Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gene ; 928: 148789, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-39047956

RESUMO

BACKGROUND: The expression profiles of placental genes are crucial for understanding the pathogenesis of fetal development and placental-origin pregnancy syndromes. However, owing to ethical limitations and the risks of puncture sampling, it is difficult to obtain placental tissue samples repeatedly, continuously, multiple times, or in real time. Establishing a non-invasive method for predicting placental gene expression profiles through maternal plasma cell-free DNA (cfDNA) sequencing, which carries information about the source tissue and gene expression, can potentially solve this problem. METHODS: Peripheral blood and placental samples were collected simultaneously from pregnant women who underwent cesarean section. Deep sequencing was performed on the separated plasma cfDNA and single-cell sequencing was performed on peripheral blood mononuclear cells (PBMC), chorioamniotic membranes (CAM), placental villi (PV), and decidua basalis (DB). The aggregation of corresponding information for each gene was combined with the transcriptome of PBMCs and a differential resolution transcriptome of the placenta. This combined information was then utilized for the construction of gene expression prediction models. After training, all models evaluated the correlation between the predicted and actual gene expression levels using external test set data. RESULTS: From five women, more than 20 million reads were obtained using deep sequencing for plasma cfDNA; PBMCs obtained 32,401 single-cell expression profiles; and placental tissue obtained 156,546 single-cell expression profiles (59,069, 44,921, and 52,556 for CAM, PV, and DB, respectively). The cells in the PBMC and placenta were clustered and annotated into five and eight cell types, respectively. A "DEPICT" gene expression prediction model was successfully constructed using deep neural networks. The predicted correlation coefficients were 0.75 in PBMCs, 0.84 in the placenta, and 0.78, 0.80, and 0.77 in CAM, BP, and PV respectively, and greater than 0.68 in different cell lines in the placenta. CONCLUSION: The DEPICT model, which can noninvasively predict placental gene expression profiles based on maternal plasma cfDNA fragmentation characteristics, was constructed to overcome the limitation of the inability to obtain real-time placental gene expression profiles and to improve research on noninvasive prediction of placental origin pregnancy syndrome.


Assuntos
Ácidos Nucleicos Livres , Leucócitos Mononucleares , Placenta , Humanos , Gravidez , Feminino , Ácidos Nucleicos Livres/genética , Placenta/metabolismo , Adulto , Leucócitos Mononucleares/metabolismo , Fragmentação do DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Transcriptoma , Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos
2.
Cell Rep Methods ; 4(6): 100793, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38866008

RESUMO

Plasma cell-free DNA (cfDNA) fragmentation patterns are emerging directions in cancer liquid biopsy with high translational significance. Conventionally, the cfDNA sequencing reads are aligned to a reference genome to extract their fragmentomic features. In this study, through cfDNA fragmentomics profiling using different reference genomes on the same datasets in parallel, we report systematic biases in such conventional reference-based approaches. The biases in cfDNA fragmentomic features vary among races in a sample-dependent manner and therefore might adversely affect the performances of cancer diagnosis assays across multiple clinical centers. In addition, to circumvent the analytical biases, we develop Freefly, a reference-free approach for cfDNA fragmentomics profiling. Freefly runs ∼60-fold faster than the conventional reference-based approach while generating highly consistent results. Moreover, cfDNA fragmentomic features reported by Freefly can be directly used for cancer diagnosis. Hence, Freefly possesses translational merit toward the rapid and unbiased measurement of cfDNA fragmentomics.


Assuntos
Ácidos Nucleicos Livres , Humanos , Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/sangue , Neoplasias/genética , Neoplasias/sangue , Neoplasias/diagnóstico , Análise de Sequência de DNA/métodos , Biópsia Líquida/métodos , Viés , Sequenciamento de Nucleotídeos em Larga Escala/métodos
3.
Front Oncol ; 14: 1341997, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313801

RESUMO

Background: According to GLOBOCAN 2020, lymphoma ranked as the 9th most common cancer and the 12th leading cause of cancer-related deaths worldwide. Traditional diagnostic methods rely on the invasive excisional lymph node biopsy, which is an invasive approach with some limitations. Most lymphoma patients are diagnosed at an advanced stage since they are asymptomatic at the beginning, which has significantly impacted treatment efficacy and prognosis of the disease. Method: This study assessed the performance and utility of a newly developed blood-based assay (SeekInCare) for lymphoma early detection. SeekInCare utilized protein tumor markers and a comprehensive set of cancer-associated genomic features, including copy number aberration (CNA), fragment size (FS), end motif, and lymphoma-related virus, which were profiled by shallow WGS of cfDNA. Results: Protein marker CA125 could be used for lymphoma detection independent of gender, and the sensitivity was 27.8% at specificity of 98.0%. After integrating these multi-dimensional features, 77.8% sensitivity was achieved at specificity of 98.0%, while its NPV and PPV were both more than 92% for lymphoma detection. The sensitivity of early-stage (I-II) lymphoma was up to 51.3% (47.4% and 55.0% for stage I and II respectively). After 2 cycles of treatment, the molecular response of SeekInCare was correlated with the clinical outcome. Conclusion: In summary, a blood-based assay can be an alternative to detect lymphoma with adequate performance. This approach becomes particularly valuable in cases where obtaining tissue biopsy is difficult to obtain or inconclusive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA