Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Front Pharmacol ; 15: 1447677, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39130633

RESUMO

Edible fungus polysaccharides have garnered significant attention from scholars due to their safety and potential anti-inflammatory activity. However, comprehensive summaries of their anti-inflammatory properties are still rare. This paper provides a detailed overview of the anti-inflammatory effects and mechanisms of these polysaccharides, as well as their impact on inflammation-related diseases. Additionally, the relationship between their structure and anti-inflammatory activity is discussed. It is believed that this review will greatly enhance the understanding of the application of edible fungus polysaccharides in anti-inflammatory treatments, thereby significantly promoting the development and utilization of edible fungi.

2.
Sci Rep ; 14(1): 18588, 2024 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127740

RESUMO

True morels (Morchella) are globally renowned medicinal and edible mushrooms. White mold disease caused by fungi is the main disease of Morchella, which has the characteristics of wide incidence and strong destructiveness. The disparities observed in the isolation rates of different pathogens indicate their varying degrees of host adaptability and competitive survival abilities. In order to elucidate its potential mechanism, this study, the pathogen of white mold disease from Dafang county, Guizhou Province was isolated and purified, identified as Pseudodiploöspora longispora by morphological, molecular biological and pathogenicity tests. Furthermore, high-quality genome of P. longisporus (40.846 Mb) was assembled N50 of 3.09 Mb, predicts 7381 protein-coding genes. Phylogenetic analysis of single-copy homologous genes showed that P. longispora and Zelopaecilomyces penicillatus have the closest evolutionary relationship, diverging into two branches approximately 50 (44.3-61.4) MYA. Additionally, compared with the other two pathogens causing Morchella disease, Z. penicillatus and Cladobotryum protrusum, it was found that they had similar proportions of carbohydrate enzyme types and encoded abundant cell wall degrading enzymes, such as chitinase and glucanase, indicating their important role in disease development. Moreover, the secondary metabolite gene clusters of P. longispora and Z. penicillatus show a high degree of similarity to leucinostatin A and leucinostatin B (peptaibols). Furthermore, a gene cluster with synthetic toxic substance Ochratoxin A was also identified in P. longispora and C. protrusum, indicating that they may pose a potential threat to food safety. This study provides valuable insights into the genome of P. longispora, contributing to pathogenicity research.


Assuntos
Genoma Fúngico , Genômica , Filogenia , Genômica/métodos , Ascomicetos/genética , Ascomicetos/patogenicidade , Ascomicetos/isolamento & purificação , Evolução Molecular , Proteínas Fúngicas/genética
3.
Int J Food Microbiol ; 425: 110872, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39163813

RESUMO

This study aimed to determine the compatibility of pre-fermented sugar beet pulp to support the growth of Pleurotus ostreatus mycelium in submerged fermentation. The goal was to create a meat alternative based on mycelial-fermented pulp. It was further explored whether pre-fermentation with lactic acid bacteria (LAB) on the pulp increased meat-like properties, such as aroma, springiness, and hardness, in the final product. Three strains were selected from a high throughput screening of 105 plant-derived LAB based on their acidification and metabolite production in the pulp. Two homofermentative strains (Lactococcus lactis) and one heterofermentative strain (Levilactobacillus brevis) were selected based on their low ethanol production, high lactic acid production, and overall acidification of the pulp. Mycelium of P. ostreatus was grown in submerged fermentations on the pre-fermented pulp, and the biomass was removed by centrifugation. The fungal strain consumed all available sugars and acids and released arabinose to the media. Volatiles were detected using GC-MS, and a large increase in concentrations of hexanal, 1-octen-3-ol, and 2-octenal was measured. Concentration of 1-octen-3-ol was lower in the pre-fermented samples vs. the non-pre-fermented. LC-MS amino acid analysis showed the presence of all essential amino acids on day 0 and 7 of fermentation. The highest concentration of amino acids was for glutamic acid/glutamine and aspartic acid/asparagine. A decrease in all amino acids after 7 days of fungal fermentation was measured for all fermentations. The decrease was more significant for pre-fermented samples. This was also confirmed through a total protein determination, except for samples pre-fermented with Lactococcus lactis strain NFICC142 which increased in total protein content after fungal fermentation. The protein digestibility increased after fungal fermentation, and the highest increase was seen for non-pre-fermented samples. The springiness of the fermented product indicated similarities to meat alternatives, while the hardness was much lower than other meat alternatives. The results indicate that dried sugar beet pulp can be used for submerged cultivation of P. ostreatus, but that pre-fermentation does not improve the physical or nutritional properties of the end product significantly, except for an increased protein content for NFICC142 pre-fermented media. This is the first known attempt to use LAB and P. ostreatus in mixed fermentation to produce fungal mycelium, as well as the first attempt at using SBP in a liquid fermentation for mycelial production of P. ostreatus.

4.
MycoKeys ; 107: 21-50, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39036777

RESUMO

Four new species of Russulasubsect.Cyanoxanthinae, viz. Russulaatrochermesina Y.L. Chen & J.F. Liang, R.lavandula Y.L. Chen, B. Chen & J.F. Liang, R.lilaceofusca Y.L. Chen & J.F. Liang and R.perviridis Y.L. Chen, B. Chen & J.F. Liang, from China are proposed, based on morphological and molecular evidence. Russulaatrochermesina can be distinguished by its violet pileus with tuberculate-striate margin, distant lamellae that stain greyish-yellow when bruised, basidiospores ornamented by isolated warts, wide hymenial cystidia on lamellae edges, cystidia content negative reaction in sulphovanillin and branched subterminal cells in pileipellis. Russulalavandula has a purplish-white to violet red pileus with a yellow centre, frequently present lamellulae and furcations, stipe often with pale yellow near the base, isolated basidiospores ornamentation and unbranched cuticular hyphal terminations, while R.lilaceofusca is characterised by its lilac brown to dark brown pileus, crowded lamellae with lamellulae and furcations, stipe often turning reddish-yellow when bruised, subreticulate basidiospores ornamentation and clavate hymenial cystidia often with capitate appendage whose contents that change to reddish-black in sulphovanillin. Russulaperviridis is characterised by its large basidiomata, smooth pileus surface, frequently present lamellulae and furcations, stipe with yellow-brown tinge, globose to broadly ellipsoid basidiospores with subreticulate ornamentation, long hymenial cystidia that turn greyish-black in sulphovanillin and symbiotic with Quercussemecarpifolia. Phylogenetic analyses, based on multi-gene ITS+LSU+mtSSU+rpb2, indicate that R.atrochermesina, R.lavandula, R.lilaceofusca and R.perviridis are closely related to R.pallidirosea and R.purpureorosea, R.banwatchanensis, R.lakhanpalii and R.nigrovirens, respectively.

5.
J Ethnobiol Ethnomed ; 20(1): 66, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003490

RESUMO

BACKGROUND: In the intricate tapestry of food security, wild food species stand as pillars, nourishing millions in low-income communities, and reflecting the resilience and adaptability of human societies. Their significance extends beyond mere sustenance, intertwining with cultural traditions and local knowledge systems, underscoring the importance of preserving biodiversity and traditional practices for sustainable livelihoods. METHODS: The present study, conducted between February 2022 and August 2023 along the Line of Control in India's Kashmir Valley, employed a rigorous data collection encompassing semi-structured interviews, focus group discussions, and specific field observations facilitated through a snowball sampling technique. RESULTS AND DISCUSSION: The comprehensive inventory includes 108 edible plant and fungal species from 48 taxonomic families, with Rosaceae (N = 11) standing out. Young and soft leaves (N = 60) are an important component of various culinary preparations, with vegetables (N = 65) being the main use, followed by fruits (N = 19). This use is seasonal, with collection peaks in March-April and June-August (N = 12). The study also highlights the importance of use value (UV), with Portulaca oleracea standing out as the plant taxon (UV = 0.61), while Asyneuma thomsoni has the lowest use value (UV = 0.15). Many species such as Senecio chrysanthemoides, Asperugo procumbens, Asyneuma thomsoni, and Potentilla nepalensis were classified as new for gastronomic use. Furthermore, the study underlines the great cultural importance of mushrooms such as Morchella esculenta and Geopora arenicola in influencing social hierarchies within the community. However, the transmission of traditional knowledge across generations is declining in the region. At the same time, the conservation of endangered plant species on the IUCN Red List, such as Trillium govanianum, Taxus wallichiana, Saussurea costus, and Podophyllum hexandrum, requires immediate attention. CONCLUSION: Conservation measures should be prioritized, and proactive remedial action is needed. Further research into the nutritional value of these edible species could pave the way for their commercial cultivation, which would mean potential economic growth for local communities, make an important contribution to food security in the area under study, and contribute to scientific progress.


Assuntos
Etnobotânica , Plantas Comestíveis , Índia , Plantas Comestíveis/classificação , Humanos , Culinária , Conhecimento , Frutas , Masculino , Verduras , Feminino , Himalaia
6.
Microorganisms ; 12(7)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39065144

RESUMO

Lactarius hatsudake Tanaka is a mycorrhizal edible mushroom with an appealing taste and rich nutrition. It is also a significant food and has medicinal value. In this study, the plantation of L. hatsudake during the harvest period was taken as the research object, and this article explores which bacteria in the soil contribute to the production and growth of L. hatsudake. The soil of the control (CK) and the soil of the mushroom-producing area [including the soil of the base of the mushroom (JT) and the mycorrhizal root soil (JG)] was collected in the plantation. The three sites' bacterial community structure and soil diversity were analyzed using high-throughput sequencing technology, and a molecular ecological network was built. Soil bacteria in the L. hatsudake plantation had 28 tribes, 74 classes, 161 orders, 264 families, 498 genera, and 546 species. The dominant phyla were Proteobacteria and Acidobacteria, and the dominant genera were Burkholderia_Caballeronia_Paraburkholderia, Acidothermus, Bradyrhizobium, Candidatus_Xiphinematobacter, and Granulicella. The α-diversity of soil bacteria in JT was significantly lower than that in JG and CK, and the ß-diversity in JT samples was significantly different from that in JG and CK samples. The size and complexity of the constructed network were smaller in JT samples than in JG and CK samples, and the stability was higher in JT samples than in JG and CK samples. The positive correlation between species in JT samples was dominant. The potential mycorrhizal helper bacteria (MHB) species of L. hatsudake was determined using correlation and differential group analysis. The results support future research on mycorrhizal synthesis, plantation management, and the function of microorganisms in the soil rhizosphere of L. hatsudake.

7.
J Environ Sci Health B ; 59(8): 483-496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38853697

RESUMO

Selected wild-growing edible fungi (Boletus edulis, Neoboletus luridiformis, Cantharellus cibarius, Macrolepiota procera, Amanita rubescens, Russula virescens, Lycoperdon perlatum, and Flammulina velutipes) along with the poisonous medicinal species Amanita muscaria were collected from five sites in the Bohemian Forest, the Czech Republic and analyzed regarding the contents of 19 elements (Ag, Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, Li, Mg, Mn, Ni, Pb, Rb, Se, Tl, and Zn) in their fruiting bodies. The contents of the elements as well as bioconcentration factors (ratios of the element content in dry matter of the mushroom to the content in the soil; BCF) were significantly species dependent. In general, the analysis revealed the most intensive accumulation of Cd, Rb, Ag, Cu, Se, and Zn in the studied mushrooms. B. edulis accumulated Ag, Se, Cd, Rb, Cu, and Zn with average BCF of 31, 25, 18, 13, 3.9, and 2.6, respectively. On the other hand, A. rubescens accumulated Cd, Rb, Ag, Cu, Zn, and As (BCF of 41, 27, 4.8, 3.3, 2.1, and 1.4). The data concerning the detrimental elements in sporocarps of edible mushrooms indicate no negative effect on human health if the fungi are consumed occasionally or as a delicacy.


Assuntos
Agaricales , Florestas , Carpóforos , República Tcheca , Carpóforos/metabolismo , Carpóforos/química , Carpóforos/crescimento & desenvolvimento , Agaricales/metabolismo , Agaricales/química , Oligoelementos/análise , Oligoelementos/metabolismo , Monitoramento Ambiental
8.
Front Nutr ; 11: 1404138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860159

RESUMO

Edible fungi has certain photo-sensitivity during the mushroom emergence stage, but there has been few relevant studies on the responses of Lyophyllum decastes to different light quality. L. decastes were planted in growth chambers with different light qualities that were, respectively, white light (CK), monochromatic red light (R), monochromatic blue light (B), mixed red and blue light (RB), and the mixture of far-red and blue light (FrB). The photo-sensitivity of L. decastes was investigated by analyzing the growth characteristics, nutritional quality, extracellular enzymes as well as the light photoreceptor genes in mushroom exposed to different light treatments. The results showed that R led to mycelium degeneration, fungal skin inactivation and failure of primordial formation in L. decastes. The stipe length, stipe diameter, pileus diameter and the weight of fruiting bodies exposed to RB significantly increased by 8.0, 28.7, 18.3, and 58.2% respectively, compared to the control (p < 0.05). B significantly decreased the stipe length and the weight of fruiting body, with a decrease of 8.5 and 20.2% respectively, compared to the control (p < 0.05). Increased color indicators and deepened simulated color were detected in L. decastes pileus treated with B and FrB in relative to the control. Meanwhile, the expression levels of blue photoreceptor genes such as WC-1, WC-2 and Cry-DASH were significantly up-regulated in mushroom exposed to B and FrB (p < 0.05). Additionally, the contents of crude protein and crude polysaccharide in pileus treated with RB were, respectively, increased by 26.5 and 9.4% compared to the control, while those in stipes increased by 5.3 and 58.8%, respectively. Meanwhile, the activities of extracellular enzyme such as cellulase, hemicellulase, laccase, manganese peroxidase, lignin peroxidase and amylase were significant up-regulated in mushroom subjected to RB (p < 0.05), which may promote the degradation of the culture materials. On the whole, the largest volume and weight as well as the highest contents of nutrients were all detected in L. decastes treated with RB. The study provided a theoretical basis for the regulation of light environment in the industrial production of high quality L. decastes.

9.
Foods ; 13(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38790854

RESUMO

Edible fungi are well known for their rich nutrition and unique flavor. However, their post-harvest shelf-life is relatively short, and effective post-harvest preservation techniques are crucial for maintaining their quality. In recent years, many new technologies have been used for the preservation of edible fungi. These technologies include cold plasma treatment, electrostatic field treatment, active packaging, edible coatings, antimicrobial photodynamic therapy, and genetic editing, among others. This paper reviews the new methods for post-harvest preservation of mainstream edible fungi. By comprehensively evaluating the relative advantages and limitations of these new technologies, their potential and challenges in practical applications are inferred. The paper also proposes directions and suggestions for the future development of edible fungi preservation, aiming to provide reference and guidance for improving the quality of edible fungi products and extending their shelf-life.

10.
Plant Foods Hum Nutr ; 79(2): 308-315, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639852

RESUMO

In food industry, the characteristics of food substrate could be improved through its bidirectional solid-state fermentation (BSF) by fungi, because the functional components were produced during BSF. Six edible fungi were selected for BSF to study their effects on highland barley properties, such as functional components, antioxidant activity, and texture characteristics. After BSF, the triterpenes content in Ganoderma lucidum and Ganoderma leucocontextum samples increased by 76.57 and 205.98%, respectively, and the flavonoids content increased by 62.40% (Phellinus igniarius). Protein content in all tests increased significantly, with a maximal increase of 406.11% (P. igniarius). Proportion of indispensable amino acids increased significantly, with the maximum increase of 28.22%. Lysine content increased largest by 437.34% to 3.310 mg/g (Flammulina velutipes). For antioxidant activity, ABTS radical scavenging activity showed the maximal improvement, with an increase of 1268.95%. Low-field NMR results indicated a changed water status of highland barley after fermentation, which could result in changes in texture characteristics of highland barley. Texture analysis showed that the hardness and chewiness of the fermented product decreased markedly especially in Ganoderma lucidum sample with a decrease of 77.96% and 58.60%, respectively. The decrease indicated a significant improvement in the taste of highland barley. The results showed that BSF is an effective technology to increase the quality of highland barley and provide a new direction for the production of functional foods.


Assuntos
Antioxidantes , Fermentação , Ganoderma , Hordeum , Hordeum/química , Antioxidantes/análise , Antioxidantes/metabolismo , Ganoderma/química , Ganoderma/metabolismo , Flavonoides/análise , Aminoácidos/análise , Aminoácidos/metabolismo , Flammulina/química , Flammulina/metabolismo , Reishi/metabolismo , Reishi/química , Manipulação de Alimentos/métodos
11.
Sci Rep ; 14(1): 9903, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688964

RESUMO

The edible fungus industry is one of the pillar industries in the Yunnan-Guizhou Plateau, China. The expansion of the planting scale has led to the release of various mushroom residues, such as mushroom feet, and other wastes, which are not treated adequately, resulting in environmental pollution. This study investigated the ability of black soldier fly (Hermetia illucens L.) larvae (BSFL) to degrade mushroom waste. Moreover, this study analyzed changes in the intestinal bacterial community and gene expression of BSFL after feeding on mushroom waste. Under identical feeding conditions, the remaining amount of mushroom waste in Pleurotus ostreatus treatment group was reduced by 18.66%, whereas that in Flammulina velutipes treatment group was increased by 31.08%. Regarding gut microbial diversity, compared with wheat bran-treated control group, Dysgonomonas, Providencia, Enterococcus, Pseudochrobactrum, Actinomyces, Morganella, Ochrobactrum, Raoultella, and Ignatzschineria were the most abundant bacteria in the midgut of BSFL in F. velutipes treatment group. Furthermore, Dysgonomonas, Campylobacter, Providencia, Ignatzschineria, Actinomyces, Enterococcus, Morganella, Raoultella, and Pseudochrobactrum were the most abundant bacteria in the midgut of BSFL in P. ostreatus treatment group. Compared with wheat bran-treated control group, 501 upregulated and 285 downregulated genes were identified in F. velutipes treatment group, whereas 211 upregulated and 43 downregulated genes were identified in P. ostreatus treatment group. Using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses, we identified 14 differentially expressed genes (DEGs) related to amino sugar and nucleotide sugar metabolism in F. velutipes treatment group, followed by 12 DEGs related to protein digestion and absorption. Moreover, in P. ostreatus treatment group, two DEGs were detected for fructose and mannose metabolism, and two were noted for fatty acid metabolism. These results indicate that feeding on edible mushroom waste can alter the intestinal microbial community structure of BSFL; moreover, the larval intestine can generate a corresponding feedback. These changes contribute to the degradation of edible mushroom waste by BSFL and provide a reference for treating edible mushroom waste using BSFL.


Assuntos
Agaricales , Microbioma Gastrointestinal , Larva , Pleurotus , Animais , Larva/microbiologia , Pleurotus/metabolismo , Agaricales/metabolismo , Agaricales/genética , Biodegradação Ambiental , Dípteros/microbiologia , Dípteros/metabolismo , Flammulina/metabolismo , Flammulina/genética , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação
12.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 988-1001, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658143

RESUMO

The CRISPR/Cas9 gene editing system is a versatile technology for modifying gene, playing a crucial role in the study of functional genes and genetic breeding of plants, animals, fungi, and microorganisms. This review provides a comprehensive analysis of the application of this technology in gene research and genetic breeding of edible fungi. The review covers various aspects, including the delivery and expression strategies of Cas9 and sgRNA, genetic transformation methods, mutant screening, and repair strategies for target sites following DNA double-strand breaks. Additionally, the review summarizes the main challenges and optimization strategies associated with the application of this technology in edible fungi. Lastly, the future application potential of this technology in edible fungi research is discussed, drawing from the authors' personal research background.


Assuntos
Sistemas CRISPR-Cas , Fungos , Edição de Genes , Edição de Genes/métodos , Fungos/genética , RNA Guia de Sistemas CRISPR-Cas/genética
13.
Bioresour Technol ; 399: 130577, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479624

RESUMO

This study aimed to enhance the production of mycelium biomass and exopolysaccharides (EPS) of Pleurotus ostreatus in submerged fermentation. Response Surface Methodology (RSM)sought to optimize culture conditions, whereas Artificial Neural Network (ANN)aimed to predict the mycelium biomass and EPS. After optimization of RSM model conditions, the maximum biomass (36.45 g/L) and EPS (6.72 g/L) were obtained at the optimum temperature of 22.9 °C, pH 5.6, and agitation of 138.9 rpm. Further, the Genetic Algorithm (GA) was employed to optimize the cultivation conditions in order to maximize the mycelium biomass and EPS production. The ANN model with an optimized network structure gave the coefficient of determination (R2) value of 0.99 and the least mean squared error of 1.9 for the validation set. In the end, a graphical user interface was developed to predict mycelium biomass and EPS production.


Assuntos
Pleurotus , Biomassa , Redes Neurais de Computação , Micélio , Fermentação , Meios de Cultura
14.
Food Chem X ; 22: 101288, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524779

RESUMO

Composition and content of volatiles, the important factors in flavor formation of edible fungi, are affected by growth process. GC-MS was performed and a total of 102 volatiles were identified in Phallus impudicus. Almost all identified volatile compounds showed an obvious upward trend at four growth period, and reached the maximum at fourth stage (PIII), of which the transition from first stage (ZP) to second stage (PI) achieved a breakthrough for 88 volatile compounds from scratch. The PCA and HCA results showed that the four stages were completely separated and appeared different, among which third stage (PII) and PIII might be the two dramatic change nodes in aroma quality. In addition, the top 50 differential metabolites were screened by OPLS-DA and PLS-DA, and correlation analysis showed that 6-undecyl alcohol, α-terpine-7-al, 2, 4-decenol, and 2-cyano-2-ethyl-butanamide, might co-regulate the flavor formation of Phallus impudicus through synergistic action of other chemical components.

15.
Appl Microbiol Biotechnol ; 108(1): 268, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506962

RESUMO

The increasing and diversified use of rare earth elements (REE) is considered a potential source of pollution of environmental media including soils. This work documents critically overview data on the occurrence of REE in the fruiting bodies of wild and farmed species of edible and medicinal mushrooms, as this was identified as the largest published dataset of REE occurrence in foodstuff. Most of the literature reported occurrences of cerium (Ce) and lanthanum (La), but a number of studies lacked data on all lanthanides. The Ce, La, and summed REE occurrences were assessed through the criteria of environmental geochemistry, analytical chemistry, food toxicology, mushroom systematics, and ecology. Ce and La accumulate similarly in fruiting bodies and are not fractionated during uptake, maintaining the occurrence patterns of their growing substrates. Similarly, there is no credible evidence of variable REE uptake because the evaluated species data show natural, unfractionated patterns in accordance with the Oddo-Harkins' order of environmental lanthanide occurrence. Thus, lithosphere occurrence patterns of Ce and La as the first and the third most abundant lanthanides are reflected in wild and farmed mushrooms regardless of substrate and show that Ce is around twice more abundant than La. The current state of knowledge provides no evidence that mushroom consumption at these REE occurrence levels poses a health risk either by themselves or when included with other dietary exposure. Macromycetes appear to bio-exclude lanthanides because independently reported bioconcentration factors for different species and collection sites, typically range from < 1 to 0.001. This is reflected in fruiting body concentrations which are four to two orders of magnitude lower than growing substrates. KEY POINTS: •Original REE occurrence patterns in soils/substrates are reflected in mushrooms •No evidence for the fractionation of REE during uptake by fungi •Mushrooms bio-exclude REE in fruiting bodies.


Assuntos
Agaricales , Cério , Metais Terras Raras , Lantânio , Solo
16.
Heliyon ; 10(3): e25115, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317964

RESUMO

This study aimed to evaluate the postharvest characteristics of edible fresh white shimeji mushrooms under different UV-C radiation doses. The experimental design used was fully randomized, in a 5 × 8 factorial scheme (UV-C radiation dose: 0 (control), 1, 2, 3, and 4 kJ m-2 x day of analysis), with 3 replications of 70 ± 1 g mushrooms each. After exposure to different doses, they were stored at 2 ± 0.5 °C and 60 ± 3.8 % RH. Data were subjected to permutational multivariate analysis (PERMANOVA) (p ≤ 0.05). There was no significance for interaction, nor the factor day, only for the UV-C radiation doses factor. Regarding PCA, among the doses applied, the dose of 2 kJ m-2 was effective in maintaining the quality of mushrooms with greater lightness, greater whiteness index, a greater amount of total extractable polyphenols, and total antioxidant activity. In conclusion, the dose of 2 kJ m-2 was effective in maintaining the postharvest quality of white shimeji mushrooms.

17.
Front Microbiol ; 15: 1292824, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414775

RESUMO

Contamination with multiple mycotoxins is a major issue for global food safety and trade. This study focused on the degradation of aflatoxin B1 (AFB1) and zearalenone (ZEN) by 8 types of edible fungi belonging to 6 species, inclulding Agaricus bisporus, Agrocybe cylindracea, Cyclocybe cylindracea, Cyclocybe aegerita, Hypsizygus marmoreus and Lentinula edodes. Among these fungi, Agrocybe cylindracea strain GC-Ac2 was shown to be the most efficient in the degradation of AFB1 and ZEN. Under optimal degradation conditions (pH 6.0 and 37.4°C for 37.9 h), the degradation rate of both AFB1 and ZEN reached over 96%. Through the analysis of functional detoxification components, it was found that the removal of AFB1 and ZEN was primarily degraded by the culture supernatant of the fungus. The culture supernatant exhibited a maximum manganese peroxidase (MnP) activity of 2.37 U/mL. Interestingly, Agrocybe cylindracea strain GC-Ac2 also showed the capability to degrade other mycotoxins in laboratory-scale mushroom substrates, including 15A-deoxynivalenol, fumonisin B1, B2, B3, T-2 toxin, ochratoxin A, and sterigmatocystin. The mechanism of degradation of these mycotoxins was speculated to be catalyzed by a complex enzyme system, which include MnP and other ligninolytic enzymes. It is worth noting that Agrocybe cylindracea can degrade multiple mycotoxins and produce MnP, which is a novel and significant discovery. These results suggest that this candidate strain and its enzyme system are expected to become valuable biomaterials for the simultaneous degradation of multiple mycotoxins.

18.
Plant Dis ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173256

RESUMO

As an important edible mushroom, morel mushroom (Morchella spp.) has been widely spread and cultivated in China. However, between 2022 and 2023, a rot disease with a natural incidence of 28% occurred in morel mushroom farms in the Qingpu district of Shanghai (N30°97', E121°06'), China. High temperatures (>20℃) and high humidity (>70%) provide conditions conducive to the spread of this disease. First, a small white mold-like symptoms appeared on the surface or the pinnacle of pileus. The tissues in the infected parts stop growing and developing.Then the lesion developed to encircle the pileus and spread gradually to the stipe, seriously affecting its yield and quality. The infected tissue of morel fruiting body at the edge of the lesions was isolated and cultivated on potato dextrose agar (PDA) at 28℃ in the dark. After 3 days, monospore cultures formed black cottony colonies. In order to reliably identify, isolates were transferred to Czapek Yeast Autolysate agar (CYA) (Samson et al, 2014). On CYA fungal colonies consisted of a white mycelium, covered by a layer of black conidiophores. Scanning electron microscope analysis revealed that mature mycelia produced conidiophores ended with numerous metula and phialides. The phialides showed the number of conidia bearing rounded spores, which coincides with previous research(Silva et al, 2020). To confirm the identity of the pathogen, the genomic fragments for the internal transcribed spacer (ITS), beta-microtubulin (BenA), calmodulin (CaM), and RNA polymerase II second largest subunit (RPB2) gene of the isolate were amplified by PCR (White et al. 1990; Glass et al. 1995; Hong et al. 2005; Liu et al. 1999). The resulting sequence was deposited in GenBank with accession OQ931346.1, OR393310, OR393311, and OR393312, respectively. PCR results and morphological observations indicated the isolated strain was a pure culture and the strain was designated as MOR02. Comparison results indicated that the sequences with accession numbers KF305756.1, MK450794.1, HQ285594.1, and HQ285594.1 have high identity with the molecular sequences of A. niger MOR02, which is 99%, 98%, 98%, 99%, respectively. Phylogenetic analysis with ITS and RBP2 genes of the isolated strain and 9 Aapergillus spp. strains were performed using MEGAX software with Neighbor-Joining (NJ) method. Based on the results of growth habits, morphological observations, and phylogenetic analysis, the pathogen was identified as A. niger. A spore suspension of the A. niger strain MOR02 (1 x107 conidia/mL) was inoculated back to healthy morel mushrooms. Five healthy fruit bodies of M. sextelata were injected, and another five healthy morels were treated with potato dextrose broth(PDB) medium as controls. Morels were incubated for 7 days at 20℃ and 85% to 90% relative humidity. The pathogen successfully infected the morel showing a similar white mold-like lesion as the natural occurrence disease. The controls remained healthy without any symptoms. The pathogen was reisolated from the affected lesions and identified as A. niger MOR02 based on its morphological characteristics and phylogenetic marker genes. To our knowledge, this is the first report of A. niger causing rot disease of M. sextelata. This study confirms that A. niger is the pathogenic fungus causing morel rot on the Qingpu farm in Shanghai. The disease occurs under conditions of high humidity and high-temperature conditions. Better production management is the most important to prevent the disease.

19.
Plant Dis ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38190362

RESUMO

Sparassis crispa, also known as cauliflower mushroom, is a new popularly edible mushroom in China, also a medicinal mushroom, which possesses various biological activities, such as immunopotentiation, anti-diabetes, anti-cancer, and anti-inflammatory effects. (Han et al., 2018). In recent years, the artificial cultivation of S. crispa has gained considerable public attention in China. In 2023, approximately 20% of S. crispa (about 0.05 ha of the planting area) showed obvious rot with white molds symptoms in mushroom hothouse, located in Shuangliu county, Sichuan province, China (GPS, 104°7'51"N, 30°25'2"E). Infected fruiting bodies were covered by white mycelia that later turned red or fuchsia. In the final stages of infection, the S. crispa fruiting bodies turned dark red or brown before rotting. The pathogen was isolated from the margin of the lesions by plating onto potato dextrose agar (PDA), and incubated at 25℃ in the dark for a week. Five pure culture fungal isolates were obtained. Collected isolates with similar morphology were described as Lecanicillium spp. (Zare et al., 2001). The colonies were raised, covered with white, the reverse side were violet brown, produced diffusing reddish-purple pigment. Conidiogenous cells produced singly, in pairs, verticillate or in dense irregular clusters on prostrate hyphae, at first flask-shaped, tapering into threadlike neck, with a size of 3.0-6.2×0.8-2.2 µm. Conidia were solitary, oval to subglobose, and 2.3-4.0×1.1-2.1 µm in size, similar to L. aphanocladii (Higo et al., 2021). For pathogenicity testing, ten fruiting bodies of S. crispa (planted in the bottles) were selected. Fungal cake of the isolate Bx-Ljb of L. aphanocladii were applied to the fruiting body of S. crispa, whereas pieces of sterile PDA medium were used as controls. All the bottles were incubated at 19±1℃, 85-100% relative humidity, and 18 h of light in the mushroom hothouse. A week later, the inoculated fruiting bodies developed brown spots and gradually expanding, with symptoms similar to the original diseased fruiting bodies. The controls remained healthy. The same fungus was reisolated from the infected fruiting bodies and subsequently identified by morphological characteristics and DNA sequence analysis. The pathogenicity test was repeated three times with similar results. For molecular identification, the DNA of the isolates was extracted using a Fungi Genomic DNA Extraction kit (Solarbio, Beijing). The SSU, LSU, and TEF1-α genes were amplified with the primer as previously described (Zhou et al., 2018). The generated sequences were deposited in GenBank with accession numbers OR206377, OR206378, and OR204702, respectively. BLASTn analyses showed >99.2% identity with previously deposited sequences of L. aphanocladii. Based on the maximum likelihood method, phylogenetic analysis revealed 99% bootstrap support values with L. aphanocladii. The fungus was identified as L. aphanocladii based on morphological and multilocus phylogenetic analyses. To our knowledge, there are two reports of L. aphanocladii on fruiting bodies of Tremella fuciformis and Morchella sextelata in China, and this is the first report of this fungus causing rot of S. crispa in China. It may be a reminder that the risk of L. aphanocladii in mushroom production in China is gradually increasing. These results will contribute to developing managemental strategies for this disease in S. crispa.

20.
Food Chem X ; 21: 101059, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38292677

RESUMO

The effects of different edible fungi on the flavor profiles of fish soups were analyzed by sensory evaluation, non-volatile and volatile flavor compounds. The sensory attributes of fish soups were modified by adding edible fungi, with the highest total scores obtained for AAFS and DFS. Compared with pure fish soup, the amounts of free amino acids, nucleotides, organic acids and inorganic ions were increased with fungi addition, especially AAFS. The different mushroom fish soups could be clearly distinguished by E-nose analysis, and a total of 52 flavor compounds, mainly composed of aldehydes (27), ketones (11), alcohols (8), esters (4), and others (2), were then identified by GC-IMS. Eventually, fish soup samples were classified into three groups based on OPLS-DA analysis: Ⅰ (LEFS), Ⅱ (BFS and BEFS) and Ⅲ (ABFS, AAFS and DFS). The results showed that Agrocybe aegerita had high suitability for improving the flavor of Large yellow croaker soups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA