Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.714
Filtrar
1.
Small Struct ; 5(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39220563

RESUMO

Quantitative and volumetric assessment of filamentous actin fibers (F-actin) remains challenging due to their interconnected nature, leading researchers to utilize threshold based or qualitative measurement methods with poor reproducibility. Here we introduce a novel machine learning based methodology for accurate quantification and reconstruction of nuclei-associated F-actin. Utilizing a Convolutional Neural Network (CNN), we segment actin filaments and nuclei from 3D confocal microscopy images and then reconstruct each fiber by connecting intersecting contours on cross-sectional slices. This allowed measurement of the total number of actin filaments and individual actin filament length and volume in a reproducible fashion. Focusing on the role of F-actin in supporting nucleocytoskeletal connectivity, we quantified apical F-actin, basal F-actin, and nuclear architecture in mesenchymal stem cells (MSCs) following the disruption of the Linker of Nucleoskeleton and Cytoskeleton (LINC) Complexes. Disabling LINC in mesenchymal stem cells (MSCs) generated F-actin disorganization at the nuclear envelope characterized by shorter length and volume of actin fibers contributing a less elongated nuclear shape. Our findings not only present a new tool for mechanobiology but introduce a novel pipeline for developing realistic computational models based on quantitative measures of F-actin.

2.
Med Phys ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39236300

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disorder that leads to mobility loss and life-threatening cardiac or respiratory complications. Quantitative ultrasound (QUS) envelope statistics imaging, which characterizes fat infiltration and fibrosis in muscles, has been extensively used for DMD evaluations. PURPOSE: Notably, changes in muscle microstructures also result in acoustic attenuation, potentially serving as another crucial imaging biomarker for DMD. Expanding upon the reference frequency method (RFM), this study contributes to the field by introducing the robust RFM (RRFM) as a novel approach for ultrasound attenuation imaging in DMD. METHODS: The RRFM algorithm was developed using an iterative reweighted least squares technique. We conducted standard phantom measurements with a clinical ultrasound system equipped with a linear array transducer to assess the improvement in attenuation estimation bias by RRFM. Additionally, 161 DMD patients, included in both a validation dataset (n = 130) and a testing dataset (n = 31), underwent ultrasound scanning of the gastrocnemius for RRFM-based attenuation imaging. The diagnostic performances for ambulatory functions and discrimination between early and late ambulatory stages were evaluated and compared with those of QUS envelope statistics imaging (involving Nakagami distribution, homodyned K distribution, and entropy values) using the area under the receiver operating characteristic curve (AUROC). RESULTS: The results indicated that the RRFM method more closely matched the actual attenuation properties of the phantom, reducing measurement bias by 50% compared to conventional RFM. The AUROCs for RRFM-based attenuation imaging, used to discriminate between early and late ambulatory stages, were 0.88 and 0.92 for the validation and testing datasets, respectively. These performances significantly surpassed those of QUS envelope statistics imaging (p < 0.05). CONCLUSIONS: Ultrasound attenuation imaging employing RRFM may serve as a sensitive tool for evaluating the progression of ambulatory function deterioration, offering substantial potential for the health management and follow-up care of DMD patients.

3.
J Virol ; : e0118324, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230303

RESUMO

Dengue virus (DENV) gains genetic mutations during continuous transmission and evolution, making the virus more adaptive and virulent. The clade of DENV-1 genotype I has expanded and become the predominant genotype in Asia and the Pacific areas, but the underlying mechanisms are unclear. A combined analysis of nonsynonymous mutations in domain III of the envelope protein and their biological effects on virus pathogenesis and transmission was evaluated. Phylogenetic analyses found three nonsynonymous mutations (V324I, V351L, and V380I) in domain III of the envelope protein, which emerged in 1970s-1990s and stably inherited and expanded in contemporary strains after 2000. We generated reverse-mutated viruses (I324V, L351V, and I380V) based on an infectious clone of an epidemic DENV-1 strain (NIID02-20), and the results suggested that the infectivity of the contemporary epidemic virus (wild type, WT) has increased compared to the reverse mutant viruses in mammalian hosts but not mosquito vectors. The WT virus showed a higher binding affinity to host cells and increased virion stability. In addition, weaker immunogenicity and higher resistance to neutralizing antibodies of the WT virus indicated a trend of immune escape. The data suggested that nonsynonymous mutations of the E protein (V324I, V351L, and V380I) promote infectivity and immune evasion of DENV-1 genotype I, which may facilitate its onward transmission on a global scale. IMPORTANCE: We provide evidence that minor sequence variation among dengue virus (DENV) strains can result in increased adaptability and virulence, impacting both the biology of the virus and the antiviral immune response. The genetic mutations of DENV-1 gained during continuous transmission and evolution will offer new clues for the design of novel vaccines against flaviviruses.

4.
Biochimie ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111564

RESUMO

The four main types of biomolecules are nucleic acids, proteins, carbohydrates and lipids. The knowledge about their respective interactions is as important as the individual understanding of each of them. However, while, for example, the interaction of proteins with the other three groups is extensively studied, that of nucleic acids and lipids is, in comparison, very poorly explored. An iconic paradigm of physical (and likely functional) proximity between DNA and lipids is the case of the genomic DNA in eukaryotes: enclosed within the nucleus by two concentric lipid bilayers, the wealth of implications of this interaction, for example in genome stability, remains underassessed. Nuclear lipid-related phenotypes have been observed for 50 years, yet in most cases kept as mere anecdotical descriptions. In this review, we will bring together the evidence connecting lipids with both the nuclear envelope and the nucleoplasm, and will make critical analyses of these descriptions. Our exploration establishes a scenario in which lipids irrefutably play a role in nuclear homeostasis.

5.
Int J Cosmet Sci ; 46(4): 488-493, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39113288

RESUMO

Anthony V. Rawlings has had 30+ years of experience in the general area of skin science. He has many scientific publications, and his work has been highly cited. He has made major contributions to our understanding of skin physiology, including xerosis and hydration, barrier function, desquamation, the corneocyte envelope, physical chemistry of stratum corneum lipids, photodamage and ethnic variation. He has held management positions with several companies in the US and UK, established AVR Consulting in 2002 and maintained a long-standing relationship with colleagues at University College London. His time as the Editor in Chief of the International Journal of Cosmetic Science was pivotal in the development of the journal. He worked hard and succeeded in getting the IJCS included in the PubMed database.


Anthony V. Rawlings a plus de 30 ans d'expérience dans le domaine général de la science de la peau. Il est l'auteur d'un grand nombre de publications scientifiques, et ses travaux ont été largement cités. Il a beaucoup contribué à notre compréhension de la physiologie de la peau, notamment la xérose et l'hydratation, la fonction de barrière, la desquamation, l'enveloppe des cornéocytes, la chimie physique des lipides de la couche cornée, le photodommage et les variations ethniques. Il a occupé des postes de direction dans plusieurs entreprises aux États­Unis et au Royaume­Uni, a créé AVR Consulting en 2002 et entretient une relation de longue date avec ses collègues de l'University College de Londres. Le temps qu'il a passé comme rédacteur en chef de l'International Journal of Cosmetic Science a été déterminant dans le développement de la revue. Il a travaillé dur et a réussi à faire inclure l'IJCS dans la base de données PubMed.


Assuntos
Fenômenos Fisiológicos da Pele , Humanos , Pele/metabolismo
6.
Mol Biol Rep ; 51(1): 898, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115711

RESUMO

BACKGROUND: The nuclear envelope (NE), which is composed of the outer and inner nuclear membranes, the nuclear pore complex and the nuclear lamina, regulates a plethora of cellular processes, including those that restrict cancer development (genomic stability, cell cycle regulation, and cell migration). Thus, impaired NE is functionally related to tumorigenesis, and monitoring of NE alterations is used to diagnose cancer. However, the chronology of NE changes occurring during cancer evolution and the connection between them remained to be precisely defined, due to the lack of appropriate cell models. METHODS: The expression and subcellular localization of NE proteins (lamins A/C and B1 and the inner nuclear membrane proteins emerin and ß-dystroglycan [ß-DG]) during prostate cancer progression were analyzed, using confocal microscopy and western blot assays, and a prostate cancer cell system comprising RWPE-1 epithelial prostate cells and several prostate cancer cell lines with different invasiveness. RESULTS: Deformed nuclei and the mislocalization and low expression of lamin A/C, lamin B1, and emerin became more prominent as the invasiveness of the prostate cancer lines increased. Suppression of lamin A/C expression was an early event during prostate cancer evolution, while a more extensive deregulation of NE proteins, including ß-DG, occurred in metastatic prostate cells. CONCLUSIONS: The RWPE-1 cell line-based system was found to be suitable for the correlation of NE impairment with prostate cancer invasiveness and determination of the chronology of NE alterations during prostate carcinogenesis. Further study of this cell system would help to identify biomarkers for prostate cancer prognosis and diagnosis.


Assuntos
Lamina Tipo A , Lamina Tipo B , Proteínas de Membrana , Membrana Nuclear , Proteínas Nucleares , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Membrana Nuclear/metabolismo , Linhagem Celular Tumoral , Proteínas de Membrana/metabolismo , Lamina Tipo B/metabolismo , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Distroglicanas/metabolismo , Regulação Neoplásica da Expressão Gênica , Núcleo Celular/metabolismo
7.
Cells ; 13(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39120335

RESUMO

The endosomal sorting complex required for transport (ESCRT) machinery is composed of an articulated architecture of proteins that assemble at multiple cellular sites. The ESCRT machinery is involved in pathways that are pivotal for the physiology of the cell, including vesicle transport, cell division, and membrane repair. The subunits of the ESCRT I complex are mainly responsible for anchoring the machinery to the action site. The ESCRT II subunits function to bridge and recruit the ESCRT III subunits. The latter are responsible for finalizing operations that, independently of the action site, involve the repair and fusion of membrane edges. In this review, we report on the data related to the activity of the ESCRT machinery at two sites: the nuclear membrane and the midbody and the bridge linking cells in the final stages of cytokinesis. In these contexts, the machinery plays a significant role for the protection of genome integrity by contributing to the control of the abscission checkpoint and to nuclear envelope reorganization and correlated resilience. Consistently, several studies show how the dysfunction of the ESCRT machinery causes genome damage and is a codriver of pathologies, such as laminopathies and cancer.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Humanos , Citocinese , Animais , Membrana Nuclear/metabolismo , Instabilidade Genômica
8.
Acta Neurochir (Wien) ; 166(1): 318, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39090257

RESUMO

BACKGROUND AND PURPOSE: Deep brain stimulation (DBS) is a surgical procedure that has been used to treat a variety of neurological disorders including Parkinson's disease, essential tremor, and dystonia. While DBS is generally considered safe and effective, surgical site infections (SSIs) are a potential complication that can lead to significant morbidity and mortality. Our objective was to investigate the use of antibiotic-impregnated envelopes (AIEs) encasing implantable pulse generators (IPGs) to reduce the rate of infection at IPG sites and the costs. METHODS: We conducted a retrospective analysis at a single center encompassing all procedures involving the placement of Implantable Pulse Generators (IPG), including both initial insertions and replacement surgeries. The study period spanned from January 2017 to May 2024. Starting in 2020, the routine utilization of AIE became standard practice at our institute for both primary DBS implantation and IPG replacements. Surgical techniques remained consistent, pre- and post-operative antibiotic protocols were standardized throughout the study period and all cases were undertaken by a single surgeon. RESULTS: 178 patients were included and the overall incidence of IPG SSIs was found to be 1.7% (1 infection in 58 patients; 20 primary IPG/38 IPG replacements) among those who received an AIE compared to 5% (6 infections in 120 patients; 36 primary IPG/84 replacement IPG) in patients where no AIE was utilized. This resulted in an odds ratio for infection that was 2.9 times higher in the absence of AIE. The decrease in infection rates was observed in both primary and replacement IPG implants. Notably, over 80% of patients with IPG infection required surgical intervention. The use of AIE further resulted in significant cost savings. CONCLUSION: To our knowledge, this is the largest series reporting the efficacy of Antibiotic impregnated envelope (AIE) in modifying infection rates associated with both initial and replacement Deep Brain Stimulation (DBS) Implantable Pulse Generators (IPGs). The implementation of AIEs led to a decrease in the occurrence of IPG-related infections, observed across both primary implantations and replacement surgeries, with associated economic benefits.


Assuntos
Antibacterianos , Estimulação Encefálica Profunda , Infecção da Ferida Cirúrgica , Humanos , Estimulação Encefálica Profunda/métodos , Infecção da Ferida Cirúrgica/prevenção & controle , Infecção da Ferida Cirúrgica/epidemiologia , Estudos Retrospectivos , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Masculino , Pessoa de Meia-Idade , Feminino , Idoso , Eletrodos Implantados , Antibioticoprofilaxia/métodos , Adulto
9.
Microb Pathog ; : 106849, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147215

RESUMO

The white spot syndrome virus (WSSV), a rapidly replicating and highly lethal pathogen that targets Penaeid shrimp, has emerged as one of the most widespread viruses globally due to its high virulence. With effective chemotherapeutics still unavailable, the pursuit of novel and viable strategies against WSSV remains a crucial focus in the field of shrimp farming. The envelope proteins of WSSV are essential for virus entry, serving as excellent targets for the development of antiviral therapeutics. Novel strategies in the design of inhibitory peptides, especially those targeting envelope protein (VP28) located on the surface of the virus particle, play a critical role as a significant virulence factor during the early stages of inherent WSSV infection in shrimp. In this direction, the current computational study focused on identifying self-inhibitory peptides from the hydrophobic membrane regions of the VP28 protein, employing peptide docking and molecular dynamics simulation (MDS) approaches. Such inhibitory peptides could be useful building blocks for the rational engineering of inhibitory therapeutics since they imitate the mechanism of binding to homologous partners used by their origin domain to interact with other molecules. The N-terminal sequence of VP28 has been reported as the potential site for membrane interactions during the virus entry. Moreover, drug delivery systems mediated by chitosan and gold nanoparticles are being developed to enhance the therapeutic efficacy of anti-viral peptides. These systems can increase the solubility, stability, and selectivity of peptides, possessing better qualities than conventional delivery methods. This computational study on self-inhibitory peptides could be a valuable resource for further in vitro and in vivo studies on anti-viral therapeutics in the aquaculture industry.

10.
Adv Sci (Weinh) ; : e2405829, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145423

RESUMO

Targeted protein degradation has been widely adopted as a new approach to eliminate both established and previously recalcitrant therapeutic targets. Here, it is reported that the development of small molecule degraders of the envelope (E) protein of dengue virus. Two classes of bivalent E-degraders are developed by linking two previously reported E-binding small molecules, GNF-2, and CVM-2-12-2, to a glutarimide-based recruiter of the CRL4CRBN ligase to effect proteosome-mediated degradation of the E protein. ZXH-2-107 (based on GNF-2) is an E-degrader with ABL inhibitory activity while ZXH-8-004 (based on CVM-2-12-2) is a selective and potent E-degrader. These two compounds provide proof of concept that difficult-to-drug targets such as a viral envelope protein can be effectively eliminated using a bivalent degrader and provide starting points for the future development of a new class of direct-acting antiviral drugs.

11.
J Virol ; : e0054024, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162433

RESUMO

Systemic viral infection of insects typically begins with the primary infection of midgut epithelial cells (enterocytes) and subsequent transit of the progeny virus in an apical-to-basal orientation into the hemocoel. For insect-vectored viruses, an oppositely oriented process (basal-to-apical transit) occurs upon secondary infection of salivary glands and is necessary for virus transmission to non-insect hosts. To examine this inversely oriented virus transit in these polarized tissues, we assessed the intracellular trafficking of two model viral envelope proteins (baculovirus GP64 and vesicular stomatitis virus G) in the midgut and salivary gland cells of the model insect, Drosophila melanogaster. Using fly lines that inducibly express either GP64 or VSV G, we found that each protein, expressed alone, was trafficked basally in midgut enterocytes. In salivary gland cells, VSV G was trafficked apically in most but not all cells, whereas GP64 was consistently trafficked basally. We demonstrated that a YxxØ motif present in both proteins was critical for basal trafficking in midgut enterocytes but dispensable for trafficking in salivary gland cells. Using RNAi, we found that clathrin adaptor protein complexes AP-1 and AP-3, as well as seven Rab GTPases, were involved in polarized VSV G trafficking in midgut enterocytes. Our results indicate that these viral envelope proteins encode the requisite information and require no other viral factors for appropriately polarized trafficking. In addition, they exploit tissue-specific differences in protein trafficking pathways to facilitate virus egress in the appropriate orientation for establishing systemic infections and vectoring infection to other hosts. IMPORTANCE: Viruses that use insects as hosts must navigate specific routes through different insect tissues to complete their life cycles. The routes may differ substantially depending on the life cycle of the virus. Both insect pathogenic viruses and insect-vectored viruses must navigate through the polarized cells of the midgut epithelium to establish a systemic infection. In addition, insect-vectored viruses must also navigate through the polarized salivary gland epithelium for transmission. Thus, insect-vectored viruses appear to traffic in opposite directions in these two tissues. In this study, we asked whether two viral envelope proteins (VSV G and baculovirus GP64) alone encode the signals necessary for the polarized trafficking associated with their respective life cycles. Using Drosophila as a model to examine tissue-specific polarized trafficking of these viral envelope proteins, we identified one of the virus-encoded signals and several host proteins associated with regulating the polarized trafficking in the midgut epithelium.

12.
Microbiol Spectr ; : e0397423, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162545

RESUMO

The increasing clinical significance of Mycobacterium abscessus is owed to its innate high-level, broad-spectrum resistance to antibiotics and therefore rapidly evolves as an important human pathogen. This warrants the identification of novel targets for aiding the discovery of new drugs or drug combinations to treat M. abscessus infections. This study is inspired by the drug-hypersensitive profile of a mutant M. abscessus (U14) with transposon insertion in MAB_1915. We validated the role of MAB_1915 in intrinsic drug resistance in M. abscessus by constructing a selectable marker-free in-frame deletion in MAB_1915 and complementing the mutant with the same or extended version of the gene and then followed by drug susceptibility testing. Judging by the putative function of MAB_1915, cell envelope permeability was studied by ethidium bromide accumulation assay and susceptibility testing against dyes and detergents. In this study, we established genetic evidence of the role of MAB_1915 in intrinsic resistance to rifampicin, rifabutin, linezolid, clarithromycin, vancomycin, and bedaquiline. Disruption of MAB_1915 has also been observed to cause a significant increase in cell envelope permeability in M. abscessus. Restoration of resistance is observed to depend on at least 27 base pairs upstream of the coding DNA sequence of MAB_1915. MAB_1915 could therefore be associated with cell envelope permeability, and hence its role in intrinsic resistance to multiple drugs in M. abscessus, which presents it as a novel target for future development of effective antimicrobials to overcome intrinsic drug resistance in M. abscessus. IMPORTANCE: This study reports the role of a putative fadD (MAB_1915) in innate resistance to multiple drugs by M. abscessus, hence identifying MAB_1915 as a valuable target and providing a baseline for further mechanistic studies and development of effective antimicrobials to check the high level of intrinsic resistance in this pathogen.

13.
J Virol ; : e0079524, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39207135

RESUMO

While investigating methods to target gene delivery vectors to specific cell types, we examined the potential of using a nanobody against the SARS-CoV-2 Spike protein receptor-binding domain to direct lentivirus infection of Spike-expressing cells. Using four different approaches, we found that lentiviruses with surface-exposed nanobody domains selectively infect Spike-expressing cells. Targeting is dependent on the fusion function of the Spike protein, and conforms to a model in which nanobody binding to the Spike protein triggers the Spike fusion machinery. The nanobody-Spike interaction also is capable of directing cell-cell fusion and the selective infection of nanobody-expressing cells by Spike-pseudotyped lentivirus vectors. Significantly, cells infected with SARS-CoV-2 are efficiently and selectively infected by lentivirus vectors pseudotyped with a chimeric nanobody protein. Our results suggest that cells infected by any virus that forms syncytia may be targeted for gene delivery by using an appropriate nanobody or virus receptor mimic. Vectors modified in this fashion may prove useful in the delivery of immunomodulators to infected foci to mitigate the effects of viral infections.IMPORTANCEWe have discovered that lentiviruses decorated on their surfaces with a nanobody against the SARS-CoV-2 Spike protein selectively infect Spike-expressing cells. Infection is dependent on the specificity of the nanobody and the fusion function of the Spike protein and conforms to a reverse fusion model, in which nanobody binding to Spike triggers the Spike fusion machinery. The nanobody-Spike interaction also can drive cell-cell fusion and infection of nanobody-expressing cells with viruses carrying the Spike protein. Importantly, cells infected with SARS-CoV-2 are selectively infected with nanobody-decorated lentiviruses. These results suggest that cells infected by any virus that expresses an active receptor-binding fusion protein may be targeted by vectors for delivery of cargoes to mitigate infections.

14.
bioRxiv ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39185233

RESUMO

Understanding bacterial gene function remains a major biological challenge. Double-mutant genetic interaction (GI) analysis addresses this challenge by uncovering the functional partners of targeted genes, allowing us to associate genes of unknown function with novel pathways and unravel connections between well-studied pathways, but is difficult to implement at the genome-scale. Here, we develop and use double-CRISPRi to systematically quantify genetic interactions at scale in the Bacillus subtilis envelope, including essential genes. We discover > 1000 known and novel genetic interactions. Our analysis pipeline and experimental follow-ups reveal the distinct roles of paralogous genes such as the mreB and mbl actin homologs, and identify new genes involved in the well-studied process of cell division. Overall, our study provides valuable insights into gene function and demonstrates the utility of double-CRISPRi for high-throughput dissection of bacterial gene networks, providing a blueprint for future studies in diverse bacterial species.

15.
Immunol Rev ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152687

RESUMO

The human genome harbors hundreds of thousands of integrations of ancient retroviruses, amassed over millions of years of evolution. To reduce further amplification in the genome, the host prevents transcription of these now endogenous retroviruses (ERVs) through epigenetic repression and, with evolutionary time, ERVs are incapacitated by accumulating mutations and deletions. However, several members of recently endogenized ERV groups still retain the capacity to produce viral RNA, retroviral proteins, and higher order structures, including virions. The retention of viral characteristics, combined with the reversible nature of epigenetic repression, particularly as seen in cancer, allow for immunologically unanticipated ERV expression, perceived by the adaptive immune system as a genuine retroviral infection, to which it has to respond. Accordingly, antibodies reactive with ERV antigens have been detected in diverse disorders and, occasionally, in healthy individuals. Although they are part of self, the retroviral legacy of ERV antigens, and association with and, possibly, causation of disease states may set them apart from typical self-antigens. Consequently, the pathogenic or, indeed, host-protective capacity of antibodies targeting ERV antigens is likely to be context-dependent. Here, we review the immunogenicity of typical ERV proteins, with emphasis on the antibody response and its potential disease implications.

16.
Comput Methods Programs Biomed ; 256: 108374, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39153229

RESUMO

BACKGROUND AND OBJECTIVE: Ultrasound information entropy imaging is an emerging quantitative ultrasound technique for characterizing local tissue scatterer concentrations and arrangements. However, the commonly used ultrasound Shannon entropy imaging based on histogram-derived discrete probability estimation suffers from the drawbacks of histogram settings dependence and unknown estimator performance. In this paper, we introduced the information-theoretic cumulative residual entropy (CRE) defined in a continuous distribution of cumulative distribution functions as a new entropy measure of ultrasound backscatter envelope uncertainty or complexity, and proposed ultrasound CRE imaging for tissue characterization. METHODS: We theoretically analyzed the CRE for Rayleigh and Nakagami distributions and proposed a normalized CRE for characterizing scatterer distribution patterns. We proposed a method based on an empirical cumulative distribution function estimator and a trapezoidal numerical integration for estimating the normalized CRE from ultrasound backscatter envelope signals. We presented an ultrasound normalized CRE imaging scheme based on the normalized CRE estimator and the parallel computation technique. We also conducted theoretical analysis of the differential entropy which is an extension of the Shannon entropy to a continuous distribution, and introduced a method for ultrasound differential entropy estimation and imaging. Monte-Carlo simulation experiments were performed to evaluate the estimation accuracy of the normalized CRE and differential entropy estimators. Phantom simulation and clinical experiments were conducted to evaluate the performance of the proposed normalized CRE imaging in characterizing scatterer concentrations and hepatic steatosis (n = 204), respectively. RESULTS: The theoretical normalized CRE for the Rayleigh distribution was π/4, corresponding to the case where there were ≥10 randomly distributed scatterers within the resolution cell of an ultrasound transducer. The theoretical normalized CRE for the Nakagami distribution decreased as the Nakagami parameter m increased, corresponding to that the ultrasound backscattered statistics varied from pre-Rayleigh to Rayleigh and to post-Rayleigh distributions. Monte-Carlo simulation experiments showed that the proposed normalized CRE and differential entropy estimators can produce a satisfying estimation accuracy even when the size of the test samples is small. Phantom simulation experiments showed that the proposed normalized CRE and differential entropy imaging can characterize scatterer concentrations. Clinical experiments showed that the proposed ultrasound normalized CRE imaging is capable to quantitatively characterize hepatic steatosis, outperforming ultrasound differential entropy imaging and being comparable to ultrasound Shannon entropy and Nakagami imaging. CONCLUSION: This study sheds light on the theory and methodology of ultrasound normalized CRE. The proposed ultrasound normalized CRE can serve as a new, flexible quantitative ultrasound envelope statistics parameter. The proposed ultrasound normalized CRE imaging may find applications in quantified characterization of biological tissues. Our code will be made available publicly at https://github.com/zhouzhuhuang.

17.
Trends Microbiol ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39153868

RESUMO

Actinobacterial species are mostly thought to be nonmotile. Recent studies have revealed the degenerate evolution of flagella in this phylum and different flagellar rod compositions from the classical model. Moreover, flagella-independent motility by various means has been reported in Streptomyces spp. and Mycobacterium spp., but the underlying mechanisms remain elusive.

18.
Mol Aspects Med ; 99: 101305, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39167987

RESUMO

Hepatitis C virus (HCV) infection is a major health problem worldwide. It can cause liver cirrhosis and hepatocellular carcinoma (HCC), making it a cause of morbidity from liver disease. Thus, there is an urgent need for a prophylactic HCV vaccine. Fortunately, modern medicine has transformed the therapy for HCV infection through development of direct-acting antiviral agents (DAAs), achieving high rates of sustained virologic response and giving significant relief from HCC and associated mortality, but unfortunately it fails to eradicate the risk of HCC, especially in HCV-cleared patients with already advanced liver disease. Additionally, DAA-cured patients do not develop sufficient antiviral immunity and are susceptible to reinfection. A comprehensive strategy to control HCV infection must include a vaccine development approach in which the host can develop humoral and cellular immunity to eradicate HCV successfully; however, this remains a challenge as HCV has developed systems to evade immune attacks from its host. This review highlights the current understanding of HCV's effect on liver disease and cancer progression, the nature of immune responses from cell populations interacting with HCV, and the current strategies for vaccine development. The information in this review will advance prophylactic intervention strategies for HCV infection, with the end goal being to prevent chronicity and subsequent liver disease leading to HCC.

19.
Front Pediatr ; 12: 1370692, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39210985

RESUMO

Objective: To explore whether early quantitative electroencephalograph (EEG) can predict the development of epilepsy in pediatric patients with severe traumatic brain injury (TBI). Methods: A total of 78 children with severe TBI who were admitted to our hospital were divided into post-traumatic epilepsy (PTE) and non-PTE groups according to whether or not they developed PTE. EEGs of frontal, central and parietal lobes were recorded at the time of their admission. The power values of each frequency band, odds ratio and peak envelope power values of each brain region were statistically analyzed. In addition, the patients were followed up for two years, and the occurrence of PTE was documented. Results: During the follow-up period, PTE occurred in 8 patients. Analysis of EEG signals across different brain regions (frontal, central, and parietal lobes) revealed significant differences between the PTE and non-PTE groups. Patients with PTE exhibited significantly higher δ and θ power values (P < 0.01), lower α/θ ratios (P < 0.01), and elevated θ/ß, (δ + θ)/(α + ß), and peak envelope power (P < 0.01) compared to those in the non-PTE group. Conclusion: In children with severe TBI, the parameter characterization of early quantitative EEG has potential application in predicting PTE.

20.
Front Microbiol ; 15: 1447485, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39211315

RESUMO

Introduction: Developing antibiotic adjuvants is an effective strategy to combat antimicrobial resistance (AMR). The envelope of Gram-negative bacteria (GNB) is a barrier to prevent the entry of antibiotics, making it an attractive target for novel antibiotic and adjuvant development. Methods and Results: In this study, we identified Caspofungin acetate (CAS) as an antibiotic adjuvant against GNB in the repurposing screen of 3,158 FDA-approved drugs. Checkerboard assays suggested that CAS could enhance the antimicrobial activity of rifampin or colistin against various GNB strains in vitro, Moreover, Galleria mellonella larvae infection model also indicated that CAS significantly potentiated the efficacy of rifampin against multidrug-resistant Escherichia coli 72 strain in vivo. Most importantly, resistance development assay showed that CAS was less susceptible to accelerating the resistance development of drug-sensitive strain E. coli MG1655. Functional studies and RNA-seq analysis confirmed that the mechanisms by which CAS enhanced the antimicrobial activities of antibiotics were involved in permeabilizing the bacterial cell envelope, disrupting proton motive force and inhibiting bacterial biofilm formation. Additionally, it has been found that PgaC is the CAS target and enzymatic assay has confirmed the inhibition activity. Discussion: Our results illustrate the feasibility of CAS as an antibiotic adjuvant against GNB, which is an alternative strategy of anti-infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA