Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Space Sci Rev ; 220(5): 55, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39036784

RESUMO

Saturn's mid-sized icy moons have complex relationships with Saturn's interior, the rings, and with each other, which can be expressed in their shapes, interiors, and geology. Observations of their physical states can, thus, provide important constraints on the ages and formation mechanism(s) of the moons, which in turn informs our understanding of the formation and evolution of Saturn and its rings. Here, we describe the cratering records of the mid-sized moons and the value and limitations of their use for constraining the histories of the moons. We also discuss observational constraints on the interior structures of the moons and geologically-derived inferences on their thermal budgets through time. Overall, the geologic records of the moons (with the exception of Mimas) include evidence of epochs of high heat flows, short- and long-lived subsurface oceans, extensional tectonics, and considerable cratering. Curiously, Mimas presents no clear evidence of an ocean within its surface geology, but its rotation and orbit indicate a present-day ocean. While the moons need not be primordial to produce the observed levels of interior evolution and geologic activity, there is likely a minimum age associated with their development that has yet to be determined. Uncertainties in the populations impacting the moons makes it challenging to further constrain their formation timeframes using craters, whereas the characteristics of their cores and other geologic inferences of their thermal evolutions may help narrow down their potential histories. Disruptive collisions may have also played an important role in the formation and evolution of Saturn's mid-sized moons, and even the rings of Saturn, although more sophisticated modeling is needed to determine the collision conditions that produce rings and moons that fit the observational constraints. Overall, the existence and physical characteristics of Saturn's mid-sized moons provide critical benchmarks for the development of formation theories.

2.
Astrobiology ; 24(7): 698-709, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39023275

RESUMO

Europa and Enceladus are key targets to search for evidence of life in our solar system. However, the surface and shallow subsurface of both airless icy moons are constantly bombarded by ionizing radiation that could degrade chemical biosignatures. Therefore, sampling of icy surfaces in future life detection missions to Europa and Enceladus requires a clear understanding of the necessary ice depth where unaltered organic biomolecules might be present. We conducted radiolysis experiments by exposing individual amino acids in ices and amino acids from dead microorganisms in ices to gamma radiation to simulate conditions on these icy worlds. In the pure amino acid samples, glycine did not show a detectable decrease in abundance, whereas the abundance of isovaline decreased by 40% after 4 MGy of exposure. Amino acids in dead Escherichia coli (E. coli) organic matter exhibited a gradual decline in abundances with the increase of exposure dosage, although at much slower rates than individual amino acids. The majority of amino acids in dead A. woodii samples demonstrated a step function decline as opposed to a gradual decline. After the initial drop in abundance with 1 MGy of exposure, those amino acids did not display further decreases in abundance after exposure up to 4 MGy. New radiolysis constants for isolated amino acids and amino acids in dead E. coli material for Europa/Enceladus-like conditions have been derived. Slow rates of amino acid destruction in biological samples under Europa and Enceladus-like surface conditions bolster the case for future life detection measurements by Europa and Enceladus lander missions. Based on our measurements, the "safe" sampling depth on Europa is ∼20 cm at high latitudes of the trailing hemisphere in the area of little impact gardening. Subsurface sampling is not required for the detection of amino acids on Enceladus-these molecules will survive radiolysis at any location on the Enceladus surface. If the stability of amino acids observed in A. woodii organic materials is confirmed in other microorganisms, then the survival of amino acids from a potential biosphere in Europa ice would be significantly increased.


Assuntos
Aminoácidos , Escherichia coli , Exobiologia , Meio Ambiente Extraterreno , Raios gama , Gelo , Aminoácidos/análise , Meio Ambiente Extraterreno/química , Escherichia coli/efeitos da radiação , Exobiologia/métodos , Gelo/análise , Júpiter
3.
Philos Trans A Math Phys Eng Sci ; 382(2273): 20230201, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38736335

RESUMO

The Cassini mission provided evidence for a global subsurface ocean and ongoing hydrothermal activity on Enceladus, based on results from Cassini's mass spectrometers. Laboratory simulations of hydrothermal conditions on icy moons are needed to further constrain the composition of ejected ice grains containing hydrothermally altered organic material. Here, we present results from our newly established facility to simulate the processing of ocean material within the temperature range 80-150°C and the pressure range 80-130 bar, representing conditions suggested for the water-rock interface on Enceladus. With this new facility, we investigate the hydrothermal processing of triglycine (GGG) peptide and, for the first time, analyse the extracted samples using laser-induced liquid beam ion desorption (LILBID) mass spectrometry, a laboratory analogue for impact ionization mass spectrometry of ice grains in space. We outline an approach to elucidate hydrothermally processed GGG in ice grains ejected from icy moons based on characteristic differences between GGG anion and cation mass spectra. These differences are linked to hydrothermal processing and thus provide a fingerprint of hydrothermal activity on extraterrestrial bodies. These results will serve as important guidelines for biosignatures potentially obtained by a future Enceladus mission and the SUrface Dust Analyzer (SUDA) instrument onboard Europa Clipper. This article is part of the theme issue 'Dust in the Solar System and beyond'.

4.
Extremophiles ; 28(2): 19, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427139

RESUMO

Organic and inorganic cyanides are widely distributed in nature, yet not much is known about the ability of microorganisms to use these compounds as a source of nitrogen and/or carbon at high temperatures (>80 °C). Here we studied the capacity of organic and inorganic cyanides to support growth of an hyperthermophilic Pyrococcus strain isolated from Deception Island, Antarctica. This microorganism was capable of growing with aromatic nitriles, aliphatic nitriles, heterocyclic nitriles, amino aromatic nitriles and inorganic cyanides as nitrogen and/or carbon source. This is the first report of an hyperthermophilic microorganism able to incorporate these compounds in its nitrogen and carbon metabolism. Based on enzymatic activity and genomic information, it is possibly that cells of this Pyrococcus strain growing with nitriles or cyanide, might use the carboxylic acid and/or the ammonia generated through the nitrilase enzymatic activity, as a carbon and/or nitrogen source respectively. This work expands the temperature range at which microorganisms can use organic and inorganic cyanides to growth, having important implications to understand microbial metabolisms that can support life on Earth and the possibility to support life elsewhere.


Assuntos
Cianetos , Pyrococcus , Cianetos/metabolismo , Regiões Antárticas , Nitrilas , Carbono , Nitrogênio
5.
Astrobiology ; 24(S1): S143-S163, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498826

RESUMO

All known life on Earth inhabits environments that maintain conditions between certain extremes of temperature, chemical composition, energy availability, and so on (Chapter 6). Life may have emerged in similar environments elsewhere in the Solar System and beyond. The ongoing search for life elsewhere mainly focuses on those environments most likely to support life, now or in the past-that is, potentially habitable environments. Discussion of habitability is necessarily based on what we know about life on Earth, as it is our only example. This chapter gives an overview of the known and presumed requirements for life on Earth and discusses how these requirements can be used to assess the potential habitability of planetary bodies across the Solar System and beyond. We first consider the chemical requirements of life and potential feedback effects that the presence of life can have on habitable conditions, and then the planetary, stellar, and temporal requirements for habitability. We then review the state of knowledge on the potential habitability of bodies across the Solar System and exoplanets, with a particular focus on Mars, Venus, Europa, and Enceladus. While reviewing the case for the potential habitability of each body, we summarize the most prominent and impactful studies that have informed the perspective on where habitable environments are likely to be found.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Planeta Terra , Meio Ambiente Extraterreno/química , Planetas , Sistema Solar
6.
Astrobiology ; 24(3): 328-338, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38507694

RESUMO

Enceladus is of interest to astrobiology and the search for life since it is thought to host active hydrothermal activity and habitable conditions. It is also possible that the organics detected on Enceladus may indicate an active prebiotic or biotic system; in particular, the conditions on Enceladus may favor mineral-driven protometabolic reactions. When including metabolism-related biosignatures in Enceladus mission concepts, it is necessary to base these in a clearer understanding of how these signatures could also be produced prebiotically. In addition, postulating which biological metabolisms to look for on Enceladus requires a non-Earth-centric approach since the details of biological metabolic pathways are heavily shaped by adaptation to geochemical conditions over the planet's history. Creating metabolism-related organic detection objectives for Enceladus missions, therefore, requires consideration of how metabolic systems may operate differently on another world, while basing these speculations on observed Earth-specific microbial processes. In addition, advances in origin-of-life research can play a critical role in distinguishing between interpretations of any future organic detections on Enceladus, and the discovery of an extant prebiotic system would be a transformative astrobiological event in its own right.


Assuntos
Planeta Terra , Exobiologia
7.
Astrobiology ; 23(10): 1056-1070, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782210

RESUMO

Growing evidence of the potential habitability of Ocean Worlds across our solar system is motivating the advancement of technologies capable of detecting life as we know it-sharing a common ancestry or physicochemical origin with life on Earth-or don't know it, representing a distinct emergence of life different than our one known example. Here, we propose the Electronic Life-detection Instrument for Enceladus/Europa (ELIE), a solid-state single-molecule instrument payload that aims to search for life based on the detection of amino acids and informational polymers (IPs) at the parts per billion to trillion level. As a first proof-of-principle in a laboratory environment, we demonstrate the single-molecule detection of the amino acid L-proline at a 10 µM concentration in a compact system. Based on ELIE's solid-state quantum electronic tunneling sensing mechanism, we further propose the quantum property of the HOMO-LUMO gap (energy difference between a molecule's highest energy-occupied molecular orbital and lowest energy-unoccupied molecular orbital) as a novel metric to assess amino acid complexity. Finally, we assess the potential of ELIE to discriminate between abiotically and biotically derived α-amino acid abundance distributions to reduce the false positive risk for life detection. Nanogap technology can also be applied to the detection of nucleobases and short sequences of IPs such as, but not limited to, RNA and DNA. Future missions may utilize ELIE to target preserved biosignatures on the surface of Mars, extant life in its deep subsurface, or life or its biosignatures in a plume, surface, or subsurface of ice moons such as Enceladus or Europa. One-Sentence Summary: A solid-state nanogap can determine the abundance distribution of amino acids, detect nucleic acids, and shows potential for detecting life as we know it and life as we don't know it.


Assuntos
Júpiter , Ácidos Nucleicos , Exobiologia , Planeta Terra , Aminoácidos , Meio Ambiente Extraterreno/química
8.
Life (Basel) ; 13(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37629583

RESUMO

Enceladus and Europa, icy moons of Saturn and Jupiter, respectively, are believed to be habitable with liquid water oceans and therefore are of interest for future life detection missions and mission concepts. With the limited data from missions to these moons, many studies have sought to better constrain these conditions. With these constraints, researchers have, based on modeling and experimental studies, hypothesized a number of possible metabolisms that could exist on Europa and Enceladus if these worlds host life. The most often hypothesized metabolisms are methanogenesis for Enceladus and methane oxidation/sulfate reduction on Europa. Here, we outline, review, and compare the best estimated conditions of each moon's ocean. We then discuss the hypothetical metabolisms that have been suggested to be present on these moons, based on laboratory studies and Earth analogs. We also detail different detection methods that could be used to detect these hypothetical metabolic reactions and make recommendations for future research and considerations for future missions.

9.
Astrobiology ; 23(10): 1118-1127, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37523279

RESUMO

An ideal life detection instrument would have high sensitivity but be insensitive to abiotic processes and would be capable of detecting life with alternate molecular structures. In this study, we propose that catalytic activity can be the basis of a nearly ideal life detection instrument. There are several advantages to catalysis as an agnostic life detection method. Demonstrating catalysis does not necessarily require culturing/growing the alien life and in fact may persist even in dead biomass for some time, and the amplification by catalysis is large even by minute amounts of catalysts and, hence, can be readily detected against abiotic background rates. In specific, we propose a hydrolytic catalysis detection instrument that could detect activity in samples of extraterrestrial organic material from unknown life. The instrument uses chromogenic assay-based detection of various hydrolytic catalytic activities, which are matched to corresponding artificial substrates having the same, chromogenic (preferably fluorescent) upon release, group; D- and L-enantiomers of these substrates can be used to also answer the question whether unknown life is chiral. Since catalysis is a time-proportional product-concentration amplification process, hydrolytic catalytic activity can be measured on a sample of even a minute size, and with instruments based on, for example, optofluidic chip technology.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Meio Ambiente Extraterreno/química , Exobiologia/métodos , Catálise
10.
PNAS Nexus ; 2(3): pgad066, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37007711

RESUMO

Natural thermal geysers are hot springs that periodically erupt liquid water, steam, and gas. They are found in only a few locations worldwide, with nearly half located in Yellowstone National Park (YNP). Old Faithful geyser (OFG) is the most iconic in YNP and attracts millions of visitors annually. Despite extensive geophysical and hydrological study of geysers, including OFG, far less is known of the microbiology of geysed waters. Here, we report geochemical and microbiological data from geysed vent water and vent water that collects in a splash pool adjacent to OFG during eruptions. Both waters contained microbial cells, and radiotracer studies showed that they fixed carbon dioxide (CO2) when incubated at 70°C and 90°C. Shorter lag times in CO2 fixation activity were observed in vent and splash pool waters incubated at 90°C than 70°C, suggesting cells are better adapted or acclimated to temperatures like those in the OFG vent (∼92-93°C). 16S rDNA and metagenomic sequence data indicated that both communities are dominated by the autotroph Thermocrinis, which likely fuels productivity through the aerobic oxidation of sulfide/thiosulfate in erupted waters or steam. Dominant OFG populations, including Thermocrinis and subdominant Thermus and Pyrobaculum strains, exhibited high-strain level genomic diversity (putative ecotypes) relative to populations from nongeysing YNP hot springs that is attributed to the temporal chemical and temperature dynamics caused by eruptions. These findings show that OFG is habitable and that its eruption dynamics promote genomic diversity, while highlighting the need to further research the extent of life in geyser systems such as OFG.

11.
Life (Basel) ; 13(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36836835

RESUMO

Some of the icy moons of the solar system with a subsurface ocean, such as Europa and Enceladus, are the targets of future space missions that search for potential extraterrestrial life forms. While the ice shells that envelop these moons have been studied by several spacecrafts, the oceans beneath them remain unreachable. To better constrain the habitability conditions of these moons, we must understand the interactions between their frozen crusts, liquid layers, and silicate mantles. To that end, astrobiologists rely on planetary field analogues, for which the polar regions of Earth have proven to be great candidates. This review shows how spectroscopy is a powerful tool in space missions to detect potential biosignatures, in particular on the aforementioned moons, and how the polar regions of the Earth are being used as planetary field analogues for these extra-terrestrial environments.

12.
Astrobiology ; 23(3): 269-279, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36689196

RESUMO

The plume of Enceladus is thought to originate from the dispersion of a liquid source beneath the icy crust. Cryovolcanic activity on Enceladus may present a direct way of accessing material originating from the potentially habitable subsurface ocean. One way to test the hypothesis of whether life is present within the ocean of Enceladus would be to investigate the plume material for the presence of microbial life. In this study, we investigated the entrainment of Bacillus subtilis within Enceladus-like fluids under boiling conditions caused by exposure of the fluids to low pressure. We show that boiling, associated with exposure of a fluid to low pressure, works as a mechanism for dispersing bacteria in Enceladus plume-like environments. Exposure of Enceladus-type fluids (0.01-0.1 molal Na2CO3 and 0.05-0.2 molal NaCl) to low pressure (5 mbar) results in the dispersion of bacteria in droplets that evaporate to produce particles of salt. We find that, for particles with radius (r) ≤ 10 µm, the number of dispersed particles containing cells was between 7.7% and 10.9%. However, for larger particles 10 < r ≤ 50 µm, 64.4% and 56.4% contained cells for lower and upper end-member solutions, respectively. Our results suggest that the gravity-induced size sorting of plume particles will result in plume deposits closer to the vent source containing a larger volume of biological material than within the plume. If life is present in the ocean of Enceladus, we would expect that it would be effectively entrained and deposited on the surface; therefore, it would be accessible with a surface-lander-based instrument.


Assuntos
Exobiologia , Sódio , Exobiologia/métodos , Cloreto de Sódio , Bactérias
13.
Proc Natl Acad Sci U S A ; 119(39): e2201388119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122219

RESUMO

Saturn's moon Enceladus has a potentially habitable subsurface water ocean that contains canonical building blocks of life (organic and inorganic carbon, ammonia, possibly hydrogen sulfide) and chemical energy (disequilibria for methanogenesis). However, its habitability could be strongly affected by the unknown availability of phosphorus (P). Here, we perform thermodynamic and kinetic modeling that simulates P geochemistry based on recent insights into the geochemistry of the ocean-seafloor system on Enceladus. We find that aqueous P should predominantly exist as orthophosphate (e.g., HPO42-), and total dissolved inorganic P could reach 10-7 to 10-2 mol/kg H2O, generally increasing with lower pH and higher dissolved CO2, but also depending upon dissolved ammonia and silica. Levels are much higher than <10-10 mol/kg H2O from previous estimates and close to or higher than ∼10-6 mol/kg H2O in modern Earth seawater. The high P concentration is primarily ascribed to a high (bi)carbonate concentration, which decreases the concentrations of multivalent cations via carbonate mineral formation, allowing phosphate to accumulate. Kinetic modeling of phosphate mineral dissolution suggests that geologically rapid release of P from seafloor weathering of a chondritic rocky core could supply millimoles of total dissolved P per kilogram of H2O within 105 y, much less than the likely age of Enceladus's ocean (108 to 109 y). These results provide further evidence of habitable ocean conditions and show that any oceanic life would not be inhibited by low P availability.


Assuntos
Sulfeto de Hidrogênio , Fósforo , Amônia , Carbono , Dióxido de Carbono , Minerais , Oceanos e Mares , Fosfatos , Dióxido de Silício , Água
14.
Astrobiology ; 22(9): 1047-1060, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35972349

RESUMO

Landed missions to icy worlds with a subsurface liquid water ocean must meet planetary protection requirements and ensure a sufficiently small likelihood of any microorganism-bearing part of the landed element reaching the ocean. A higher bound on this likelihood is set by the potential for radioisotope thermoelectric generator (RTG) power sources, the hottest possible landed element, to melt through the ice shell and reach the ocean. In this study, we quantify this potential as a function of three key parameters: surface temperature, ice shell thickness (i.e., heat flux through the shell), and thickness of a porous (insulating) snow or regolith cover. Although the model we describe can be applied to any ocean world, we present results in the context of a landed mission concept to the south polar terrain of Saturn's moon Enceladus. In this particular context, we discuss planetary protection considerations for landing site selection. The likelihood of forward microbial contamination of Enceladus' ocean by an RTG-powered landed mission can be made sufficiently low to not undermine compliance with the planetary protection policy.


Assuntos
Meio Ambiente Extraterreno , Gelo , Oceanos e Mares , Planetas , Radioisótopos
15.
J Geophys Res Planets ; 127(5): e2021JE007117, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35865509

RESUMO

The inferred density of Enceladus' core, together with evidence of hydrothermal activity within the moon, suggests that the core is porous. Tidal dissipation in an unconsolidated core has been proposed as the main source of Enceladus' geological activity. However, the tidal response of its core has generally been modeled assuming it behaves viscoelastically rather than poroviscoelastically. In this work, we analyze the poroviscoelastic response to better constrain the distribution of tidal dissipation within Enceladus. A poroviscoelastic body has a different tidal response than a viscoelastic one; pressure within the pores alters the stress field and induces a Darcian porous flow. This flow represents an additional pathway for energy dissipation. Using Biot's theory of poroviscoelasticity, we develop a new framework to obtain the tidal response of a spherically symmetric, self-gravitating moon with porous layers and apply it to Enceladus. We show that the boundary conditions at the interface of the core and overlying ocean play a key role in the tidal response. The ocean hinders the development of a large-amplitude Darcian flow, making negligible the Darcian contribution to the dissipation budget. We therefore infer that Enceladus' core can be the source of its geological activity only if it has a low rigidity and a very low viscosity. A future mission to Enceladus could test this hypothesis by measuring the phase lags of tidally induced changes of gravitational potential and surface displacements.

16.
Astrobiology ; 22(7): 776-799, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35647896

RESUMO

Metal complexes of porphyrins and porphyrin-type compounds are ubiquitous in all three domains of life, with hemes and chlorophylls being the best-known examples. Their diagenetic transformation products are found as geoporphyrins, in which the characteristic porphyrin core structure is retained and which can be up to 1.1 billion years old. Because of this, and their relative ease of detection, metalloporphyrins appear attractive as chemical biosignatures in the search for extraterrestrial life. In this study, we investigated the stability of solid chlorido(2,3,7,8,12,13,17,18-octaethylporphyrinato)iron(III) [FeCl(oep)], which served as a model for heme-like molecules and iron geoporphyrins. [FeCl(oep)] was exposed to a variety of astrobiologically relevant extreme conditions, namely: aqueous acids and bases, oxidants, heat, and radiation. Key results are: (1) the [Fe(oep)]+ core is stable over the pH range 0.0-13.5 even at 80°C; (2) the oxidizing power follows the order ClO- > H2O2 > ClO3- > HNO3 > ClO4-; (3) in an inert atmosphere, the iron porphyrin is thermally stable to near 250°C; (4) at high temperatures, carbon dioxide gas is not inert but acts as an oxidant, forming carbon monoxide; (5) a decomposition layer is formed on ultraviolet irradiation and protects the [FeCl(oep)] underneath; (6) an NaCl/NaHCO3 salt mixture has a protective effect against X-rays; and (7) no such effect is observed when [FeCl(oep)] is exposed to iron ion particle radiation. The relevance to potential iron porphyrin biosignatures on Mars, Europa, and Enceladus is discussed.


Assuntos
Metaloporfirinas , Porfirinas , Heme/química , Peróxido de Hidrogênio , Ferro/química , Metaloporfirinas/química , Oxidantes , Porfirinas/química
17.
Astrobiology ; 22(6): 685-712, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35290745

RESUMO

Cassini revealed that Saturn's Moon Enceladus hosts a subsurface ocean that meets the accepted criteria for habitability with bio-essential elements and compounds, liquid water, and energy sources available in the environment. Whether these conditions are sufficiently abundant and collocated to support life remains unknown and cannot be determined from Cassini data. However, thanks to the plume of oceanic material emanating from Enceladus' south pole, a new mission to Enceladus could search for evidence of life without having to descend through kilometers of ice. In this article, we outline the science motivations for such a successor to Cassini, choosing the primary science goal to be determining whether Enceladus is inhabited and assuming a resource level equivalent to NASA's Flagship-class missions. We selected a set of potential biosignature measurements that are complementary and orthogonal to build a robust case for any life detection result. This result would be further informed by quantifications of the habitability of the environment through geochemical and geophysical investigations into the ocean and ice shell crust. This study demonstrates that Enceladus' plume offers an unparalleled opportunity for in situ exploration of an Ocean World and that the planetary science and astrobiology community is well equipped to take full advantage of it in the coming decades.


Assuntos
Saturno , Exobiologia , Meio Ambiente Extraterreno/química , Gelo , Planetas
18.
Earth Space Sci ; 9(10): e2022EA002247, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36588670

RESUMO

Ocean worlds such as Europa and Enceladus are high priority targets in the search for past or extant life beyond Earth. Evidence of life may be preserved in samples of surface ice by processes such as deposition from active plumes, hydrofracturing, or thermal convection. Terrestrial life produces unique distributions of organic molecules that translate into recognizable biosignatures. Identification and quantification of these organic compounds can be achieved by separation science such as capillary electrophoresis coupled to mass spectrometry (CE-MS). However, the data generated by such an instrument can be multiple orders of magnitude larger than what can be transmitted back to Earth during an ocean world's mission. This requires onboard science data analysis capabilities that summarize and prioritize CE-MS observations with limited computational resources. In response, the autonomous capillary electrophoresis mass-spectra examination (ACME) onboard science autonomy system was created for application to the ocean world's life surveyor (OWLS) instrument suite. ACME is able to compress raw mass spectra by two to three orders of magnitude while preserving most of its scientifically relevant information content. This summarization is achieved by the extraction of raw data surrounding autonomously identified ion peaks and the detection and parameterization of unique background regions. Prioritization of the summarized observations is then enabled by providing estimates of scientific utility, including presence of key target compounds, and the uniqueness of an observation relative to previous observations.

19.
Life (Basel) ; 11(11)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34833058

RESUMO

Enceladus is a potential target for future astrobiological missions. NASA's Cassini spacecraft demonstrated that the Saturnian moon harbors a salty ocean beneath its icy crust and the existence and analysis of the plume suggest water-rock reactions, consistent with the possible presence of hydrothermal vents. Particularly, the plume analysis revealed the presence of molecular hydrogen, which may be used as an energy source by microorganisms ( e.g., methanogens). This could support the possibility that populations of methanogens could establish in such environments if they exist on Enceladus. We took a macroscale approximation using ecological niche modeling to evaluate whether conditions suitable for methanogenic archaea on Earth are expected in Enceladus. In addition, we employed a new approach for computing the biomass using the Monod growth model. The response curves for the environmental variables performed well statistically, indicating that simple correlative models may be used to approximate large-scale distributions of these genera on Earth. We found that the potential hydrothermal conditions on Enceladus fit within the macroscale conditions identified as suitable for methanogens on Earth, and estimated a concentration of 1010-1011 cells/cm3.

20.
MethodsX ; 8: 101239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434762

RESUMO

Enceladus is a prime candidate in the solar system for in-depth astrobiological studies searching for habitability and life because it has a liquid water ocean with significant organic content and ongoing cryovolcanic activity. The presence of ice plumes that jet up through fissures in the ice crust covering the sub-surface ocean, enables remote sampling and in-situ analysis via a fly-by mission. However, capture and transport of organic materials to organic analyzers presents distinctive challenges as it is unknown whether, and to what extent, organic molecules imbedded in ice particles can be captured and survive hypervelocity impacts. This manuscript provides a fluorescence microscopic method to parametrically determine the amount of an organic fluorescent tracer dye, Pacific Blue™ (PB) deposited on a metallic surface. This method can be used to measure the capture and survival outcomes of terrestrial hypervelocity impact experiments where an ice projectile labeled with Pacific Blue impacts a soft metal surface. This work is an important step in the advancement of instruments like the Enceladus Organic Analyzer for detecting biosignatures in an Enceladus plume fly-by mission. An apparatus consisting of a substrate humidification shroud coupled with an epifluorescence microscope with CCD detector is developed to measure the intensity of quantitatively deposited Pacific Blue droplets under controlled humidity. Calibration curves are produced that relate the integrated fluorescence intensity of humidified PB droplets on metal foils to the number of PB molecules deposited. To demonstrate the utility of this method, our calibrations are used to analyze and quantitate organic capture and survival (up to 11% capture efficiency) following ice particle impacts at a velocity of 1.7 km/s on an aluminum substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA