formation of this perineuronal environment. Herein, we investigated the effects of voluntary running exercise on glial cells after middle cerebral artery occlusion. Voluntary running exercise increased the population of glial fibrillary acidic protein-positive astrocytes born between post-operative days (POD) 0 and 3 on POD15 in the peri-infarct cortex. After exercise, transcriptomic analysis of post-ischemic astrocytes revealed 10 upregulated and 70 downregulated genes. Furthermore, gene ontology analysis showed that the 70 downregulated genes were significantly associated with neuronal morphology. In addition, exercise reduced the number of astrocytes expressing lipocalin 2, a regulator of dendritic spine density, on POD15. Our results suggest that exercise modifies the composition of astrocytic population and their phenotype.

3.
J Biochem ; 174(1): 47-58, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36805939

RESUMO

The lipopolysaccharide (LPS)-triggered horseshoe crab coagulation cascade is composed of three protease zymogens, prochelicerase C (proC), prochelicerase B (proB) and the proclotting enzyme (proCE). In this study, we found that Ca 2+ ions increase the production of the clotting enzyme as a result of a cascade reaction reconstituted by recombinant proteins of wild-type (WT) proC, WT proB and WT proCE. We divided the cascade into three stages: autocatalytic activation of WT proC on the surface of LPS into WT α-chelicerase C (Stage 1); activation of WT proB on the surface of LPS into WT chelicerase B by WT α-chelicerase C (Stage 2) and activation of WT proce into WT CE by chelicerase B (Stage 3). Ca2+ ions enhanced the proteolytic activation in Stage 2, but not those in Stages 1 and 3. Moreover, we performed isothermal titration calorimetry to clarify the interaction of LPS or the recombinant zymogens with Ca2+ ions. LPS interacted with Ca2+ ions at an association constant of Ka = 4.7 × 104 M-1, but not with any of the recombinant zymogens. We concluded that LPS bound with Ca2+ ions facilitates the chain reaction of the cascade as a more efficient scaffold than LPS itself.


Assuntos
Caranguejos Ferradura , Lipopolissacarídeos , Animais , Lipopolissacarídeos/metabolismo , Cálcio/metabolismo , Coagulação Sanguínea , Precursores Enzimáticos/metabolismo
4.
JHEP Rep ; 5(3): 100648, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36699667

RESUMO

Background & Aims: Biliary tract cancer (BTC) is associated with a dismal prognosis, partly because it is typically diagnosed late, highlighting the need for diagnostic biomarkers. The purpose of this project was to identify and validate multiprotein signatures that could differentiate patients with BTC from non-cancer controls. Methods: In this study, we included treatment-naïve patients with BTC, healthy controls, and patients with benign conditions including benign biliary tract disease. Participants were divided into three non-overlapping cohorts: a case-control-based discovery cohort (BTC = 186, controls = 249); a case-control-based validation cohort (validation cohort 1: BTC = 113, controls = 241); and a cohort study-based validation cohort including participants (BTC = 8, controls = 132) referred for diagnostic work-up for suspected cancer (validation cohort 2). Immuno-Oncology (I-O)-related proteins were measured in serum and plasma using a proximity extension assay (Olink Proteomics). Lasso and Ridge regressions were used to generate protein signatures of I-O-related proteins and carbohydrate antigen 19-9 (CA19-9) in the discovery cohort. Results: Sixteen protein signatures, including 2 to 82 proteins, were generated. All signatures included CA19-9 and chemokine C-C motif ligand 20. Signatures discriminated between patients with BTC vs. controls, with AUCs ranging from 0.95 to 0.99 in the discovery cohort and 0.94 to 0.97 in validation cohort 1. In validation cohort 2, AUCs ranged from 0.84 to 0.94. Nine signatures achieved a specificity of 82% to 84% while keeping a sensitivity of 100% in validation cohort 2. All signatures performed better than CA19-9, and signatures including >15 proteins showed the best performance. Conclusion: The study demonstrated that it is possible to generate protein signatures that can successfully differentiate patients with BTC from non-cancer controls. Impact and implications: We attempted to find blood sample-based protein profiles that could differentiate patients with biliary tract cancer from those without cancer. Several profiles were found and tested in different groups of patients. The profiles were successful at identifying most patients with biliary tract cancer, pointing towards the utility of multiprotein signatures in this context.

5.
Data Brief ; 46: 108860, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36632439

RESUMO

The soil response to a jet-fuel contamination is uncertain. In this article, original data on the influence of a jet-fuel spillage on the topsoil properties are presented. The data set is obtained during a one-year long pot and field experiments with Dystric Arenosols, Fibric Histosols and Albic Luvisols. Kerosene loads were 1, 5, 10, 25 and 100 g/kg. The data set includes information about temporal changes in kerosene concentration; physicochemical properties, such as рН, moisture, cation exchange capacity, content of soil organic matter, available P and K, exchangeable NH4 +, and water-soluble NO3 -; and biological properties, such as biological consumption of oxygen, and cellulolytic activity. Also, we provide sequencing data on variable regions of 16S ribosomal RNA of microbial communities from the respective soil samples.

6.
Saudi Pharm J ; 31(2): 228-244, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36540698

RESUMO

MERS-CoV belongs to the coronavirus group. Recent years have seen a rash of coronavirus epidemics. In June 2012, MERS-CoV was discovered in the Kingdom of Saudi Arabia, with 2,591 MERSA cases confirmed by lab tests by the end of August 2022 and 894 deaths at a case-fatality ratio (CFR) of 34.5% documented worldwide. Saudi Arabia reported the majority of these cases, with 2,184 cases and 813 deaths (CFR: 37.2%), necessitating a thorough understanding of the molecular machinery of MERS-CoV. To develop antiviral medicines, illustrative investigation of the protein in coronavirus subunits are required to increase our understanding of the subject. In this study, recombinant expression and purification of MERS-CoV (PLpro), a primary goal for the development of 22 new inhibitors, were completed using a high throughput screening methodology that employed fragment-based libraries in conjunction with structure-based virtual screening. Compounds 2, 7, and 20, showed significant biological activity. Moreover, a docking analysis revealed that the three compounds had favorable binding mood and binding free energy. Molecular dynamic simulation demonstrated the stability of compound 2 (2-((Benzimidazol-2-yl) thio)-1-arylethan-1-ones) the strongest inhibitory activity against the PLpro enzyme. In addition, disubstitutions at the meta and para locations are the only substitutions that may boost the inhibitory action against PLpro. Compound 2 was chosen as a MERS-CoV PLpro inhibitor after passing absorption, distribution, metabolism, and excretion studies; however, further investigations are required.

7.
J Biochem ; 173(2): 115-127, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36413757

RESUMO

The continuous emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants associated with the adaptive evolution of the virus is prolonging the global coronavirus disease 2019 (COVID-19) pandemic. The modification of neutralizing antibodies based on structural information is expected to be a useful approach to rapidly combat emerging variants. A dimerized variable domain of heavy chain of heavy chain antibody (VHH) P17 that has highly potent neutralizing activity against SARS-CoV-2 has been reported but the mode of interaction with the epitope remains unclear. Here, we report the X-ray crystal structure of the complex of monomerized P17 bound to the SARS-CoV-2 receptor binding domain (RBD) and investigated the binding activity of P17 toward various variants of concern (VOCs) using kinetics measurements. The structure revealed details of the binding interface and showed that P17 had an appropriate linker length to have an avidity effect and recognize a wide range of RBD orientations. Furthermore, we identified mutations in known VOCs that decrease the binding affinity of P17 and proposed methods for the acquisition of affinity toward the Omicron RBD because Omicron is currently the most predominant VOC. This study provides information for the rational design of effective VHHs for emerging VOCs.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Dimerização , Epitopos , Cadeias Pesadas de Imunoglobulinas
8.
Regen Ther ; 21: 611-619, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36475026

RESUMO

Introduction: Infrapatellar fat pad (IFP)-derived mesenchymal stem cells (MSCs) have high chondrogenic potential and are attractive cell sources for cartilage regeneration. During ceiling culture to acquire the characteristics of MSCs, mature adipocytes from fat tissue are known to undergo dedifferentiation, generating dedifferentiated fat (DFAT) cells. The purpose of the present study was to compare the yields and biological properties of IFP-derived MSCs and IFP-derived DFAT cells. Methods: IFPs were harvested from the knees of 8 osteoarthritis (OA) patients. DFAT cells were obtained using a ceiling culture of adipocytes isolated from the floating top layer of IFP digestion. MSCs were obtained by culturing precipitated stromal vascular fraction cells. We compared the P0 cell yields, surface antigen profile, colony formation ability, and multipotency of DFAT cells and MSCs. Results: The P0 cell yields per flask and the estimated total cell yields from 1 g of IFP were much greater for MSCs than for DFAT cells. Both MSCs and DFAT cells were positive for MSC markers. No obvious difference was observed in colony formation ability. In differentiation assays, DFAT cells produced greater amounts of lipid droplets, calcified tissue, and glycosaminoglycan than MSCs did. Adipogenic and chondrogenic gene expressions were upregulated in DFAT cells. Conclusions: IFP-derived DFAT cells showed higher adipogenic and chondrogenic potentials than IFP-derived MSCs, but they had a poor cell yield.

9.
Artigo em Inglês | MEDLINE | ID: mdl-35992379

RESUMO

The mammalian target of rapamycin (mTOR) plays an important role in the aggressiveness and therapeutic resistance of many cancers. Targeting mTOR continues to be under clinical investigation for cancer therapy. Despite the notable clinical success of mTOR inhibitors in extending the overall survival of patients with certain malignancies including metastatic renal cell carcinomas (RCCs), the overall impact of mTOR inhibitors on cancers has been generally disappointing and attributed to various compensatory responses. Here we provide the first report that expression of the Notch ligand Jagged-1 (JAG1), which is associated with aggressiveness of RCCs, is induced by several inhibitors of mTOR (rapamycin (Rap), BEZ235, KU-0063794) in human clear cell RCC (ccRCC) cells. Using both molecular and chemical inhibitors of PI3K, Akt, and TGF-ß signaling, we provide evidence that the induction of JAG1 expression by mTOR inhibitors in ccRCC cells depends on the activation of Akt and occurs through an ALK5 kinase/Smad4-dependent mechanism. Furthermore, we show that mTOR inhibitors activate Notch1 and induce the expression of drivers of epithelial-mesenchymal transition, notably Hic-5 and Slug. Silencing JAG1 with selective shRNAs blocked the ability of KU-0063794 and Rap to induce Hic-5 in ccRCC cells. Moreover, Rap enhanced TGF-ß-induced expression of Hic-5 and Slug, both of which were repressed in JAG1-silenced ccRCC cells. Silencing JAG1 selectively decreased the motility of ccRCC cells treated with Rap or TGF-ß1. Moreover, inhibition of Notch signaling with γ-secretase inhibitors enhanced or permitted mTOR inhibitors to suppress the motility of ccRCC cells. We suggest targeting JAG1 may enhance therapeutic responses to mTOR inhibitors in ccRCCs.

10.
Biochem Biophys Rep ; 30: 101272, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35535330

RESUMO

Indigo naturalis, a herbal medicine purified from indigo-containing plants, such as Strobilanthes cusia, Isatis tinctoria, and Polygonum tinctorium, has been reported to be useful in the treatment of ulcerative colitis by activating the aryl hydrocarbon receptor. However, the aryl hydrocarbon receptor pathway causes crucial side effects, such as pulmonary arterial hypertension. Although P. tinctorium is one of the plant derivatives of indigo naturalis, it is not identical to it. To date, the pure leaves of P. tinctorium have not been reported to ameliorate ulcerative colitis. Therefore, we investigated the effect of pure P. tinctorium leaves, which are consumed in some regions, on experimental colitis induced in mice using sodium dextran sulfate. We found that P. tinctorium leaves ameliorated weight loss (P < 0.01) and pathological inflammatory changes in the colon (P < 0.05), enhanced mRNA expression of interleukin-10 (P < 0.05), and decreased expression of tumor necrosis factor-in colonic tissues (P < 0.05), as determined using quantitative real-time reverse transcription polymerase chain reaction. The intraperitoneal administration of an aryl hydrocarbon receptor antagonist did not antagonize the inhibition of mucosal destruction, whereas an anti-interleukin-10 receptor antibody did. These results suggest that P. tinctorium ameliorate sodium dextran sulfate-induced intestinal inflammation via interleukin-10-related pathway, independent of the aryl hydrocarbon receptor pathway. P. tinctorium leaves have the potential to be a new, safe treatment for ulcerative colitis.

11.
J Clin Exp Hepatol ; 12(2): 428-434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35535108

RESUMO

Introduction: This study analyzes the changing levels of circulating inflammatory cytokines Interferon gamma (IFN-γ) and interleukin (IL)-10 (as the main cytokines of T-helper-1 and T-helper-2 immune responses) in patients with chronic hepatitis C virus (HCV) infection undergoing therapy with direct-acting antivirals (DAAs) and to correlate them with laboratory markers. Methods: This Pilot study included 50 HCV monoinfected patients who received DAAs for 12 or 24 weeks. They were followed up monthly during therapy and 3 months after the end of the treatment. Liver disease was determined by transient elastography, in addition to FIB-4 indices. Analysis of IFN-gamma and IL-10 was carried out using an enzyme-linked immunosorbent assay. Results: All patients carried HCV genotype 4. The Sustained virological response was 100% and 92% in cirrhotics and noncirrhotics, respectively. There was no significant difference between groups in baseline IL-10 or IFN-gamma. In noncirrhotics, IL-10 showed a significant reduction at Week 4 after treatment start. In cirrhotics, IL-10 showed a significant reduction at Week 4 after treatment starts and a significant reduction at Week 12 after the end of the treatment. At Week 12 after the end of the treatment, serum IL-10 levels were significantly lower in cirrhotics. IFN-γ showed nonsignificant changes in noncirrhotics. A significant increase of IFN-γ occurred in cirrhotics from Week 4 after treatment starts to 12 weeks after the end of the treatment. IFN-γ was significantly higher in cirrhotics at Week 12 after the end of the treatment. IFN-γ and IL-10 showed different correlations with laboratory markers. Conclusion: Viral eradication induced by DAAs caused a significant change in IL-10 and IFN-gamma.

12.
Bone Rep ; 16: 101526, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35372645

RESUMO

Background and aims: Previous work has shown that oral losartan can enhance microfracture-mediated cartilage repair in a rabbit osteochondral defect injury model. In this study, we aimed to determine whether oral losartan would have a detrimental effect on articular cartilage and bone homeostasis in the uninjured sides. Methods: New Zealand rabbits were divided into 4 groups including normal uninjured (Normal), contralateral uninjured side of osteochondral defect (Defect), osteochondral defect plus microfracture (Microfracture) and osteochondral defect plus microfracture and losartan oral administration (10 mg/kg/day) (Losartan). Rabbits underwent different surgeries and treatment and were sacrificed at 12 weeks. Both side of the normal group and uninjured side of treatment groups tibias were harvested for Micro-CT and histological analysis for cartilage and bone including H&E staining, Herovici's staining (bone and cartilage) Alcian blue and Safranin O staining (cartilage) as well as immunohistochemistry of losartan related signaling pathways molecules for both cartilage and bone. Results: Our results showed losartan oral treatment at 10 mg/kg/day slightly increase Alcian blue positive matrix as well as decrease collagen type 3 in articular cartilage while having no significant effect on articular cartilage structure, cellularity, and other matrix. Losartan treatment also did not affect angiotensin receptor type 1 (AGTR1), angiotensin receptor type 2 (AGTR2) and phosphorylated transforming factor ß1 activated kinase 1 (pTAK1) expression level and pattern in the articular cartilage. Furthermore, losartan treatment did not affect microarchitecture of normal cancellous bone and cortical bone of tibias compared to normal and other groups. Losartan treatment slightly increased osteocalcin positive osteoblasts on the surface of cancellous bone and did not affect bone matrix collagen type 1 content and did not change AGTR1, AGTR2 and pTAK1 signal molecule expression. Conclusion: Oral losartan used as a microfracture augmentation therapeutic does not have significant effect on uninjured articular cartilage and bone based on our preclinical rabbit model. These results provided further evidence that the current regimen of using losartan as a microfracture augmentation therapeutic is safe with respect to bone and cartilage homeostasis and support clinical trials for its application in human cartilage repair.

13.
Toxicol Rep ; 9: 298-310, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35284244

RESUMO

Glyphosate (N-(phosphonomethyl)glycine) is a broad-spectrum systemic herbicide and crop desiccant. Glyphosate has long been suspected of leading to the development of cancer and of compromising fertility. Herbicides have been increasingly recognized as epigenetic modifiers, and the impact of glyphosate on human and animal health might be mediated by epigenetic modifications. This article presents the results from an animal study where pigs were exposed to glyphosate while feeding. The experimental setup included a control group with no glyphosate added to the feed and two groups of pigs with 20 ppm and 200 ppm of glyphosate added to the feed, respectively. After exposure, the pigs were dissected, and tissues of the small intestine, liver, and kidney were used for DNA methylation and gene expression analyses. No significant change in global DNA methylation was found in the small intestine, kidney, or liver. Methylation status was determined for selected genes involved in various functions such as DNA repair and immune defense. In a CpG island of the promoter for IL18, we observed significantly reduced DNA methylation for certain individual CpG positions. However, this change in DNA methylation had no influence on IL18 mRNA expression. The expression of the DNA methylation enzymes DNMT1, DNMT3A, and DNMT3B was measured in the small intestine, kidney, and liver of pigs exposed to glyphosate. No significant changes in relative gene expression were found for these enzymes following dietary exposure to 20 and 200 ppm glyphosate. In contrast, a significant increase in expression of the enzyme TET3, responsible for demethylation, was observed in kidneys exposed to 200 ppm glyphosate.

14.
Mol Genet Metab Rep ; 30: 100843, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35242574

RESUMO

GM2 and GM1 gangliosidoses are genetic, neurodegenerative lysosomal sphingolipid storage disorders. The earlier the age of onset, the more severe the clinical presentation and progression, with infantile, juvenile and late-onset presentations broadly delineated into separate phenotypic subtypes. Gene and substrate reduction therapies, both of which act directly on sphingolipidosis are entering clinical trials for treatment of these disorders. Simple to use biomarkers for disease monitoring are urgently required to support and expedite these clinical trials. Here, lysosphingolipid and protein biomarkers of sphingolipidosis and neuropathology respectively, were assessed in plasma samples from 33 GM2 gangliosidosis patients, 13 GM1 gangliosidosis patients, and compared to 66 controls. LysoGM2 and lysoGM1 were detectable in 31/33 GM2 gangliosidosis and 12/13 GM1 gangliosidosis patient samples respectively, but not in any controls. Levels of the axonal damage marker Neurofilament light (NF-L) were highly elevated in both GM2 and GM1 gangliosidosis patient plasma samples, with no overlap with controls. Levels of the astrocytosis biomarker Glial fibrillary acidic protein (GFAP) were also elevated in samples from both patient populations, albeit with some overlap with controls. In GM2 gangliosidosis patient plasma NF-L, Tau, GFAP and lysoGM2 were all most highly elevated in infantile onset patients, indicating a relationship to severity and phenotype. Plasma NF-L and liver lysoGM2 were also elevated in a GM2 gangliosidosis mouse model, and were lowered by treatment with a drug that slowed disease progression. These results indicate that lysosphingolipids and NF-L/GFAP have potential to monitor pharmacodynamics and pathogenic processes respectively in GM2 and GM1 gangliosidoses patients.

15.
Comput Struct Biotechnol J ; 20: 757-765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198129

RESUMO

Bacterial conjugation is an important route for horizontal gene transfer. The initial step in this process involves a macromolecular protein-DNA complex called the relaxosome, which in plasmids consists of the origin of transfer (oriT) and several proteins that prepare the transfer. The relaxosome protein named relaxase introduces a nick in one of the strands of the oriT to initiate the process. Additional relaxosome proteins can exist. Recently, several relaxosome proteins encoded on the Bacillus subtilis plasmid pLS20 were identified, including the relaxase, named RelpLS20, and two auxiliary DNA-binding factors, named Aux1pLS20 and Aux2pLS20. Here, we extend this characterization in order to define their function. We present the low-resolution SAXS envelope of the Aux1pLS20 and the atomic X-ray structure of the C-terminal domain of Aux2pLS20. We also study the interactions between the auxiliary proteins and the full-length RelpLS20, as well as its separate domains. The results show that the quaternary structure of the auxiliary protein Aux1pLS20 involves a tetramer, as previously determined. The crystal structure of the C-terminal domain of Aux2pLS20 shows that it forms a tetramer and suggests that it is an analog of TraMpF of plasmid F. This is the first evidence of the existence of a TraMpF analog in gram positive conjugative systems, although, unlike other TraMpF analogs, Aux2pLS20 does not interact with the relaxase. Aux1pLS20 interacts with the C-terminal domain, but not the N-terminal domain, of the relaxase RelpLS20. Thus, the pLS20 relaxosome exhibits some unique features despite the apparent similarity to some well-studied G- conjugation systems.

16.
Regen Ther ; 19: 77-87, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35097166

RESUMO

INTRODUCTION: Early postoperative regeneration of the middle ear mucosa is essential for the prevention of postoperative refractory otitis media and recurrent cholesteatoma. As a means for intractable otitis media management, we focused on human induced pluripotent stem cell (hiPSC)-derived airway epithelial cells (AECs), which have been used in upper airway mucosal regeneration and transplantation therapy. In this study, we transplanted hiPSC-derived AECs into the middle ear of immunodeficient rats. METHODS: Following the preparation of AEC sheets from hiPSCs, the bilateral middle ear mucosa of X-linked severe combined immunodeficient rats was scraped, and the AEC sheets were transplanted in the ears unilaterally. RESULTS: Human nuclear antigen (HNA)-positive ciliated cells were observed on the transplanted side of the middle ear cavity surface in three of six rats in the 1-week postoperative group and in three of eight rats in the 2-week postoperative group. No HNA-positive cells were found on the control side. The percentage of HNA-positive ciliated cells in the transplanted areas increased in the 2-week postoperative group compared with the 1-week group, suggesting survival of hiPSC-derived AECs. Additionally, HNA-positive ciliated cells were mainly located at sites where the original ciliated cells were localized. Immunohistochemical analysis showed that the transplanted AECs contained cytokeratin 5- and mucin 5AC-positive cells, indicating that both basal cells and goblet cells had regenerated within the middle ear cavity. CONCLUSIONS: The results of this study are an important first step in the establishment of a novel transplantation therapy for chronic otitis media.

17.
Gene Rep ; 26: 101503, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35071822

RESUMO

Coronaviruses are highly pathogenic and transmissible viruses. The SARS-CoV-2 virus that emerged in December 2019 is increasingly recognized as a serious, worldwide public health concern. Respiratory infections and the hyper-inflammatory response induced by SARS-CoV-2 play a key role in disease severity and death in infected COVID-19 patients. However, much uncertainty still exists about the pathogenesis and various effects of COVID-19 on immune system. It seems that memory T cells can reduce the severity of COVID-19 infection by inducing a protective immune response. Memory T cells along with protective antibodies are the main defenses and also protective barrier against recurrent COVID-19 infection. The role of Memory T cells varies in different ages and the severity of COVID-19 infection varies between children, adults and the elderly. Furthermore, the aim of this review is to evaluate the role of memory cells in mild, moderate and severe infected COVID-19 patients with different ages.

18.
Comput Struct Biotechnol J ; 20: 287-295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35024100

RESUMO

Investigations of phytoplankton responses to iron stress in seawater are complicated by the fact that iron concentrations do not necessarily reflect bioavailability. Most studies to date have been based on single species or field samples and are problematic to interpret. Here, we report results from an experimental cocultivation model system that enabled us to evaluate interspecific competition as a function of iron content and form, and to study the effect of nutritional conditions on the proteomic profiles of individual species. Our study revealed that the dinoflagellate Amphidinium carterae was able to utilize iron from a hydroxamate siderophore, a strategy that could provide an ecological advantage in environments where siderophores present an important source of iron. Additionally, proteomic analysis allowed us to identify a potential candidate protein involved in iron acquisition from hydroxamate siderophores, a strategy that is largely unknown in eukaryotic phytoplankton.

19.
Vet Anim Sci ; 14: 100222, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34917853

RESUMO

High-yield dairy cows need high energy feed during periods of increased milk production. The transitional feeding to high energy feed increases the risk of developing a variety of metabolic disorders. Here, five Holstein cows were fed a four-stage feeding protocol (3 weeks for each stage) ranging from 54.9 to 73.7% total digestive nutrients (TDN). The purpose of the study was to investigate the effect of lactic acid bacteria on high-energy-fed cows associated with transitional feeding, and to evaluate the effects of probiotics on intestinal bacterial changes and inflammatory responses. Three feed transition periods were established for five cows, and Lactobacillus plantarum RGU-LP1 (LP1) was fed as a probiotic during the high-energy feeding period. The number of lymphocyte subsets such as CD3-, CD4-, and CD8 positive cells decreased in response to the high energy feed. Lipopolysaccharide (LPS)-induced cytokine (IL-1ß and IL-2) gene expression in peripheral blood mononuclear cells (PBMCs) was shown to increase in those animals receiving the high energy feed. However, supplementation with LP1 resulted in an increase in the number of lymphocyte subsets and the expression of IL-1ß and IL-2 were returned to the level at low energy diet. These results suggest that high energy diets induce inflammatory cytokine responses following LPS stimulation, and that the addition of LP1 mitigates these results by regulating the LPS-induced inflammatory reaction. Therefore, the functional lactic acid bacteria LP1 is expected to regulate inflammation resulting from high energy feeding, and this probiotic could be applied to support inflammatory regulation in high-yield dairy cows.

20.
Biotechnol Rep (Amst) ; 32: e00691, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34934640

RESUMO

Industrial fermentation provides a wide variety of bioproducts, such as food, biofuels and pharmaceuticals. Self-cycling fermentation (SCF), an advanced automated semi-continuous fermentation approach, has shown significant advantages over batch reactors (BR); including cell synchrony and improved production. Here, Saccharomyces cerevisiae engineered to overproduce shikimic acid was grown under SCF operation. This led to four-fold increases in product yield and volumetric productivity compared to BR. Transcriptomic analyses were performed to understand the cellular mechanisms leading to these increases. Results indicate an up-regulation of a large number of genes related to the cell cycle and DNA replication in the early stages of SCF cycles, inferring substantial synchronization. Moreover, numerous genes related to gluconeogenesis, the citrate cycle and oxidative phosphorylation were significantly up-regulated in the late stages of SCF cycles, consistent with significant increases in shikimic acid yield and productivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA