Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Sci Rep ; 14(1): 23489, 2024 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379448

RESUMO

Automated segmentation of biomedical image has been recognized as an important step in computer-aided diagnosis systems for detection of abnormalities. Despite its importance, the segmentation process remains an open challenge due to variations in color, texture, shape diversity and boundaries. Semantic segmentation often requires deeper neural networks to achieve higher accuracy, making the segmentation model more complex and slower. Due to the need to process a large number of biomedical images, more efficient and cheaper image processing techniques for accurate segmentation are needed. In this article, we present a modified deep semantic segmentation model that utilizes the backbone of EfficientNet-B3 along with UNet for reliable segmentation. We trained our model on Non-melanoma skin cancer segmentation for histopathology dataset to divide the image in 12 different classes for segmentation. Our method outperforms the existing literature with an increase in average class accuracy from 79 to 83%. Our approach also shows an increase in overall accuracy from 85 to 94%.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Semântica , Neoplasias Cutâneas , Pele , Humanos , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia , Processamento de Imagem Assistida por Computador/métodos , Pele/diagnóstico por imagem , Pele/patologia , Aprendizado Profundo , Algoritmos
2.
J Imaging Inform Med ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367198

RESUMO

Predicting long-term clinical outcomes based on the early DSC PWI MRI scan is valuable for prognostication, resource management, clinical trials, and patient expectations. Current methods require subjective decisions about which imaging features to assess and may require time-consuming postprocessing. This study's goal was to predict multilabel 90-day modified Rankin Scale (mRS) score in acute ischemic stroke patients by combining ensemble models and different configurations of radiomic features generated from Dynamic susceptibility contrast perfusion-weighted imaging. In Follow-up studies, a total of 70 acute ischemic stroke (AIS) patients underwent magnetic resonance imaging within 24 hours poststroke and had a follow-up scan. In the single study, 150 DSC PWI Image scans for AIS patients. The DRF are extracted from DSC-PWI Scans. Then Lasso algorithm is applied for feature selection, then new features are generated from initial and follow-up scans. Then we applied different ensemble models to classify between three classes normal outcome (0, 1 mRS score), moderate outcome (2,3,4 mRS score), and severe outcome (5,6 mRS score). ANOVA and post-hoc Tukey HSD tests confirmed significant differences in model style performance across various studies and classification techniques. Stacking models consistently on average outperformed others, achieving an Accuracy of 0.68 ± 0.15, Precision of 0.68 ± 0.17, Recall of 0.65 ± 0.14, and F1 score of 0.63 ± 0.15 in the follow-up time study. Techniques like Bo_Smote showed significantly higher recall and F1 scores, highlighting their robustness and effectiveness in handling imbalanced data. Ensemble models, particularly Bagging and Stacking, demonstrated superior performance, achieving nearly 0.93 in Accuracy, 0.95 in Precision, 0.94 in Recall, and 0.94 in F1 metrics in follow-up conditions, significantly outperforming single models. Ensemble models based on radiomics generated from combining Initial and follow-up scans can be used to predict multilabel 90-day stroke outcomes with reduced subjectivity and user burden.

3.
Diagnostics (Basel) ; 14(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39272656

RESUMO

Prostate cancer remains a leading cause of mortality among men globally, necessitating advancements in diagnostic methodologies to improve detection and treatment outcomes. Magnetic Resonance Imaging has emerged as a crucial technique for the detection of prostate cancer, with current research focusing on the integration of deep learning frameworks to refine this diagnostic process. This study employs a comprehensive approach using multiple deep learning models, including a three-dimensional (3D) Convolutional Neural Network, a Residual Network, and an Inception Network to enhance the accuracy and robustness of prostate cancer detection. By leveraging the complementary strengths of these models through an ensemble method and soft voting technique, the study aims to achieve superior diagnostic performance. The proposed methodology demonstrates state-of-the-art results, with the ensemble model achieving an overall accuracy of 91.3%, a sensitivity of 90.2%, a specificity of 92.1%, a precision of 89.8%, and an F1 score of 90.0% when applied to MRI images from the SPIE-AAPM-NCI PROSTATEx dataset. Evaluation of the models involved meticulous pre-processing, data augmentation, and the use of advanced deep-learning architectures to analyze the whole MRI slices and volumes. The findings highlight the potential of using an ensemble approach to significantly improve prostate cancer diagnostics, offering a robust and precise tool for clinical applications.

4.
Front Pharmacol ; 15: 1441587, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39234116

RESUMO

Background: Chemicals may lead to acute liver injuries, posing a serious threat to human health. Achieving the precise safety profile of a compound is challenging due to the complex and expensive testing procedures. In silico approaches will aid in identifying the potential risk of drug candidates in the initial stage of drug development and thus mitigating the developmental cost. Methods: In current studies, QSAR models were developed for hepatotoxicity predictions using the ensemble strategy to integrate machine learning (ML) and deep learning (DL) algorithms using various molecular features. A large dataset of 2588 chemicals and drugs was randomly divided into training (80%) and test (20%) sets, followed by the training of individual base models using diverse machine learning or deep learning based on three different kinds of descriptors and fingerprints. Feature selection approaches were employed to proceed with model optimizations based on the model performance. Hybrid ensemble approaches were further utilized to determine the method with the best performance. Results: The voting ensemble classifier emerged as the optimal model, achieving an excellent prediction accuracy of 80.26%, AUC of 82.84%, and recall of over 93% followed by bagging and stacking ensemble classifiers method. The model was further verified by an external test set, internal 10-fold cross-validation, and rigorous benchmark training, exhibiting much better reliability than the published models. Conclusion: The proposed ensemble model offers a dependable assessment with a good performance for the prediction regarding the risk of chemicals and drugs to induce liver damage.

5.
Environ Pollut ; 360: 124650, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39111529

RESUMO

Although Benzo[a]pyrene (BaP) is considered carcinogenic to humans, the health effects of exposure to ambient levels have not been sufficiently investigated. This study estimated the long-term spatiotemporal variation of BaP in Japan over nearly two decades at a fine spatial resolution of 1 km. This study aimed to obtain an accurate spatiotemporal distribution of BaP that can be used in epidemiological studies on the health effects of ambient BaP exposure. The annual BaP concentrations were estimated using an ensemble machine learning approach using various predictors, including the concentrations and emission intensities of the criteria air pollutants, and meteorological, land use, and traffic-related variables. The model performance, evaluated by location-based cross-validation, exhibited satisfactory accuracy (R2 of 0.693). Densely populated areas showed higher BaP levels and greater temporal reduction, whereas BaP levels remained higher in some industrial areas. The population-weighted BaP in 2018 was 0.12 ng m-3, a decrease of approximately 70% from its 2000 value of 0.44 ng m-3, which was also reflected in the estimated excess number of lung cancer incidences. Accordingly, the proportion of BaP exposure below 0.12 ng m-3, which is the BaP concentration associated with an excess lifetime cancer risk of 10-5, reached 67% in 2018. Our estimates can be used in epidemiological studies to assess the health effects of BaP exposure at ambient concentrations.


Assuntos
Poluentes Atmosféricos , Benzo(a)pireno , Exposição Ambiental , Benzo(a)pireno/análise , Humanos , Japão , Poluentes Atmosféricos/análise , Exposição Ambiental/estatística & dados numéricos , Análise Espaço-Temporal , Monitoramento Ambiental , Poluição do Ar/estatística & dados numéricos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/epidemiologia , Medição de Risco
6.
Mar Pollut Bull ; 207: 116873, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39180964

RESUMO

Understanding and forecasting changes in marine habitats due to global climate warming is crucial for sustainable fisheries. Using future environmental data provided by Global Climate Models (GCMs) and occurrence records of Chub mackerel in the North Pacific Ocean (2014-2023), we built eight individual models and four ensemble models to simulate current habitat distribution and forecast changes under three future climate scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5) for the 2050s and 2100s. Ensemble models outperformed individual ones, with the weighted average algorithm model achieving the highest accuracy (AUC 0.994, TSS 0.929). Sea Surface Temperature (SST) and chlorophyll-a (Chla) significantly influenced habitat distribution. Predictions indicate current high suitability areas for Chub mackerel are concentrated beyond the 200-nautical-mile baseline. Under future climate scenarios, habitat suitability is expected to decline, with a shift towards higher latitudes and deeper waters. High suitability areas will be significantly reduced.


Assuntos
Mudança Climática , Ecossistema , Oceano Pacífico , Animais , Perciformes , Temperatura , Clorofila A , Monitoramento Ambiental/métodos , Modelos Climáticos
7.
Sensors (Basel) ; 24(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39124045

RESUMO

Creating an effective deep learning technique for accurately diagnosing leak signals across diverse environments is crucial for integrating artificial intelligence (AI) into the power plant industry. We propose an automatic weight redistribution ensemble model based on transfer learning (TL) for detecting leaks in diverse power plant environments, overcoming the challenges of site-specific AI methods. This innovative model processes time series acoustic data collected from multiple homogeneous sensors located at different positions into three-dimensional root-mean-square (RMS) and frequency volume features, enabling accurate leak detection. Utilizing a TL-driven, two-stage learning process, we first train residual-network-based models for each domain using these preprocessed features. Subsequently, these models are retrained in an ensemble for comprehensive leak detection across domains, with control weight ratios finely adjusted through a softmax score-based approach. The experiment results demonstrate that the proposed method effectively distinguishes low-level leaks and noise compared to existing techniques, even when the data available for model training are very limited.

8.
Sci Rep ; 14(1): 20268, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39217246

RESUMO

Shear strength (SS) parameters are essential for understanding the mechanical behavior of materials, particularly in geotechnical engineering and rock mechanics. This study proposes a novel hierarchical ensemble model (HEM) to predict SS parameters: cohesion ( C ) and angle of internal friction ( φ ). The HEM addresses the limitations of traditional machine learning models. Its performance was validated using leave-one-out cross-validation (LOOCV) and out-of-bag (OOB) evaluation methods. The model's accuracy was assessed with R-squared correlation (R2), absolute average relative error percentage (AAREP), Taylor diagrams, and quantile-quantile plots. The computational results demonstrated that the proposed HEM outperforms previous studies using the same database. The model predicted φ and C with R2 values of 0.93 and 0.979, respectively. The AAREP values were 1.96% for φ and 4.7% for C . These results indicate that the HEM significantly improves the prediction quality of φ and C , and exhibits strong generalization capability. Sensitivity analysis revealed that σ_3maxσ3max (maximum principal stress) had the greatest impact on modeling both φ and C . According to uncertainty analysis, the LOOCV and OOB had the widest uncertainty bands for the φ and C parameters, respectively.

9.
BMC Bioinformatics ; 25(1): 256, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39098908

RESUMO

BACKGROUND: Antioxidant proteins are involved in several biological processes and can protect DNA and cells from the damage of free radicals. These proteins regulate the body's oxidative stress and perform a significant role in many antioxidant-based drugs. The current invitro-based medications are costly, time-consuming, and unable to efficiently screen and identify the targeted motif of antioxidant proteins. METHODS: In this model, we proposed an accurate prediction method to discriminate antioxidant proteins namely StackedEnC-AOP. The training sequences are formulation encoded via incorporating a discrete wavelet transform (DWT) into the evolutionary matrix to decompose the PSSM-based images via two levels of DWT to form a Pseudo position-specific scoring matrix (PsePSSM-DWT) based embedded vector. Additionally, the Evolutionary difference formula and composite physiochemical properties methods are also employed to collect the structural and sequential descriptors. Then the combined vector of sequential features, evolutionary descriptors, and physiochemical properties is produced to cover the flaws of individual encoding schemes. To reduce the computational cost of the combined features vector, the optimal features are chosen using Minimum redundancy and maximum relevance (mRMR). The optimal feature vector is trained using a stacking-based ensemble meta-model. RESULTS: Our developed StackedEnC-AOP method reported a prediction accuracy of 98.40% and an AUC of 0.99 via training sequences. To evaluate model validation, the StackedEnC-AOP training model using an independent set achieved an accuracy of 96.92% and an AUC of 0.98. CONCLUSION: Our proposed StackedEnC-AOP strategy performed significantly better than current computational models with a ~ 5% and ~ 3% improved accuracy via training and independent sets, respectively. The efficacy and consistency of our proposed StackedEnC-AOP make it a valuable tool for data scientists and can execute a key role in research academia and drug design.


Assuntos
Antioxidantes , Proteínas , Antioxidantes/química , Proteínas/química , Proteínas/metabolismo , Biologia Computacional/métodos , Aprendizado de Máquina , Algoritmos , Análise de Ondaletas , Máquina de Vetores de Suporte , Bases de Dados de Proteínas , Matrizes de Pontuação de Posição Específica
10.
Biomed Eng Online ; 23(1): 77, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39098936

RESUMO

BACKGROUND: Timely prevention of major adverse cardiovascular events (MACEs) is imperative for reducing cardiovascular diseases-related mortality. Perivascular adipose tissue (PVAT), the adipose tissue surrounding coronary arteries, has attracted increased amounts of attention. Developing a model for predicting the incidence of MACE utilizing machine learning (ML) integrating clinical and PVAT features may facilitate targeted preventive interventions and improve patient outcomes. METHODS: From January 2017 to December 2019, we analyzed a cohort of 1077 individuals who underwent coronary CT scanning at our facility. Clinical features were collected alongside imaging features, such as coronary artery calcium (CAC) scores and perivascular adipose tissue (PVAT) characteristics. Logistic regression (LR), Framingham Risk Score, and ML algorithms were employed for MACE prediction. RESULTS: We screened seven critical features to improve the practicability of the model. MACE patients tended to be older, smokers, and hypertensive. Imaging biomarkers such as CAC scores and PVAT characteristics differed significantly between patients with and without a 3-year MACE risk in a population that did not exhibit disparities in laboratory results. The ensemble model, which leverages multiple ML algorithms, demonstrated superior predictive performance compared with the other models. Finally, the ensemble model was used for risk stratification prediction to explore its clinical application value. CONCLUSIONS: The developed ensemble model effectively predicted MACE incidence based on clinical and imaging features, highlighting the potential of ML algorithms in cardiovascular risk prediction and personalized medicine. Early identification of high-risk patients may facilitate targeted preventive interventions and improve patient outcomes.


Assuntos
Tecido Adiposo , Doenças Cardiovasculares , Aprendizado de Máquina , Humanos , Tecido Adiposo/diagnóstico por imagem , Feminino , Masculino , Pessoa de Meia-Idade , Doenças Cardiovasculares/diagnóstico por imagem , Medição de Risco , Idoso , Tomografia Computadorizada por Raios X , Fatores de Risco , Vasos Coronários/diagnóstico por imagem
11.
Front Med (Lausanne) ; 11: 1425305, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39170045

RESUMO

The traditional complications of diabetes are well known and continue to pose a considerable burden to millions of people with diabetes mellitus (DM). With the continuous accumulation of medical data and technological advances, artificial intelligence has shown great potential and advantages in the prediction, diagnosis, and treatment of DM. When DM is diagnosed, some subjective factors and diagnostic methods of doctors will have an impact on the diagnostic results, so the use of artificial intelligence for fast and effective early prediction of DM patients can provide decision-making support to doctors and give more accurate treatment services to patients in time, which is of great clinical medical significance and practical significance. In this paper, an adaptive Stacking ensemble model is proposed based on the theory of "error-ambiguity decomposition," which can adaptively select the base classifiers from the pre-selected models. The adaptive Stacking ensemble model proposed in this paper is compared with KNN, SVM, RF, LR, DT, GBDT, XGBoost, LightGBM, CatBoost, MLP and traditional Stacking ensemble models. The results showed that the adaptive Stacking ensemble model achieved the best performance in five evaluation metrics: accuracy, precision, recall, F1 value and AUC value, which were 0.7559, 0.7286, 0.8132, 0.7686 and 0.8436. The model can effectively predict DM patients and provide a reference value for the screening and diagnosis of clinical DM.

12.
JMIR Diabetes ; 9: e53338, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110490

RESUMO

BACKGROUND: Diabetic ketoacidosis (DKA) is the leading cause of morbidity and mortality in pediatric type 1 diabetes (T1D), occurring in approximately 20% of patients, with an economic cost of $5.1 billion/year in the United States. Despite multiple risk factors for postdiagnosis DKA, there is still a need for explainable, clinic-ready models that accurately predict DKA hospitalization in established patients with pediatric T1D. OBJECTIVE: We aimed to develop an interpretable machine learning model to predict the risk of postdiagnosis DKA hospitalization in children with T1D using routinely collected time-series of electronic health record (EHR) data. METHODS: We conducted a retrospective case-control study using EHR data from 1787 patients from among 3794 patients with T1D treated at a large tertiary care US pediatric health system from January 2010 to June 2018. We trained a state-of-the-art; explainable, gradient-boosted ensemble (XGBoost) of decision trees with 44 regularly collected EHR features to predict postdiagnosis DKA. We measured the model's predictive performance using the area under the receiver operating characteristic curve-weighted F1-score, weighted precision, and recall, in a 5-fold cross-validation setting. We analyzed Shapley values to interpret the learned model and gain insight into its predictions. RESULTS: Our model distinguished the cohort that develops DKA postdiagnosis from the one that does not (P<.001). It predicted postdiagnosis DKA risk with an area under the receiver operating characteristic curve of 0.80 (SD 0.04), a weighted F1-score of 0.78 (SD 0.04), and a weighted precision and recall of 0.83 (SD 0.03) and 0.76 (SD 0.05) respectively, using a relatively short history of data from routine clinic follow-ups post diagnosis. On analyzing Shapley values of the model output, we identified key risk factors predicting postdiagnosis DKA both at the cohort and individual levels. We observed sharp changes in postdiagnosis DKA risk with respect to 2 key features (diabetes age and glycated hemoglobin at 12 months), yielding time intervals and glycated hemoglobin cutoffs for potential intervention. By clustering model-generated Shapley values, we automatically stratified the cohort into 3 groups with 5%, 20%, and 48% risk of postdiagnosis DKA. CONCLUSIONS: We have built an explainable, predictive, machine learning model with potential for integration into clinical workflow. The model risk-stratifies patients with pediatric T1D and identifies patients with the highest postdiagnosis DKA risk using limited follow-up data starting from the time of diagnosis. The model identifies key time points and risk factors to direct clinical interventions at both the individual and cohort levels. Further research with data from multiple hospital systems can help us assess how well our model generalizes to other populations. The clinical importance of our work is that the model can predict patients most at risk for postdiagnosis DKA and identify preventive interventions based on mitigation of individualized risk factors.

13.
Res Sq ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39149506

RESUMO

Accurate prediction of Particulate Matter (PM 10) levels, an indicator of natural pollutants such as those resulting from dust storms, is crucial for public health and environmental planning. This study aims to provide accurate forecasts of PM 10 over Morocco for five days. The Analog Ensemble (AnEn) and the Bias Correction (AnEnBc) techniques were employed to post-process PM 10 forecasts produced by the Copernicus Atmosphere Monitoring Service (CAMS) global atmospheric composition forecasts, using CAMS reanalysis data as a reference. The results show substantial prediction improvements: the Root Mean Square Error (RMSE) decreased from 63.83 µg/m 3 in the original forecasts to 44.73 µg/m 3 with AnEn and AnEnBc, while the Mean Absolute Error (MAE) reduced from 36.70 µg/m 3 to 24.30 µg/m 3. Additionally, the coefficient of determination (R 2) increased more than twofold from 29.11% to 65.18%, and the Pearson correlation coefficient increased from 0.61 to 0.82. This is the first use of this approach for Morocco and the Middle East and North Africa and has the potential for translation into early and more accurate warnings of PM 10 pollution events. The application of such approaches in environmental policies and public health decision making can minimize air pollution health impacts.

14.
Sci Rep ; 14(1): 16694, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030283

RESUMO

Concrete compressive strength (CS) is a crucial performance parameter in concrete structure design. Reliable strength prediction reduces costs and time in design and prevents material waste from extensive mixture trials. Machine learning techniques solve structural engineering challenges such as CS prediction. This study used Machine Learning (ML) models to enhance the prediction of CS, analyzing 1030 experimental CS data ranging from 2.33 to 82.60 MPa from previous research databases. The ML models included both non-ensemble and ensemble types. The non-ensemble models were regression-based, evolutionary, neural network, and fuzzy-inference-system. Meanwhile, the ensemble models consisted of adaptive boosting, random forest, and gradient boosting. There were eight input parameters: cement, blast-furnace-slag, aggregates (coarse and fine), fly ash, water, superplasticizer, and curing days, with the CS as the output. Comprehensive performance evaluations include visual and quantitative methods and k-fold cross-validation to assess the study's reliability and accuracy. A sensitivity analysis using Shapley-Additive-exPlanations (SHAP) was conducted to understand better how each input variable affects CS. The findings showed that the Categorical-Gradient-Boosting (CatBoost) model was the most accurate prediction during the testing stage. It had the highest determination-coefficient (R2) of 0.966 and the lowest Root-Mean-Square-Error (RMSE) of 3.06 MPa. The SHAP analysis showed that the age of the concrete was the most critical factor in the predictive accuracy. Finally, a Graphical User Interface (GUI) was offered for designers to predict concrete CS quickly and economically instead of costly computational or experimental tests.

15.
Conserv Biol ; : e14316, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946355

RESUMO

Assessing the extinction risk of species based on the International Union for Conservation of Nature (IUCN) Red List (RL) is key to guiding conservation policies and reducing biodiversity loss. This process is resource demanding, however, and requires continuous updating, which becomes increasingly difficult as new species are added to the RL. Automatic methods, such as comparative analyses used to predict species RL category, can be an efficient alternative to keep assessments up to date. Using amphibians as a study group, we predicted which species are more likely to change their RL category and thus should be prioritized for reassessment. We used species biological traits, environmental variables, and proxies of climate and land-use change as predictors of RL category. We produced an ensemble prediction of IUCN RL category for each species by combining 4 different model algorithms: cumulative link models, phylogenetic generalized least squares, random forests, and neural networks. By comparing RL categories with the ensemble prediction and accounting for uncertainty among model algorithms, we identified species that should be prioritized for future reassessment based on the mismatch between predicted and observed values. The most important predicting variables across models were species' range size and spatial configuration of the range, biological traits, climate change, and land-use change. We compared our proposed prioritization index and the predicted RL changes with independent IUCN RL reassessments and found high performance of both the prioritization and the predicted directionality of changes in RL categories. Ensemble modeling of RL category is a promising tool for prioritizing species for reassessment while accounting for models' uncertainty. This approach is broadly applicable to all taxa on the IUCN RL and to regional and national assessments and may improve allocation of the limited human and economic resources available to maintain an up-to-date IUCN RL.


Uso del análisis comparativo del riesgo de extinción para priorizar la reevaluación de los anfibios en la Lista Roja de la UICN Resumen El análisis del riesgo de extinción de una especie con base en la Lista Roja (LR) de la Unión Internacional para la Conservación de la Naturaleza (UICN) es clave para guiar las políticas de conservación y reducir la pérdida de la biodiversidad. Sin embargo, este proceso demanda recursos y requiere de actualizaciones continuas, lo que se complica conforme se añaden especies nuevas a la LR. Los métodos automáticos, como los análisis comparativos usados para predecir la categoría de la especie en la LR, pueden ser una alternativa eficiente para mantener actualizados los análisis. Usamos a los anfibios como grupo de estudio para predecir cuáles especies tienen mayor probabilidad de cambiar de categoría en la LR y que, por lo tanto, se debería priorizar su reevaluación. Usamos las características biológicas de la especie, las variables ambientales e indicadores climáticos y del cambio de uso de suelo como predictores de la categoría en la LR. Elaboramos una predicción de ensamble de la categoría en la LR de la UICN para cada especie mediante la combinación de cuatro algoritmos diferentes: modelos de vínculo acumulativo, menor número de cuadros filogenéticos generalizados, bosques aleatorios y redes neurales. Con la comparación entre las categorías de la LR y la predicción de ensamble y con considerar la incertidumbre entre los algoritmos identificamos especies que deberían ser prioridad para futuras reevaluaciones con base en el desfase entre los valores predichos y los observados. Las variables de predicción más importantes entre los modelos fueron el tamaño de la distribución de la especie y su configuración espacial, las características biológicas, el cambio climático y el cambio de uso de suelo. Comparamos nuestra propuesta de índice de priorización y los cambios predichos en la LR con las reevaluaciones independientes de la LR de la UICN y descubrimos un buen desempeño tanto para la priorización como para la direccionalidad predicha de los cambios en las categorías de la LR. El modelo de ensamble de la categoría de la LR esa una herramienta prometedora para priorizar la reevaluación de las especies a la vez que considera la incertidumbre del modelo. Esta estrategia puede generalizarse para aplicarse a todos los taxones de la LR de la UICN y a los análisis regionales y nacionales. También podría mejorar la asignación de los recursos humanos y económicos limitados disponibles para mantener actualizada la LR de la UICN.

16.
Biomed Phys Eng Express ; 10(5)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38955139

RESUMO

The prevalence of vision impairment is increasing at an alarming rate. The goal of the study was to create an automated method that uses optical coherence tomography (OCT) to classify retinal disorders into four categories: choroidal neovascularization, diabetic macular edema, drusen, and normal cases. This study proposed a new framework that combines machine learning and deep learning-based techniques. The utilized classifiers were support vector machine (SVM), K-nearest neighbor (K-NN), decision tree (DT), and ensemble model (EM). A feature extractor, the InceptionV3 convolutional neural network, was also employed. The performance of the models was evaluated against nine criteria using a dataset of 18000 OCT images. For the SVM, K-NN, DT, and EM classifiers, the analysis exhibited state-of-the-art performance, with classification accuracies of 99.43%, 99.54%, 97.98%, and 99.31%, respectively. A promising methodology has been introduced for the automatic identification and classification of retinal disorders, leading to reduced human error and saved time.


Assuntos
Algoritmos , Inteligência Artificial , Redes Neurais de Computação , Doenças Retinianas , Máquina de Vetores de Suporte , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Doenças Retinianas/diagnóstico , Doenças Retinianas/diagnóstico por imagem , Aprendizado Profundo , Retina/diagnóstico por imagem , Retina/patologia , Árvores de Decisões , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/diagnóstico por imagem , Aprendizado de Máquina , Neovascularização de Coroide/diagnóstico por imagem , Neovascularização de Coroide/diagnóstico , Edema Macular/diagnóstico por imagem , Edema Macular/diagnóstico
17.
World J Clin Cases ; 12(21): 4661-4672, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39070824

RESUMO

BACKGROUND: There is a lack of literature discussing the utilization of the stacking ensemble algorithm for predicting depression in patients with heart failure (HF). AIM: To create a stacking model for predicting depression in patients with HF. METHODS: This study analyzed data on 1084 HF patients from the National Health and Nutrition Examination Survey database spanning from 2005 to 2018. Through univariate analysis and the use of an artificial neural network algorithm, predictors significantly linked to depression were identified. These predictors were utilized to create a stacking model employing tree-based learners. The performances of both the individual models and the stacking model were assessed by using the test dataset. Furthermore, the SHapley additive exPlanations (SHAP) model was applied to interpret the stacking model. RESULTS: The models included five predictors. Among these models, the stacking model demonstrated the highest performance, achieving an area under the curve of 0.77 (95%CI: 0.71-0.84), a sensitivity of 0.71, and a specificity of 0.68. The calibration curve supported the reliability of the models, and decision curve analysis confirmed their clinical value. The SHAP plot demonstrated that age had the most significant impact on the stacking model's output. CONCLUSION: The stacking model demonstrated strong predictive performance. Clinicians can utilize this model to identify high-risk depression patients with HF, thus enabling early provision of psychological interventions.

18.
Proc Inst Mech Eng H ; 238(7): 837-847, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39049815

RESUMO

Steady-state visually evoked potential is one of the active explorations in the brain-computer interface research. Electroencephalogram based brain computer interface studies have been widely applied to perceive solutions for real-world problems in the healthcare domain. The classification of externally bestowed visual stimuli of different frequencies on a human was experimented to identify the need of paralytic people. Although many classifiers are at the fingertip of machine learning technology, recent research has proven that ensemble learning is more efficacious than individual classifiers. Despite its efficiency, ensemble learning technology exhibits certain drawbacks like taking more time on selecting the optimal classifier subset. This research article utilizes the Harris Hawk Optimization algorithm to select the best classifier subset from the given set of classifiers. The objective of the research is to develop an efficient multi-classifier model for electroencephalogram signal classification. The proposed model utilizes the Boruta Feature Selection algorithm to select the prominent features for classification. Thus selected prominent features are fed into the multi-classifier subset which has been generated by the Harris Hawk Optimization algorithm. The results of the multi-classifier ensemble model are aggregated using Stacking, Bagging, Boosting, and Voting. The proposed model is evaluated against the acquired dataset and produces a promising accuracy of 96.1%, 98.7%, 91.91%, and 99.01% with the ensemble techniques respectively. The proposed model is also validated with other performance metrics such as sensitivity, specificity, and F1-Score. The experimental results show that the proposed model proves its supremacy in segregating the multi-class classification problem with high accuracy.


Assuntos
Algoritmos , Eletroencefalografia , Potenciais Evocados Visuais , Processamento de Sinais Assistido por Computador , Eletroencefalografia/métodos , Humanos , Potenciais Evocados Visuais/fisiologia , Automação , Interfaces Cérebro-Computador , Aprendizado de Máquina
19.
Front Plant Sci ; 15: 1336911, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966141

RESUMO

One of the most crucial steps in the practical conservation of endangered endemic mountain plants is to address their population size status and habitat requirements concurrently with understanding their response to future global warming. Three endangered Silene species-Silene leucophylla Boiss., S. schimperiana Boiss., and S. oreosinaica Chowdhuri-in Egypt were the focus of the current study. These species were examined for population status change, habitat quality variables (topography, soil features, and threats), and predictive current and future distributions. To find population size changes, recent field surveys and historical records were compared. Using Random Forest (RF) and Canonical Correspondence Analysis (CCA), habitat preferences were assessed. To forecast present-day distribution and climate change response, an ensemble model was used. The results reported a continuous decline in the population size of the three species. Both RF and CCA addressed that elevation, soil texture (silt, sand, and clay fractions), soil moisture, habitat-type, chlorides, electric conductivity, and slope were among the important variables associated with habitat quality. The central northern sector of the Saint Catherine area is the hotspot location for the predictive current distribution of three species with suitable areas of 291.40, 293.10, and 58.29 km2 for S. leucophylla, S. schimperiana, and S. oreosinaica, respectively. Precipitation-related variables and elevation were the key predictors for the current distribution of three Silene species. In response to climate change scenarios, the three Silene species exhibited a gradual contraction in the predictive suitable areas with upward shifts by 2050 and 2070. The protection of these species and reintroduction to the predicted current and future climatically suitable areas are urgent priorities. Ex-situ conservation and raised surveillance, as well as fenced enclosures may catapult as promising and effective approaches to conserving such threatened species.

20.
Sci Rep ; 14(1): 14196, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902368

RESUMO

Alzheimer disease (AD) is among the most chronic neurodegenerative diseases that threaten global public health. The prevalence of Alzheimer disease and consequently the increased risk of spread all over the world pose a vital threat to human safekeeping. Early diagnosis of AD is a suitable action for timely intervention and medication, which may increase the prognosis and quality of life for affected individuals. Quantum computing provides a more efficient model for different disease classification tasks than classical machine learning approaches. The full potential of quantum computing is not applied to Alzheimer's disease classification tasks as expected. In this study, we proposed an ensemble deep learning model based on quantum machine learning classifiers to classify Alzheimer's disease. The Alzheimer's disease Neuroimaging Initiative I and Alzheimer's disease Neuroimaging Initiative II datasets are merged for the AD disease classification. We combined important features extracted based on the customized version of VGG16 and ResNet50 models from the merged images then feed these features to the Quantum Machine Learning classifier to classify them as non-demented, mild demented, moderate demented, and very mild demented. We evaluate the performance of our model by using six metrics; accuracy, the area under the curve, F1-score, precision, and recall. The result validates that the proposed model outperforms several state-of-the-art methods for detecting Alzheimer's disease by registering an accuracy of 99.89 and 98.37 F1-score.


Assuntos
Doença de Alzheimer , Aprendizado Profundo , Aprendizado de Máquina , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/diagnóstico por imagem , Humanos , Neuroimagem/métodos , Diagnóstico Precoce , Idoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA