Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Neurobiol Dis ; 199: 106600, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996985

RESUMO

Familial Dysautonomia (FD) is an autosomal recessive disorder caused by a splice site mutation in the gene ELP1, which disproportionally affects neurons. While classically characterized by deficits in sensory and autonomic neurons, neuronal defects in the central nervous system have also been described. Although ELP1 expression remains high in the normal developing and adult cerebellum, its role in cerebellar development is unknown. To explore the role of Elp1 in the cerebellum, we knocked out Elp1 in cerebellar granule cell progenitors (GCPs) and examined the outcome on animal behavior and cellular composition. We found that GCP-specific conditional knockout of Elp1 (Elp1cKO) resulted in ataxia by 8 weeks of age. Cellular characterization showed that the animals had smaller cerebella with fewer granule cells. This defect was already apparent as early as 7 days after birth, when Elp1cKO animals also had fewer mitotic GCPs and shorter Purkinje dendrites. Through molecular characterization, we found that loss of Elp1 was associated with an increase in apoptotic cell death and cell stress pathways in GCPs. Our study demonstrates the importance of ELP1 in the developing cerebellum, and suggests that loss of Elp1 in the GC lineage may also play a role in the progressive ataxia phenotypes of FD patients.

2.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673955

RESUMO

The Elongator complex plays a pivotal role in the wobble uridine modification of the tRNA anticodon. Comprising two sets of six distinct subunits, namely, Elongator proteins (ELP1-ELP6) and associated proteins, the holo-Elongator complex demonstrates remarkable functional and structural conservation across eukaryotes. However, the precise details of the evolutionary conservation of the holo-Elongator complex and its individual sub-complexes (i.e., ELP123; ELP456) in plants remain limited. In this study, we conducted an in vivo analysis of protein-protein interactions among Arabidopsis ELP4, ELP5, and ELP6 proteins. Additionally, we predicted their structural configurations and performed a comparative analysis with the structure of the yeast Elp456 sub-complex. Protein-protein interaction analysis revealed that AtELP4 interacts with AtELP6 but not directly with AtELP5. Furthermore, we found that the Arabidopsis Elongator-associated protein, Deformed Roots and Leaves 1 (DRL1), did not directly bind to AtELP proteins. The structural comparison of the ELP456 sub-complex between Arabidopsis and yeast demonstrated high similarity, encompassing the RecA-ATPase fold and the positions of hydrogen bonds, despite their relatively low sequence homology. Our findings suggest that Arabidopsis ELP4, ELP5, and ELP6 proteins form a heterotrimer, with ELP6 serving as a bridge, indicating high structural conservation between the ELP456 sub-complexes from Arabidopsis and yeast.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Evolução Molecular , Ligação Proteica , Saccharomyces cerevisiae , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Modelos Moleculares
3.
Plant Biotechnol J ; 22(5): 1251-1268, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38098341

RESUMO

The Elongator complex was originally identified as an interactor of hyperphosphorylated RNA polymerase II (RNAPII) in yeast and has histone acetyltransferase (HAT) activity. However, the genome-wide regulatory roles of Elongator on transcriptional elongation and histone acetylation remain unclear. We characterized a maize miniature seed mutant, mn7 and map-based cloning revealed that Mn7 encodes one of the subunits of the Elongator complex, ZmELP1. ZmELP1 deficiency causes marked reductions in the kernel size and weight. Molecular analyses showed that ZmELP1 interacts with ZmELP3, which is required for H3K14 acetylation (H3K14ac), and Elongator complex subunits interact with RNA polymerase II (RNAPII) C-terminal domain (CTD). Genome-wide analyses indicated that loss of ZmELP1 leads to a significant decrease in the deposition of H3K14ac and the CTD of phosphorylated RNAPII on Ser2 (Ser2P). These chromatin changes positively correlate with global transcriptomic changes. ZmELP1 mutation alters the expression of genes involved in transcriptional regulation and kernel development. We also showed that the decrease of Ser2P depends on the deposition of Elongator complex-mediated H3K14ac. Taken together, our results reveal an important role of ZmELP1 in the H3K14ac-dependent transcriptional elongation, which is critical for kernel development.


Assuntos
Histonas , RNA Polimerase II , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Histonas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Fosforilação , Acetilação , Estudo de Associação Genômica Ampla , Saccharomyces cerevisiae/genética
4.
Res Sq ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38105947

RESUMO

Quiescent cells require a continuous supply of proteins to maintain protein homeostasis. In fission yeast, entry into quiescence is triggered by nitrogen stress, leading to the inactivation of TORC1 and the activation of TORC2. Here, we report that the Greatwall-Endosulfine-PPA/B55 pathway connects the downregulation of TORC1 with the upregulation of TORC2, resulting in the activation of Elongator-dependent tRNA modifications essential for sustaining the translation programme during entry into quiescence. This process promotes U34 and A37 tRNA modifications at the anticodon stem loop, enhancing translation efficiency and fidelity of mRNAs enriched for AAA versus AAG lysine codons. Notably, some of these mRNAs encode inhibitors of TORC1, activators of TORC2, tRNA modifiers, and proteins necessary for telomeric and subtelomeric functions. Therefore, we propose a novel mechanism by which cells respond to nitrogen stress at the level of translation, involving a coordinated interplay between the tRNA epitranscriptome and biased codon usage.

5.
J Mol Cell Biol ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37771073

RESUMO

ELP3, the catalytic subunit of Elongator complex, is an acetyltransferase and associated with tumor progression. However, the detail of ELP3 oncogenic function remains largely unclear. Here, we found that ELP3 stabilizes c-Myc to promote tumorigenesis in an acetyltransferase-independent manner. Mechanically, ELP3 competes with the E3-ligase FBXW7ß for c-Myc binding, resulting in the inhibition of FBXW7ß-mediated ubiquitination and proteasomal degradation of c-Myc. ELP3-knockdown diminishes glycolysis and glutaminolysis and dramatically retards cell proliferation and xenograft growth by downregulating c-Myc, and such effects are rescued by reconstitution of c-Myc expression. Moreover, ELP3 and c-Myc were overexpressed with a positive correlation in colorectal cancer and hepatocellular carcinoma. Taken together, we elucidate a new function of ELP3 in promoting tumorigenesis by stabilizing c-Myc, suggesting that inhibition of ELP3 is a potential strategy for the therapy of c-Myc-driven carcinomas.

6.
Microb Cell ; 10(9): 195-203, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37662670

RESUMO

In yeast, Elongator-dependent tRNA modifications are regulated by the Kti11•Kti13 dimer and hijacked for cell killing by zymocin, a tRNase ribotoxin. Kti11 (alias Dph3) also controls modification of elongation factor 2 (EF2) with diphthamide, the target for lethal ADP-ribosylation by diphtheria toxin (DT). Diphthamide formation on EF2 involves four biosynthetic steps encoded by the DPH1-DPH7 network and an ill-defined KTI13 function. On further examining the latter gene in yeast, we found that kti13Δ null-mutants maintain unmodified EF2 able to escape ADP-ribosylation by DT and to survive EF2 inhibition by sordarin, a diphthamide-dependent antifungal. Consistently, mass spectrometry shows kti13Δ cells are blocked in proper formation of amino-carboxyl-propyl-EF2, the first diphthamide pathway intermediate. Thus, apart from their common function in tRNA modification, both Kti11/Dph3 and Kti13 share roles in the initiation step of EF2 modification. We suggest an alias KTI13/DPH8 nomenclature indicating dual-functionality analogous to KTI11/DPH3.

7.
Methods Mol Biol ; 2666: 29-53, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37166655

RESUMO

The Elongator complex is a unique tRNA acetyltransferase; it was initially annotated as a protein acetyltransferase, but in-depth biochemical analyses revealed its genuine function as a tRNA modifier. The substrate recognition and binding of the Elongator is mainly mediated by its catalytic Elp3 subunit. In this chapter, we describe protocols to generate fluorescently labeled RNAs and outline the principles underlying electrophoretic mobility shift assays (EMSA) and microscale thermophoresis (MST). These two methods allow qualitative and quantitative examinations of the binding affinity of various tRNAs toward the homologs of Elp3 from various organisms. The rather qualitative results from EMSA analyses can be nicely complemented by MST measurements allowing precise determination of the dissociation constant (KD). We also provide detailed notes for users to mitigate potential ambiguities and technical pitfalls during the procedures.


Assuntos
RNA de Transferência , RNA , Ensaio de Desvio de Mobilidade Eletroforética , Ligação Proteica , RNA/metabolismo , RNA de Transferência/metabolismo , Acetiltransferases/metabolismo
8.
Metabolites ; 13(3)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36984872

RESUMO

Central metabolism has a profound impact on the clinical phenotypes and penetrance of neurological diseases such as Alzheimer's (AD) and Parkinson's (PD) diseases, Amyotrophic Lateral Sclerosis (ALS) and Autism Spectrum Disorder (ASD). In contrast to the multifactorial origin of these neurological diseases, neurodevelopmental impairment and neurodegeneration in Familial Dysautonomia (FD) results from a single point mutation in the ELP1 gene. FD patients represent a well-defined population who can help us better understand the cellular networks underlying neurodegeneration, and how disease traits are affected by metabolic dysfunction, which in turn may contribute to dysregulation of the gut-brain axis of FD. Here, 1H NMR spectroscopy was employed to characterize the serum and fecal metabolomes of FD patients, and to assess similarities and differences in the polar metabolite profiles between FD patients and healthy relative controls. Findings from this work revealed noteworthy metabolic alterations reflected in energy (ATP) production, mitochondrial function, amino acid and nucleotide catabolism, neurosignaling molecules, and gut-microbial metabolism. These results provide further evidence for a close interconnection between metabolism, neurodegeneration, and gut microbiome dysbiosis in FD, and create an opportunity to explore whether metabolic interventions targeting the gut-brain-metabolism axis of FD could be used to redress or slow down the progressive neurodegeneration observed in FD patients.

9.
Plants (Basel) ; 12(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36840300

RESUMO

Elongator complexes (ELPs) are the protein complexes that promote transcription through histone acetylation in eukaryotic cells and interact with elongating RNA polymerase II (RNAPII). ELPs' role in plant growth and development, signal transduction, and response to biotic and abiotic stresses have been confirmed in model plants. However, the functions of the wheat ELP genes are not well documented. The present study identified 18 members of the ELPs from the wheat genome with a homology search. Further, bioinformatics and transcription patterns in response to different stress conditions were analyzed to dissect their potential regulatory mechanisms in wheat. Gene duplication analysis showed that 18 pairs of ELP paralogous genes were derived from segmental duplication, which was divided into six clades by protein phylogenetic and cluster analysis. The orthologous analysis of wheat TaELP genes showed that TaELP genes may have evolved from orthologous genes of other plant species or closely related plants. Moreover, a variety of cis-acting regulatory elements (CAREs) related to growth and development, hormone response, and biotic and abiotic stresses were identified in the TaELPs' promoter regions. The qRT-PCR analysis showed that the transcription of TaELPs was induced under hormone, salt, and drought stress and during leaf senescence. The TaELP2 gene was silenced with BSMV-VIGS, and TaELP2 was preliminarily verified to be involved in the regulation of wheat leaf senescence. Overall, TaELP genes might be regulated by hormone signaling pathways and response to abiotic stress and leaf senescence, which could be investigated further as potential candidate genes for wheat abiotic stress tolerance and yield improvement.

10.
EMBO Mol Med ; 15(2): e16418, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36448458

RESUMO

The Elongator complex was initially identified in yeast, and a variety of distinct cellular functions have been assigned to the complex. In the last decade, several research groups focussed on dissecting its structure, tRNA modification activity and role in translation regulation. Recently, Elongator emerged as a crucial factor for various human diseases, and its involvement has triggered a strong interest in the complex from numerous clinical groups. The Elongator complex is highly conserved among eukaryotes, with all six subunits (Elp1-6) contributing to its stability and function. Yet, recent studies have shown that the two subcomplexes, namely the catalytic Elp123 and accessory Elp456, may have distinct roles in the development of different neuronal subtypes. This Commentary aims to provide a brief overview and new perspectives for more systematic efforts to explore the functions of the Elongator in health and disease.


Assuntos
Saccharomyces cerevisiae , Humanos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Saccharomyces cerevisiae/genética
11.
Front Cell Dev Biol ; 10: 1015125, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36393857

RESUMO

The six subunits (Elp1 to Elp6) Elongator complex promotes specific uridine modifications in tRNA's wobble site. Moreover, this complex has been indirectly involved in the regulation of α-tubulin acetylation in microtubules (MTs) via the stabilization of ATP-Citrate Lyase (Acly), the main cytosolic source of acetyl-CoA production in cells, a key substrate used for global protein acetylation. Here, we report additional evidence that Elongator activity is important for proper cytoskeleton remodeling as cells lacking expression of Elp1 show morphology impairment; including distinct neurite process formation and disorganization and instability of MTs. Here, we show that loss of Elongator results in a reduction of expression of the microtubule associated protein Tau (MAPT). Tau, is a well-known key MT regulator in neurons whose lysines can be competitively acetylated or ubiquitylated. Therefore, we tested whether Tau is an indirect acetylation target of Elongator. We found that a reduction of Elongator activity leads to a decrease of lysine acetylation on Tau that favors its proteasomal degradation. This phenotype was prevented by using selective deacetylase or proteasomal inhibitors. Moreover, our data demonstrate that Acly's activity regulates the mechanism underlying Tau mediated neurite morphology defects found in Elp1 KD since both Tau levels and neurites morphology are restored due to Acly overexpression. This suggests a possible involvement of both Tau and Acly dysfunction in Familial Dysautonomia (FD), which is an autosomal recessive peripheral neuropathy caused by mutation in the ELP1 gene that severely affects Elp1 expression levels in the nervous system in FD patients in a similar way as found previously in Elp1 KD neuroblastoma cells.

12.
Front Plant Sci ; 13: 1033358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340367

RESUMO

The Elongator complex in eukaryotes has conserved tRNA modification functions and contributes to various physiological processes such as transcriptional control, DNA replication and repair, and chromatin accessibility. ARABIDOPSIS ELONGATOR PROTEIN 4 (AtELP4) is one of the six subunits (AtELP1-AtELP6) in Arabidopsis Elongator. In addition, there is an Elongator-associated protein, DEFORMED ROOTS AND LEAVES 1 (DRL1), whose homolog in yeast (Kti12) binds tRNAs. In this study, we explored the functions of AtELP4 in plant-specific aspects such as leaf morphogenesis and evolutionarily conserved ones between yeast and Arabidopsis. ELP4 comparison between yeast and Arabidopsis revealed that plant ELP4 possesses not only a highly conserved P-loop ATPase domain but also unknown plant-specific motifs. ELP4 function is partially conserved between Arabidopsis and yeast in the growth sensitivity toward caffeine and elevated cultivation temperature. Either single Atelp4 or drl1-102 mutants and double Atelp4 drl1-102 mutants exhibited a reduction in cell proliferation and changed the adaxial-abaxial polarity of leaves. In addition, the single Atelp4 and double Atelp4 drl1-102 mutants showed remarkable downward curling at the whole part of leaf blades in contrast to wild-type leaf blades. Furthermore, our genetic study revealed that AtELP4 might epistatically act on DRL1 in the regulation of cell proliferation and dorsoventral polarity in leaves. Taken together, we suggest that AtELP4 as part of the plant Elongator complex may act upstream of a regulatory pathway for adaxial-abaxial polarity and cell proliferation during leaf development.

13.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35886984

RESUMO

Freezing stress is a major factor limiting production and geographical distribution of temperate crops. Elongator is a six subunit complex with histone acetyl-transferase activity and is involved in plant development and defense responses in Arabidopsis thaliana. However, it is unknown whether and how an elongator responds to freezing stress in plants. In this study, we found that wheat elongator subunit 4 (TaELP4) negatively regulates freezing tolerance through ethylene signaling. TaELP4 promoter contained cold response elements and was up-regulated in freezing stress. Subcellular localization showed that TaELP4 and AtELP4 localized in the cytoplasm and nucleus. Silencing of TaELP4 in wheat with BSMV-mediated VIGS approach significantly elevated tiller survival rate compared to control under freezing stress, but ectopic expression of TaELP4 in Arabidopsis increased leaf damage and survival rate compared with Col-0. Further results showed that TaELP4 positively regulated ACS2 and ACS6 transcripts, two main limiting enzymes in ethylene biosynthesis. The determination of ethylene content showed that TaELP4 overexpression resulted in more ethylene accumulated than Col-0 under freezing stress. Epigenetic research showed that histone H3K9/14ac levels significantly increased in coding/promoter regions of AtACS2 and AtACS6 in Arabidopsis. RT-qPCR assays showed that the EIN2/EIN3/EIL1-CBFs-COR pathway was regulated by TaELP4 under freezing stress. Taken together, our results suggest that TaELP4 negatively regulated plant responses to freezing stress via heightening histone acetylation levels of ACS2 and ACS6 and increasing their transcription and ethylene accumulation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Etilenos/metabolismo , Congelamento , Regulação da Expressão Gênica de Plantas , Histonas/genética , Histonas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Triticum/genética , Triticum/metabolismo
14.
Cell Biochem Funct ; 40(6): 550-558, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35722999

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer (BC) that hardly responds to common treatment. Recent studies show that circ-ELP3 (Elongator Acetyltransferase Complex Subunit 3 or hsa-circ-0001785) is involved in the pathogenesis of several malignancies. The present study aimed to evaluate the possible role of this circRNA in the progression of TNBC cells and the possible relation between the circular and linear forms of the ELP3. We evaluated the circ-ELP3 and its host gene expression level in clinical samples and breast cancer cell lines. Using an expression vector, hsa-circ-0001785 was upregulated to investigate its role on cancer cell progression. After a transient transfection, we evaluated possible alterations in the cell cycle progression, cell viability, and cell proliferation. Quantitative real-time polymerase chain reaction analyses verified that circ-ELP3 and its host gene were significantly upregulated in TNBC tissues and breast cancer cells. Overexpression of circ-ELP3 markedly increases the cell viability and proliferation and also the formation of colonies in transfected cells compared to the controls. Briefly, our results showed that Circ-ELP3 and its host gene were significantly upregulated in TNBC. Circ-ELP3 is involved in TNBC progression and may exert its effects by indirectly regulating of ELP3 expression.


Assuntos
Neoplasias da Mama , MicroRNAs , Neoplasias de Mama Triplo Negativas , Acetiltransferases/genética , Acetiltransferases/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Histona Acetiltransferases/genética , Humanos , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/genética , RNA Circular/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
15.
EMBO Mol Med ; 14(7): e15608, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35698786

RESUMO

The highly conserved Elongator complex is a translational regulator that plays a critical role in neurodevelopment, neurological diseases, and brain tumors. Numerous clinically relevant variants have been reported in the catalytic Elp123 subcomplex, while no missense mutations in the accessory subcomplex Elp456 have been described. Here, we identify ELP4 and ELP6 variants in patients with developmental delay, epilepsy, intellectual disability, and motor dysfunction. We determine the structures of human and murine Elp456 subcomplexes and locate the mutated residues. We show that patient-derived mutations in Elp456 affect the tRNA modification activity of Elongator in vitro as well as in human and murine cells. Modeling the pathogenic variants in mice recapitulates the clinical features of the patients and reveals neuropathology that differs from the one caused by previously characterized Elp123 mutations. Our study demonstrates a direct correlation between Elp4 and Elp6 mutations, reduced Elongator activity, and neurological defects. Foremost, our data indicate previously unrecognized differences of the Elp123 and Elp456 subcomplexes for individual tRNA species, in different cell types and in different key steps during the neurodevelopment of higher organisms.


Assuntos
RNA de Transferência , Proteínas de Saccharomyces cerevisiae , Animais , Camundongos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Biochem Biophys Res Commun ; 613: 73-80, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35537288

RESUMO

This study investigates the function of Elp1 and Elongator in the pituitary gland. Two conditional knockout models were generated where Elp1 was selectively deleted in either somatotropes of the anterior pituitary or Pomc-expressing cells of the anterior and intermediate pituitary. Although loss of Elp1 in somatotropes did not significantly impact murine growth or development, its loss in Pomc-expressing cells resulted in dramatically reduced levels of α-MSH, hyperphagia and obesity. This report provides the first evidence that Elongator plays an essential role in regulating the melanocortin satiety pathway.


Assuntos
Melanocortinas , Pró-Opiomelanocortina , Animais , Melanocortinas/metabolismo , Camundongos , Obesidade/genética , Obesidade/metabolismo , Hipófise/metabolismo , Pró-Opiomelanocortina/metabolismo , alfa-MSH/metabolismo
17.
J Genet Genomics ; 49(7): 654-665, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34896608

RESUMO

Familial dysautonomia (FD), a hereditary sensory and autonomic neuropathy, is caused by a mutation in the Elongator complex protein 1 (ELP1) gene that leads to a tissue-specific reduction of ELP1 protein. Our work to generate a phenotypic mouse model for FD headed to the discovery that homozygous deletion of the mouse Elp1 gene leads to embryonic lethality prior to mid-gestation. Given that FD is caused by a reduction, not loss, of ELP1, we generated two new mouse models by introducing different copy numbers of the human FD ELP1 transgene into the Elp1 knockout mouse (Elp1-/-) and observed that human ELP1 expression rescues embryonic development in a dose-dependent manner. We then conducted a comprehensive transcriptome analysis in mouse embryos to identify genes and pathways whose expression correlates with the amount of ELP1. We found that ELP1 is essential for the expression of genes responsible for nervous system development. Further, gene length analysis of the differentially expressed genes showed that the loss of Elp1 mainly impacts the expression of long genes and that by gradually restoring Elongator, their expression is progressively rescued. Finally, through evaluation of co-expression modules, we identified gene sets with unique expression patterns that depended on ELP1 expression.


Assuntos
Proteínas de Transporte , Disautonomia Familiar , Animais , Proteínas de Transporte/genética , Modelos Animais de Doenças , Disautonomia Familiar/genética , Disautonomia Familiar/metabolismo , Expressão Gênica , Homozigoto , Humanos , Camundongos , Deleção de Sequência
18.
J Exp Clin Cancer Res ; 40(1): 373, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34823564

RESUMO

BACKGROUND: Gallbladder cancer (GBC) is known for its high malignancy and multidrug resistance. Previously, we uncovered that impaired integrity and stability of the elongator complex leads to GBC chemotherapy resistance, but whether its restoration can be an efficient therapeutic strategy for GBC remains unknown. METHODS: RT-qPCR, MS-qPCR and ChIP-qPCR were used to evaluate the direct association between ELP5 transcription and DNA methylation in tumour and non-tumour tissues of GBC. EMSA, chromatin accessibility assays, and luciferase assays were utilized to analysis the DNA methylation in interfering PAX5-DNA interactions. The functional experiments in vitro and in vivo were performed to investigate the effects of DNA demethylating agent decitabine (DAC) on the transcription activation of elongator complex and the enhanced sensitivity of gemcitabine in GBC cells. Tissue microarray contains GBC tumour tissues was used to evaluate the association between the expression of ELP5, DNMT3A and PAX5. RESULTS: We demonstrated that transcriptional repression of ELP5 in GBC was highly correlated with hypermethylation of the promoter. Mechanistically, epigenetic analysis revealed that DNA methyltransferase DNMT3A-catalysed hypermethylation blocked transcription factor PAX5 activation of ELP5 by disrupting PAX5-DNA interaction, resulting in repressed ELP5 transcription. Pharmacologically, the DNA demethylating agent DAC eliminated the hypermethylated CpG dinucleotides in the ELP5 promoter and then facilitated PAX5 binding and reactivated ELP5 transcription, leading to the enhanced function of the elongator complex. To target this mechanism, we employed a sequential combination therapy of DAC and gemcitabine to sensitize GBC cells to gemcitabine-therapy through epigenetic activation of the elongator complex. CONCLUSIONS: Our findings suggest that ELP5 expression in GBC is controlled by DNA methylation-sensitive induction of PAX5. The sequential combination therapy of DAC and gemcitabine could be an efficient therapeutic strategy to overcome chemotherapy resistance in GBC.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Desoxicitidina/análogos & derivados , Epigenômica/métodos , Neoplasias da Vesícula Biliar/tratamento farmacológico , Animais , Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Neoplasias da Vesícula Biliar/genética , Humanos , Masculino , Camundongos , Camundongos Nus , Gencitabina
19.
Front Plant Sci ; 12: 691790, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589093

RESUMO

Background: Plants subjected to the novel environment of spaceflight show transcriptomic changes that resemble aspects of several terrestrial abiotic stress responses. Under investigation here is whether epigenetic modulations, similar to those that occur in terrestrial stress responses, have a functional role in spaceflight physiological adaptation. The Advanced Plant Experiment-04 - Epigenetic Expression experiment examined the role of cytosine methylation in spaceflight adaptation. The experiment was conducted onboard the International Space Station, and evaluated the spaceflight-altered, genome-wide methylation profiles of two methylation-regulating gene mutants [methyltransferase 1 (met1-7) and elongator complex subunit 2 (elp2-5)] along with a wild-type Col-0 control. Results: The elp2-5 plants suffered in their physiological adaptation to spaceflight in that their roots failed to extend away from the seed and the overall development of the plants was greatly impaired in space. The met1-7 plants suffered less, with their morphology affected by spaceflight in a manner similar to that of the Col-0 controls. The differentially expressed genes (DEGs) in spaceflight were dramatically different in the elp2-5 and met1-7 plants compared to Col-0, indicating that the disruptions in these mutants resulted in a reprogramming of their spaceflight responses, especially in elp2-5. Many of the genes comprising the spaceflight transcriptome of each genotype were differentially methylated in spaceflight. In Col-0 the majority of the DEGs were representative of the now familiar spaceflight response, which includes genes associated with cell wall remodeling, pathogen responses and ROS signaling. However, the spaceflight transcriptomes of met1-7 and elp2-5 each presented patterns of DEGs that are almost completely different than Col-0, and to each other. Further, the DEGs of the mutant genotypes suggest a more severe spaceflight stress response in the mutants, particularly in elp2-5. Conclusion: Arabidopsis physiological adaptation to spaceflight results in differential DNA methylation in an organ-specific manner. Disruption of Met1 methyltransferase function does not dramatically affect spaceflight growth or morphology, yet met1-7 reprograms the spaceflight transcriptomic response in a unique manner. Disruption of elp2-5 results in poor development in spaceflight grown plants, together with a diminished, dramatically reprogrammed transcriptomic response.

20.
Biol Open ; 10(9)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34590699

RESUMO

Elongator dysfunction is increasingly recognized as a contributor to multiple neurodevelopmental and neurodegenerative disorders including familial dysautonomia, intellectual disability, amyotrophic lateral sclerosis, and autism spectrum disorder. Although numerous cellular processes are perturbed in the context of Elongator loss, converging evidence from multiple studies has resolved Elongator's primary function in the cell to the modification of tRNA wobble uridines and the translational regulation of codon-biased genes. Here we characterize H2a.z, encoding the variant H2a histone H2A.Z, as an indirect Elongator target. We further show that canonical Notch signaling, a pathway directed by H2A.Z, is perturbed as a consequence of Elp1 loss. Finally, we demonstrate that hyperacetylation of H2A.Z and other histones via exposure to the histone deacetylase inhibitor Trichostatin A during neurogenesis corrects the expression of Notch3 and rescues the development of sensory neurons in embryos lacking the Elp1 Elongator subunit.


Assuntos
Histonas/metabolismo , Doenças Neurodegenerativas/genética , Receptores Notch/metabolismo , Transdução de Sinais/genética , Fatores de Elongação da Transcrição/genética , Humanos , Mutação com Perda de Função/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA