Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.346
Filtrar
1.
Breast Cancer Res ; 26(1): 114, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978121

RESUMO

The protein Bcl-2, well-known for its anti-apoptotic properties, has been implicated in cancer pathogenesis. Identifying the primary gene responsible for promoting improved cell survival and development has provided compelling evidence for preventing cellular death in the progression of malignancies. Numerous research studies have provided evidence that the abundance of Bcl-2 is higher in malignant cells, suggesting that suppressing Bcl-2 expression could be a viable therapeutic approach for cancer treatment. In this study, we acquired a compound collection using a database that includes constituents from Traditional Chinese Medicine (TCM). Initially, we established a pharmacophore model and utilized it to search the TCM database for potential compounds. Compounds with a fitness score exceeding 0.75 were selected for further analysis. The Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) analysis identified six compounds with favorable therapeutic characteristics. The compounds that successfully passed the initial screening process based on the pharmacodynamic model were subjected to further evaluation. Extra-precision (XP) docking was employed to identify the compounds with the most favorable XP docking scores. Further analysis using the Molecular Mechanics Generalized Born Surface Area (MM-GBSA) method to calculate the overall free binding energy. The binding energy between the prospective ligand molecule and the target protein Bcl-2 was assessed by a 100 ns molecular dynamics simulation for curcumin and Epigallocatechin gallate (EGCG). The findings of this investigation demonstrate the identification of a molecular structure that effectively inhibits the functionality of the Bcl-2 when bound to the ligand EGCG. Consequently, this finding presents a novel avenue for the development of pharmaceuticals capable of effectively addressing both inflammatory and tumorous conditions.


Assuntos
Catequina , Curcumina , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-bcl-2 , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/química , Catequina/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Humanos , Curcumina/farmacologia , Curcumina/química , Curcumina/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Ligação Proteica , Farmacóforo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38986140

RESUMO

Enhancing the hydrophilicity and UV protective property of poly(ethylene terephthalate) (PET) fabric are two significant ways to upgrade its quality and enlarge the applicable area. Biobased finishes are greatly welcomed for the fabrication of sustainable textiles; however, their application on PET fabric is still challenging compared with the case of natural fabric. This study presents a strategy that immobilizes epigallocatechin gallate (EGCG) onto PET fabric using citric acid (CA) for durably hydrophilic and UV-proof properties with negligible color change. A controllable surface-activating method integrating alkaline and deep eutectic solvent (DES) is customized for the PET fabric to promote the reactions among PET, CA, and EGCG. The hydrophilic, antistatic, and UV protective properties of functionalized PET fabric were explored. Results show that the hydrophilicity of the PET fabric after direct EGCG treatment increases but drops sharply after first-round washing due to weak interactions. The combined alkaline/DES pretreatment increases the number of hydrophilic groups and the roughness of PET fibers. After EGCG modification, the moisture regain (MR) of PET fabric increases from 0.41 to 0.64%. The contact angle and electrostatic charge half-life (T1/2) decreases from >120 to 23°, and from >60 to 0.13 s, respectively. The MR and T1/2 are well retained after a 10-cycle washing. In addition, the UV protective factor of the PET fabric increases from 18 to 36. A very slight yellowing phenomenon occurs on the PET fabric after the treatment. In all, this research attempts to integrate a biobased finishing agent and an eco-friendly cross-linker on synthetic fiber for durable functions, which is transferrable to the sustainable fabrication of other polymeric materials such as fibers or films.

3.
Food Chem ; 459: 140381, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38991441

RESUMO

This study investigated the interaction between pea protein amyloid-like nanofibril and epigallocatechin gallate, constructed and characterized the novel pea protein nanofibrils-derived hydrogel mediated by epigallocatechin gallate, and researched the functionalities of the hydrogel. Epigallocatechin gallate remodeled the structure of pea protein nanofibrils, and a stable and strong hydrogel was formed at a relatively low protein concentration (4.5%). Additionally, the hydrogels exhibited various surface structures and hydrogel properties dependent on the mass ratio. Strongest gel strength (51 g) was attained at 0.25 epigallocatechin gallate/pea protein nanofibrils mass ratio. Whereas, the hydrogels exhibited the highest water holding capacity (87%) at 0.05 mass ratio. The primary driving forces in the formation and maintaining of the hydrogels were hydrophobic interactions and ionic bonds. Progressive rise of ß-sheet content of pea protein nanofibrils occurred increasing epigallocatechin gallate concentration. This hydrogel holds great potential for applications in food processing, targeted delivery of nutraceuticals and biomedicine.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38994622

RESUMO

BACKGROUND: The emergence of drug resistance to oxaliplatin (OXA) is one of the critical obstacles in the therapy of advanced Hepatocellular Carcinoma (HCC). As an ethyl derivative of the natural compound epigallocatechin gallate (epigallocatechin-3-gallate, EGCG), Y6 was found to be able to enhance the sensitivity of HCC cells to doxorubicin. This study aimed to investigate the effect of Y6 on oxaliplatin resistance in HCC. METHODS: MTT was used to determine the reversal effect of Y6 on OXA resistance. To further explore the reversal mechanism, we treated OXA alone or in combination with Y6 or EGCG in drugresistant cells and observed the morphological changes of the cells. At the same time, transwell assay was used to detect the invasion and migration ability of cells. Moreover, Real-time PCR and Western blot analysis were performed to determine the expression levels of the miR-338-3p gene, HIF-1α/Twist proteins, and EMT-related proteins. RESULTS: We found that Y6 could inhibit the proliferation of HCC cells and effectively reverse the drug resistance of oxaliplatin-resistant human liver cancer cells (SMMC-7721/OXA) to OXA, and the reversal effect was more significant than that of its lead drug EGCG. Most of the cells in the control group and OXA group showed typical mesenchymal-like cell morphology, while most of the cells in co-administration groups showed typical epithelioid cell morphology, and the ability of the cells to invade and migrate decreased dramatically, particularly in Y6 plus OXA group. At the same time, Y6 could up-regulate the EMT epithelial marker protein E-cadherin and down-regulate the interstitial marker protein Vimentin. In addition, in co-administration groups, the expression of miR-338-3p was up-regulated, while the expression of HIF-1α and Twist was down-regulated. CONCLUSION: Y6 significantly enhanced the susceptibility of drug-resistant cells to OXA, and the process may be related to the regulation of miR-338-3p/HIF-1α / TWIST pathway to inhibit EMT. Therefore, Y6 could be considered an effective medication resistance reversal agent, which could improve the therapeutic effect for hepatocellular cancer patients.

5.
Curr Pharm Des ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38988171

RESUMO

BACKGROUND AND AIMS: The recurrence rate of Colorectal Cancer (CRC) after cure is always high. The purpose of this study was to investigate whether green tea extract (-)-Epigallocatechin gallate (EGCG) has an effective preventive effect on the recurrence of CRC. METHODS: We conducted a systematic literature review and meta-analysis of the effects of taking EGCG or placebo on disease recurrence in patients after colon polyp removal. RESULTS: Five Randomized Controlled Trials (RCTs) were included in this review. A double-blind drug trial involving 1389 participants involved EGCG and placebo. The results showed no significant publication bias or heterogeneity in the five studies (I2 = 38%; p = 0.17). Patients taking EGCG had a lower recurrence rate of CRC than those in the placebo group. The results were statistically significant (Z=2.83, p < 0.05). CONCLUSION: This study demonstrated that long-term EGCG can prevent CRC recurrence to a certain extent.

6.
Nutrients ; 16(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999821

RESUMO

Atherosclerosis (AS) is a common clinical sickness and the major pathological basis of ischemic cardiocerebrovascular diseases (CCVDs). The pathogenesis of AS involves a variety of risk factors, and there is a lack of effective preventive and curative drugs that can completely treat AS. In recent years, with the improvement of people's living standards and changes in dietary habits, the morbidity and mortality rates of AS are on the rise, and the age of onset tends to be younger. The formation of AS is closely related to a variety of factors, and the main factors include lipid metabolism disorders, endothelial damage, inflammation, unstable plaques, etc. Epigallocatechin gallate (EGCG), as one of the main components of catechins, has a variety of pharmacological effects, and its role in the prevention of AS and the protection of cardiovascular and cerebral blood vessels has been highly valued. Recent epidemiological investigations and various in vivo and ex vivo experiments have shown that EGCG is capable of resisting atherosclerosis and reducing the morbidity and mortality of AS. In this paper, we reviewed the anti-AS effects of EGCG and its mechanisms in recent years, including the regulation of lipid metabolism, regulation of intestinal flora disorders, improvement of vascular endothelial cell functions, inhibition of inflammatory factors expression, regulation of inflammatory signaling pathways, inhibition of matrix metalloproteinase (MMP) expression, and inhibition of platelet aggregation, which are helpful for the prevention of cardiocerebrovascular diseases.


Assuntos
Aterosclerose , Catequina , Metabolismo dos Lipídeos , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/uso terapêutico , Humanos , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Metabolismo dos Lipídeos/efeitos dos fármacos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos
7.
Bull Exp Biol Med ; 177(1): 88-92, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38960956

RESUMO

We studied antimicrobial activity of epigallocatechin-3-gallate (EGCG), a green tea polyphenolic catechin, and its combined use with ceftazidime (CAZ) against bacterial strains of Klebsiella pneumoniae. EGCG exhibited no activity against strains of K. pneumoniae with a different sensitivity to CAZ. However, for a "sensitive" strain, a decrease in minimum inhibitory concentration (MIC) of CAZ (from 0.064 to 0.023 mg/liter) was revealed when CAZ was co-administered with EGCG. For a "resistant" stain, MIC of CAZ remained high, but activation of EGCG at its high concentrations was observed. Indirect evidence of antimicrobial effect of EGCG co-administered with CAZ on Klebsiella was obtained.


Assuntos
Antibacterianos , Catequina , Ceftazidima , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/química , Klebsiella pneumoniae/efeitos dos fármacos , Ceftazidima/farmacologia , Antibacterianos/farmacologia , Chá/química
8.
Cancer Cell Int ; 24(1): 200, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840243

RESUMO

Ferroptosis, an iron-dependent regulated cell death mechanism, holds significant promise as a therapeutic strategy in oncology. In the current study, we explored the regulatory effects of epigallocatechin gallate (EGCG), a prominent polyphenol in green tea, on ferroptosis and its potential therapeutic implications for non-small cell lung cancer (NSCLC). Treatment of NSCLC cell lines with varying concentrations of EGCG resulted in a notable suppression of cell proliferation, as evidenced by a reduction in Ki67 immunofluorescence staining. Western blot analyses demonstrated that EGCG treatment led to a decrease in the expression of glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) while increasing the levels of acyl-CoA synthetase long-chain family member 4 (ACSL4). These molecular changes were accompanied by an increase in intracellular iron, malondialdehyde (MDA), and reactive oxygen species (ROS), alongside ultrastructural alterations characteristic of ferroptosis. Through small RNA sequencing and RT-qPCR, transfer RNA-derived small RNA 13502 (tsRNA-13502) was identified as a significant target of EGCG action, with its expression being upregulated in NSCLC tissues compared to adjacent non-tumorous tissues. EGCG was found to modulate the ferroptosis pathway by downregulating tsRNA-13502 and altering the expression of key ferroptosis regulators (GPX4/SLC7A11 and ACSL4), thereby promoting the accumulation of iron, MDA, and ROS, and ultimately inducing ferroptosis in NSCLC cells. This study elucidates EGCG's multifaceted mechanisms of action, underscoring the modulation of ferroptosis as a viable therapeutic approach for enhancing NSCLC treatment outcomes.

9.
J Sci Food Agric ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895880

RESUMO

BACKGROUND: Recent studies have shown that the wettability of protein-based emulsifiers is critical for emulsion stability. However, few studies have been conducted to investigate the effects of varying epigallocatechin gallate (EGCG) concentrations on the wettability of protein-based emulsifiers. Additionally, limited studies have examined the effectiveness of soy protein-EGCG covalent complex nanoparticles with improved wettability as emulsifiers for stabilizing high-oil-phase (≥ 30%) curcumin emulsions. RESULTS: Soy protein isolate (SPI)-EGCG complex nanoparticles (SPIEn) with improved wettability were fabricated to stabilize high-oil-phase curcumin emulsions. The results showed that EGCG forms covalent bonds with SPI, which changes its secondary structure, enhances its surface charge, and improves its wettability. Moreover, SPIEn with 2.0 g L -1 EGCG (SPIEn-2.0) exhibited a better three-phase contact angle (56.8 ± 0.3o) and zeta potential (-27 mV) than SPI. SPIEn-2.0 also facilitated the development of curcumin emulsion gels at an oil volume fraction of 0.5. Specifically, the enhanced network between droplets as a result of the packing effects and SPIEn-2.0 with inherent antioxidant function was more effective at inhibiting curcumin degradation during long-term storage and ultraviolet light exposure. CONCLUSION: The results of the present study indicate that SPIEn with 2.0 g L -1 EGCG (SPIEn-2.0) comprises the optimum conditions for fabricating emulsifiers with improved wettability. Additionally, SPIEn-0.2 can improve the physicochemical stability of high-oil-phase curcumin emulsions, suggesting a novel strategy to design and fabricate high-oil-phase emulsion for encapsulating bioactive compounds. © 2024 Society of Chemical Industry.

10.
Bioorg Chem ; 150: 107493, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38870703

RESUMO

2. This research investigates the impact of the EGCG-CSH/n-HA/CMC composite material on bone defect repair, emphasizing its influence on macrophage polarization and osteogenic differentiation of BMSCs. Comprehensive evaluations of the composite's physical and chemical characteristics were performed. BMSC response to the material was tested in vitro for proliferation, migration, and osteogenic potential. An SD rat model was employed for in vivo assessments of bone repair efficacy. Both transcriptional and proteomic analyses were utilized to delineate the mechanisms influencing macrophage behavior and stem cell differentiation. The material maintained excellent structural integrity and significantly promoted BMSC functions critical to bone healing. In vivo results confirmed accelerated bone repair, and molecular analysis highlighted the role of macrophage M2 polarization, particularly through changes in the SIRPA gene and protein expression. EGCG-CSH/n-HA/CMC plays a significant role in enhancing bone repair, with implications for macrophage and BMSC function. Our findings suggest that targeting SIRPA may offer new therapeutic opportunities for bone regeneration.

11.
J Sci Food Agric ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38873964

RESUMO

BACKGROUND: Chronic excessive alcohol consumption can lead to alcoholic fatty liver, posing substantial health risks. l-Theanine (LTA) and epigallocatechin gallate (EGCG) in tea exert antioxidant and hepatoprotective effects. However, the combined effects of LTA and EGCG on rats with alcoholic fatty liver, and the underlying mechanisms of such effects, remain unclear. In this study, Sprague Dawley (SD) rats were fed with alcohol for 6 weeks to induce alcoholic fatty liver. Subsequently, for another 6 weeks, the rats were administered LTA (200 mg kg-1 day-1), EGCG (200 mg kg-1 day-1), or a combination of LTA with EGCG (40 mg kg-1 day-1 l-Thea +160 mg kg-1 day-1 EGCG), respectively. RESULTS: The combined use of LTA and EGCG for alcoholic fatty liver disease had more significant effects than their individual administration. This combination reduced the activity of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) as well as the levels of hepatic triglyceride (TG), malondialdehyde (MDA), and reactive oxygen species (ROS) in the rats. The combined intervention also increased hepatic superoxide dismutase (SOD) and glutathione peroxidase activity. Reductions in hepatic fat accumulation and inflammatory responses were observed. The mechanism underlying these effects primarily involved the inhibition of fatty acid synthesis and the alleviation of lipid peroxidation through the downregulation of the mRNA and protein expression of TNF-α, SREBP1c, and CYP2E1 and the upregulation of the mRNA and protein expression of ADH1, ALDH2, Lipin-1, PPARαPPARα, AMPK, and PGC-1α, thereby promoting the oxidative decomposition of fatty acids and reducing the synthesis of cholesterol and glucose. CONCLUSION: l-Theanine and EGCG appear to be able to alleviate alcoholic fatty liver by modulating lipid metabolism and ameliorating oxidative stress, indicating their potential as natural active ingredients in anti-alcoholic fatty liver food products. © 2024 Society of Chemical Industry.

12.
Plants (Basel) ; 13(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891249

RESUMO

The main units of persimmon proanthocyanidins (PAs) are composed of flavan-3-ols including epigallocatechin gallate (EGCG) and gallocatechin gallate (GCG). Precise quantification of GCG is challenging due to its trace amounts in persimmon. In this study, to establish the optimal UHPLC-Q-Exactive Orbitrap/MS technique for the determination of PAs monomer composition in persimmon fruit flesh of different astringency types, mass spectrometry and chromatographic conditions were optimized. The results showed that when operating in negative ion mode, using a T3 chromatographic column (a type of C18 column with high-strength silica), acetonitrile as the organic phase, a 0.1% mobile phase acid content, and a mobile phase flow rate of 0.2 mL/min, the chromatographic peak shape and resolution of the PAs monomer composition improved. Additionally, there was no tailing phenomenon observed in the chromatographic peaks. At the same time, the intra-day and inter-day precision, stability, and recovery of the procedure were good. The relative standard deviation (RSD) of stability was less than 5%. The intra-day precision was in the range of 1.14% to 2.36%, and the inter-day precision ranged from 1.03% to 2.92%, both of which were less than 5%. The recovery rate ranged from 94.43% to 98.59% with an RSD less than 5%. The results showed that the UHPLC-Q-Exactive Orbitrap/MS technique established in this study can not only be used for the quantification of EGCG and GCG in persimmon fruit flesh but also be suitable for analyzing other PAs monomer compositions, providing robust support for the related research on persimmon PAs.

13.
Food Chem ; 455: 139849, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823120

RESUMO

To study the effect of starch-polyphenol interaction induced by different processing methods on digestion characteristics, a dynamic in vitro human gastrointestinal system was employed to investigate the digestive characteristics of lotus seed starch-epigallocatechin gallate (EGCG) complex (LS-EGCG) prepared by different processing methods. Digestion altered crystal structure, particle size, morphology, pH, starch hydrolysis, and EGCG content. Processing broke physical barriers, reducing particle size by enzyme erosion. Enzymatic hydrolysis gradually exposed EGCG, indicated by green fluorescence. Heat and high pressure treatments enhanced starch dissolution, increasing sugar accumulation and hydrolysis. However, ultrasonic-microwave and high pressure microfluidization treatments formed dense structures, decreasing hydrolysis rates. Overall, the complex formed by high pressure microfluidization showed better enzyme resistance. The results provide a scientific basis for the development of food with quality and functional properties.


Assuntos
Catequina , Digestão , Lotus , Sementes , Amido , Lotus/química , Sementes/química , Amido/química , Amido/metabolismo , Humanos , Catequina/química , Catequina/análogos & derivados , Tamanho da Partícula , Hidrólise , Manipulação de Alimentos , Modelos Biológicos , Extratos Vegetais/química
14.
Molecules ; 29(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38893431

RESUMO

BACKGROUND: With the changes in lifestyle and diet structure, the incidence of obesity has increased year by year, and obesity is one of the inducements of many chronic metabolic diseases. Epigallocatechin gallate (EGCG), which is the most abundant component of tea polyphenols, has been used for many years to improve obesity and its complications. Though it has been reported that EGCG can improve obesity through many molecular mechanisms, EGCG may have many mechanisms yet to be explored. In this study, we explored other possible mechanisms through molecular docking and in vitro experiments. METHODS: AutoDock Vina was selected for conducting the molecular docking analysis to elucidate the interaction between EGCG and Notch1, while molecular dynamics simulations were employed to validate this interaction. Then, the new regulation mechanism of EGCG on obesity was verified with in vitro experiments, including a Western blot experiment, immunofluorescence experiment, oil red O staining, and other experiments in 3T3-L1 adipocytes. RESULTS: The molecular docking results showed that EGCG could bind to Notch1 protein through hydrogen bonding. In vitro cell experiments demonstrated that EGCG can significantly reduce the sizes of lipid droplets of 3T3-L1 adipocytes and promote UCP-1 expression by inhibiting the expression of Notch1 in 3T3-L1 adipocytes, thus promoting mitochondrial biogenesis. CONCLUSIONS: In this study, molecular docking and in vitro cell experiments were used to explore the possible mechanism of EGCG to improve obesity by inhibiting Notch1.


Assuntos
Adipogenia , Catequina , Simulação de Acoplamento Molecular , Receptor Notch1 , Animais , Camundongos , Células 3T3-L1 , Adipogenia/efeitos dos fármacos , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/química , Regulação da Expressão Gênica/efeitos dos fármacos , Simulação de Dinâmica Molecular , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Receptor Notch1/metabolismo , Proteína Desacopladora 1/metabolismo
15.
Food Res Int ; 190: 114632, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945622

RESUMO

To improve the color stability of anthocyanins (ACNs) in blueberry fermented beverage, the intermolecular copigmentation between ACNs and 3 different phenolic compounds, including (-)-epigallocatechin gallate (EGCG), ferulic acid (FA), and gallic acid (GA) as copigments, was compared in the model and the real blueberry fermented beverage, respectively. The copigmented ACNs by EGCG presented a high absorbance (0.34 a.u.) and redness (27.09 ± 0.17) in the model blueberry fermented beverage. The copigmentation by the participation of the 3 different phenolic compounds showed all a spontaneous exothermic reaction, and the Gibbs free energy (ΔG°) of the system was lowest (-5.90 kJ/mol) using EGCG as copigment. Furthermore, the molecular docking model verified that binary complexes formed between ACNs and copigments by hydrogen bonds and π-π stacking. There was a high absorbance (1.02 a.u.), percentage polymeric color (PC%, 68.3 %), and good color saturation (C*ab, 43.28) in the real blueberry fermented beverage aged for 90 days, and more malvidin-3-O-glucoside had been preserved in the wine using EGCG as copigment. This finding may guide future industrial production of blueberry fermented beverage with improved color.


Assuntos
Antocianinas , Mirtilos Azuis (Planta) , Cor , Ácidos Cumáricos , Fermentação , Ácido Gálico , Simulação de Acoplamento Molecular , Fenóis , Antocianinas/química , Mirtilos Azuis (Planta)/química , Ácidos Cumáricos/química , Ácido Gálico/química , Ácido Gálico/análogos & derivados , Fenóis/análise , Fenóis/química , Catequina/química , Catequina/análogos & derivados , Sucos de Frutas e Vegetais/análise , Frutas/química
16.
Ecotoxicol Environ Saf ; 280: 116520, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833985

RESUMO

Early studies have shown that the gut microbiota is a critical target during cadmium exposure. The prebiotic activity of epigallocatechin-3-gallate (EGCG) plays an essential role in treating intestinal inflammation and damage. However, the exact intestinal barrier protection mechanism of EGCG against cadmium exposure remains unclear. In this experiment, four-week-old mice were exposed to cadmium (5 mg kg-1) for four weeks. Through 16 S rDNA analysis, we found that cadmium disrupted the gut microbiota and inhibited the indole metabolism pathway of tryptophan (TRP), which serves as the principal microbial production route for endogenous ligands to activate the aryl hydrocarbon receptor (AhR). Additionally, cadmium downregulated the intestinal AhR signaling pathway and harmed the intestinal barrier function. Treatment with EGCG (20 mg kg-1) and the AhR agonist 6-Formylindolo[3,2-b] carbazole (FICZ) (1 µg/d) significantly activated the AhR pathway and alleviated intestinal barrier injury. Notably, EGCG partially restored the gut microbiota and upregulated the TRP-indole metabolism pathway to increase the level of indole-related AhR agonists. Our findings demonstrate that cadmium dysregulates common gut microbiota to disrupt TRP metabolism, impairing the AhR signaling pathway and intestinal barrier. EGCG reduces cadmium-induced intestinal functional impairment by intervening in the intestinal microbiota to metabolize AhR agonists. This study offers insights into the toxic mechanisms of environmental cadmium and a potential mechanism to protect the intestinal barrier with EGCG.


Assuntos
Cádmio , Catequina , Microbioma Gastrointestinal , Receptores de Hidrocarboneto Arílico , Transdução de Sinais , Triptofano , Animais , Catequina/análogos & derivados , Catequina/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Triptofano/metabolismo , Triptofano/análogos & derivados , Cádmio/toxicidade , Transdução de Sinais/efeitos dos fármacos , Masculino , Intestinos/efeitos dos fármacos , Intestinos/patologia , Camundongos Endogâmicos C57BL , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Indóis/farmacologia , Carbazóis/farmacologia
17.
J Clin Med ; 13(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38930126

RESUMO

Background: Human papilloma virus (HPV) infection and the management of its persistence is still a great medical challenge. Recently, scientific evidence has supported the potential therapeutic effects of four combined natural molecules-epigallocatechin gallate (EGCG), folic acid, vitamin B12 and hyaluronic acid (HA)-in counteracting HPV DNA positivity and related cytological lesions. Methods: Each patient of these five clinical cases had persistent HPV positivity in the anogenital site and assumed a dietary supplement based on a combination of 200 mg of EGCG, 50 mg of HA, 1 mg of vitamin B12 and 400 mcg of folic acid (Pervistop®, Farmares s.r.l., Rome, Italy) at a dosage of 1 or 2 caps/day for 6 or 3 months, respectively, depending on clinical history. Results: After treatment, all the patients reported a negative HPV DNA test and improved cytological lesions, thus demonstrating the ability of these combined molecules to counteract both anal and cervical HPV infection and related manifestations. Conclusions: Overall, these data corroborate previous evidence about the effectiveness of such natural molecules in the management of HPV infection and its persistence. Naturally, further studies with a larger population and long-term follow-up will contribute to reinforce the positive effects of this dietary supplement in counteracting HPV infection.

18.
Foods ; 13(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38928876

RESUMO

Modern functional foods are designed to provide health benefits beyond basic nutrition. They are enriched with bioactive ingredients like probiotics, vitamins, minerals, and antioxidants. These foods support overall health, enhance immune function, and help prevent chronic diseases. Milk proteins and tea are known to influence satiety and regulate body weight. Studies have shown that green tea polyphenols, namely, (-)-epigallocatechin gallate (EGCG), and whey proteins, predominantly lactoferrin (LF) from milk, play a role in regulating satiety. This study aims to investigate the effect of conjugating EGCG with apo-lactoferrin (Apo-LF) and assessing these effects on satiety through monitoring glucagon-like peptide-1 (GLP-1) regulation in a human colon (NCI-H716) cell line. Apo-LF-EGCG conjugates were synthesized and characterized in terms of structural and functional properties. The effect on GLP-1 regulation was assessed by real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) to monitor gene and protein expressions, respectively. The results revealed that the protein-polyphenol interaction occurs through the complex formation of hydrogen bonds at the O-H and carbonyl groups of EGCG. The conjugates also showed a significant up-regulation of gene and protein expression levels of GLP-1 while also preventing EGCG from degradation, thereby preserving its antioxidant properties. The Apo-LF-EGCG conjugates increase satiety via increasing GLP-1 secretion in human colon cells while simultaneously retaining the antioxidant properties of EGCG. Therefore, these conjugates show potential for use as dietary supplements to enhance satiety.

19.
J Neuroimmune Pharmacol ; 19(1): 31, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38886223

RESUMO

Neuroinflammation is a key factor in cognitive dysfunction and neurodegenerative diseases such as Alzheimer's disease (AD), so inhibiting neuroinflammation is considered as a potential treatment for AD. Epigallocatechin-3-gallate (EGCG), a polyhydroxyphenol of green tea, has been found to exhibit anti-oxidative, anti-inflammatory and neuroprotective effects. The aim of this study was to investigate the inhibitory effect of EGCG on inflammation and its mechanism. In this study, BV2 cells were simultaneously exposed to lipopolysaccharides (LPS) and the amyloid-ß oligomer (AßO) to induce inflammatory microenvironments. Inflammatory cytokines and NLRP3 inflammasome-related molecules were detected by RT-PCR and Western Blot. The results show that EGCG inhibits LPS/AßO-induced inflammation in BV2 cells through regulating IL-1ß, IL-6, and TNF-α. Meanwhile, EGCG reduces the activation of the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome and levels of intracellular ROS in BV2 cells treated with LPS/AßO by affecting the mitochondrial membrane potential (MMP). Further research found that EGCG inhibited MMP through regulating thioredoxin-interacting protein (TXNIP) in LPS/AßO-induced neuroinflammation. In conclusion, EGCG may alleviate LPS/AßO-induced microglial neuroinflammation by suppressing the ROS/ TXNIP/ NLRP3 pathway. It may provide a potential mechanism underlying the anti-inflammatory properties of EGCG for alleviating AD.


Assuntos
Peptídeos beta-Amiloides , Proteínas de Transporte , Catequina , Lipopolissacarídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doenças Neuroinflamatórias , Espécies Reativas de Oxigênio , Transdução de Sinais , Catequina/análogos & derivados , Catequina/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipopolissacarídeos/toxicidade , Animais , Peptídeos beta-Amiloides/toxicidade , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Transporte/metabolismo , Transdução de Sinais/efeitos dos fármacos , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Linhagem Celular , Tiorredoxinas/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo
20.
Environ Pollut ; 356: 124364, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878811

RESUMO

The widespread use of chlorine-based disinfectants in drinking water treatment has led to the proliferation of chlorine-resistant bacteria and the risk of disinfection byproducts (DBPs), posing a serious threat to public health. This study aims to explore the effectiveness and potential applications of epigallocatechin gallate (EGCG) against chlorine-resistant Bacillus and its spores in water, providing new insights for the control of chlorine-resistant bacteria and improving the biological stability of distribution systems. The inactivation effects of EGCG on Bacillus subtilis (B. subtilis) and its spores were investigated using transmission electron microscopy, ATP measurement, and transcriptome sequencing analysis to determine changes in surface structure, energy metabolism, and gene expression levels, thereby elucidating the inactivation mechanism. The results demonstrate the potential application of EGCG in continuously inhibiting chlorine-resistant B. subtilis in water, effectively improving the biological stability of the distribution system. However, EGCG is not suitable for treating raw water with high spore content and is more suitable as a supplementary disinfectant for processes with strong spore removal capabilities, such as ozone, ultraviolet, or ultrafiltration. EGCG exhibits a disruptive effect on the morphological structure and energy metabolism of B. subtilis and suppresses the synthesis of substances, energy metabolism, and normal operation of the antioxidant system by inhibiting the expression of multiple genes, thereby achieving the inactivation of B. subtilis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA