RESUMO
The wide range of applications of nanomaterials (NM) in different fields has led to both uncontrolled production and release into environmental compartments, such as aquatic systems, where final disposal occurs. Some efforts have been made to estimate their concentrations in environmental matrices; however, little is known about the actual effects of environmental NM concentrations on biota. The aims of the present review are to (i) expose the state of the art of the most applied NM and their actual concentrations regarding how much is being released to the aquatic environment and which are the predicted ones; (ii) analyze the current literature to elucidate if the aforementioned conditions were proven to cause deleterious effects on the associated organisms; and (iii) identify gaps in the knowledge regarding whether the actual NM concentrations are harmful to aquatic biota. These novel materials are expected to being released into the environment in the range of hundreds to thousands of tons per year, with Si- and Ti-based NM being the two most important. The estimated environmental NM concentrations are in the low range of ng to µg/L, except for Ti-based ones, which concentrations reach values on the order of mg/L. Empirical information regarding the ecotoxicity of environmental NM concentrations mainly focused on metal-based NM, however, it resulted poor and unbalanced in terms of materials and test species. Given its high predicted environmental concentration in comparison with the others, the ecotoxicity of Ti-based NM has been well assessed in algae and fish, while little is known regarding other NM types. While only a few marine species were addressed, the freshwater species Daphnia magna and Danio rerio accounted for the majority of studies on invertebrate and fish groups, respectively. Most of the reported responses are related to oxidative stress. Overall, we consider that invertebrate groups are the most vulnerable, with emphasis on microcrustaceans, as environmentally realistic metal-based NM concentration even caused mortality in some species. In the case of fish, we assumed that environmental concentrations of Ti-based NM represent a growing concern and threat; however, further studies should be carried out by employing other kinds of NM. Furthermore, more ecotoxicological information is needed in the case of carbon-based NM, as they are expected to considerably increase in terms of released amounts and applications in the near future.
Assuntos
Organismos Aquáticos , Nanoestruturas , Poluentes Químicos da Água , Poluentes Químicos da Água/toxicidade , Nanoestruturas/toxicidade , Animais , Organismos Aquáticos/efeitos dos fármacos , Metais/toxicidade , Ecotoxicologia , Monitoramento AmbientalRESUMO
Isochrysis galbana, a crucial primary producer and food source in aquatic ecosystems, faces increasing challenges from climate change and emerging contaminants like antibiotics. This study investigates the combined effects of sudden temperature increase (representing marine heatwaves) and rapid salinity change (representing extreme precipitation events) on the toxicity of tetracycline (TC) and oxytetracycline (OTC) to I. galbana. Short-term experiments reveal heightened antibiotic toxicity at 31 °C or salinities of 18 PSU, surpassing algal tolerance limits. Long-term tests show decreased inhibition of algal growth on day 9, indicating algal adaptation to the environment. Analyses of photosynthesis II efficiency, pigment content, and macromolecular composition support this, suggesting adaptation mechanism activation. While algae acclimate to the environment during long-term antibiotic exposure, extreme weather conditions may compromise this adaptation. These findings have implications for managing antibiotics in aquatic environments under climate change.
Assuntos
Antibacterianos , Mudança Climática , Haptófitas , Poluentes Químicos da Água , Antibacterianos/toxicidade , Poluentes Químicos da Água/toxicidade , Haptófitas/efeitos dos fármacos , Salinidade , Temperatura Alta , Chuva , Tetraciclina/toxicidade , Adaptação FisiológicaRESUMO
The emergence and increasing prevalence of antibiotic resistance pose a global public risk for human health, and nonantimicrobial pharmaceuticals play an important role in this process. Herein, five nonantimicrobial pharmaceuticals, including acetaminophen (ACT), clofibric acid (CA), carbamazepine (CBZ), caffeine (CF) and nicotine (NCT), tetracycline-resistant strains, five ARGs (sul1, sul2, tetG, tetM and tetW) and one integrase gene (intI1), were detected in 101 wastewater samples during two typical sewage treatment processes including anaerobic-oxic (A/O) and biological aerated filter (BAF) in Harbin, China. The impact of nonantibiotic pharmaceuticals at environmentally relevant concentrations on both the resistance genotypes and resistance phenotypes were explored. The results showed that a significant impact of nonantibiotic pharmaceuticals at environmentally relevant concentrations on tetracycline resistance genes encoding ribosomal protection proteins (RPPs) was found, while no changes in antibiotic phenotypes, such as minimal inhibitory concentrations (MICs), were observed. Machine learning was applied to further sort out the contribution of nonantibiotic pharmaceuticals at environmentally relevant concentrations to different ARG subtypes. The highest contribution and correlation were found at concentrations of 1400-1800 ng/L for NCT, 900-1500 ng/L for ACT and 7000-10,000 ng/L for CF for tetracycline resistance genes encoding RPPs, while no significant correlation was found between the target compounds and ARGs when their concentrations were lower than 500 ng/L for NCT, 100 ng/L for ACT and 1000 ng/L for CF, which were higher than the concentrations detected in effluent samples. Therefore, the removal of nonantibiotic pharmaceuticals in WWTPs can reduce their selection pressure for resistance genes in wastewater.
Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Humanos , Eliminação de Resíduos Líquidos/métodos , Genes Bacterianos , Bactérias/genética , Antibacterianos/farmacologia , Tetraciclina/farmacologia , Genótipo , Resistência Microbiana a Medicamentos/genética , Aprendizado de Máquina , Preparações FarmacêuticasRESUMO
The aim of this study is to investigate the adverse effects of benzophenones (BPs) on the intestinal tract of mice and the potential mechanism. F1-generation ICR mice were exposed to BPs (benzophenone-1, benzophenone-2, and benzophenone-3) by breastfeeding from birth until weaning, and by drinking water after weaning until maturity. The offspring mice were executed on postnatal day 56, then their distal colons were sampled. AB-PAS staining, HE staining, immunofluorescence, Transmission Electron Microscope, immunohistochemistry, Western Blot and RT-qPCR were used to study the effects of BPs exposure on the colonic tissues of offspring mice. The results showed that colonic microvilli appeared significantly deficient in the high-dose group, and the expression of tight junction markers Zo-1 and Occludin was significantly down-regulated and the number of goblet cells and secretions were reduced in all dose groups, and the expression of secretory cell markers MUC2 and KI67 were decreased, as well as the expression of intestinal stem cell markers Lgr5 and Bmi1, suggesting that BPs exposure caused disruption of intestinal barrier and imbalance in the composition of the intestinal stem cell pool. Besides, the expression of cellular inflammatory factors such as macrophage marker F4/80 and tumor necrosis factor TNF-α was elevated in the colonic tissues of all dose groups, and the inflammatory infiltration was observed, which means the exposure of BPs caused inflammatory effects in the intestinal tract of F1-generation mice. In addition, the contents of Notch/Wnt signaling pathway-related genes, such as Dll-4, Notch1, Hes1, Ctnnb1and Sfrp2 were significantly decreased in each high-dose group (P < 0.05), suggesting that BPs may inhibit the regulation of Notch/Wnt signaling pathway. In conclusion, exposure to BPs was able to imbalance colonic homeostasis, disrupt the intestinal barrier, and trigger inflammation in the offspring mice, which might be realized through interfering with the Notch/Wnt signaling pathway.
Assuntos
Benzofenonas , Homeostase , Inflamação , Camundongos Endogâmicos ICR , Animais , Camundongos , Homeostase/efeitos dos fármacos , Benzofenonas/toxicidade , Inflamação/induzido quimicamente , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Feminino , Masculino , Intestinos/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacosRESUMO
In this study, the disrupting effects of glyphosate (GLY), aminomethylphosphonic acid (AMPA), and three glyphosate-based herbicides (GBHs) on vitellogenesis in a non-concentration-dependent manner are reported for the first time in 120 h of acute exposure of zebrafish at environmentally relevant concentrations. GBHs are commonly used worldwide in weed control management. Due to their extensive application, they frequently occur in aquatic ecosystems and may affect various organisms. The active substance GLY and its major by-product, AMPA, are the most thoroughly studied chemicals; however, the adverse effects of the complex formulas of GBHs with diverse and unknown content of co-formulants are still not sufficiently researched. This study focused on the embryotoxicity, sublethal malformations, and estrogenic potency of GLY, AMPA, and four commonly used GBHs on zebrafish embryos using a wild type and an estrogen-sensitive, transgenic zebrafish line (Tg(vtg1:mCherry)). After 120 h of exposition, AMPA did not cause acute toxicity, while the LC50 of GLY was 160 mg/L. The GBHs were more toxic with LC50 values ranging from 31 to 111 GLY active equivalent (a.e.) mg/L. Exposure to 0.35-2.8 mg/L GBHs led to sublethal abnormalities: typical symptoms were structural deformation of the lower jaw and anomalies in the olfactory region. Deformity rates were 10-30% in the treated groups. In vivo, fluorescently expressed vtg1 mCherry protein in embryonic liver was detected by a non-invasive microscopic method indicating estrogenic action through vitellogenin production by GLY, AMPA, and GBHs. To confirm the in vivo findings, RT-qPCR method was performed to determine the levels of the estrogenicity-related vtg1 mRNA. After 120 h of exposure to GLY, AMPA, and three GBHs at a concentration of 0.35 mg/L, the expression of vtg1 gene was significantly up-regulated. Our results highlight the risk that short-term GLY and GBH exposure can cause developmental malformations and disrupt the hormonal balance in zebrafish embryos.
Assuntos
Glifosato , Herbicidas , Organofosfonatos , Animais , Peixe-Zebra , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Glicina/toxicidade , Ecossistema , Herbicidas/toxicidade , Animais Geneticamente Modificados , EstronaRESUMO
The possible toxicity caused by nanoplastics or microplastics on organisms has been extensively studied. However, the unavoidably combined effects of nanoplastics and microplastics on organisms, particularly intestinal toxicity, are rarely clear. Here, we employed Caenorhabditis elegans to investigate the combined effects of PS-50 (50 nm nanopolystyrene) and PS-500 (500 nm micropolystyrene) at environmentally relevant concentrations on the functional state of the intestinal barrier. Environmentally, after long-term treatment (4.5 days), coexposure to PS-50 (10 and 15 µg/L) and PS-500 (1 µg/L) resulted in more severe formation of toxicity in decreasing locomotion behavior, in inhibiting brood size, in inducing intestinal ROS production, and in inducting intestinal autofluorescence production, compared with single-exposure to PS-50 (10 and 15 µg/L) or PS-500 (1 µg/L). Additionally, coexposure to PS-50 (15 µg/L) and PS-500 (1 µg/L) remarkably caused an enhancement in intestinal permeability, but no detectable abnormality of intestinal morphology was observed in wild-type nematodes. Lastly, the downregulation of acs-22 or erm-1 expression and the upregulation expressions of genes required for controlling oxidative stress (sod-2, sod-3, isp-1, clk-1, gas-1, and ctl-3) served as a molecular basis to strongly explain the formation of intestinal toxicity caused by coexposure to PS-50 (15 µg/L) and PS-500 (1 µg/L). Our results suggested that combined exposure to microplastics and nanoplastics at the predicted environmental concentration causes intestinal toxicity by affecting the functional state of the intestinal barrier in organisms.
RESUMO
Objective: This study was aimed to explore the role of AhR in the neurotoxicity of adult zebrafish induced by three typical bisphenol compounds (BPA, BPS, TBBPA) at environmentally relevant doses. Methods: The adult zebrafish were randomly divided into solvent control group (DMSO) and AhR inhibitor CH223191 (CH) group (0.05 µmol/L), bisphenol exposure groups (10, 100, 1000 nmol/L) and combined exposure groups (0.05 µmol/L CH and 1000 nmol/L bisphenol compounds). Each tank contained 8 fish (4 male and 4 female), and two parallel tanks were set synchronously. After 30 days of exposure, zebrafish were put on ice plate for anesthesia, weighed and measured for body length, and dissected for brain tissue. The gene expression was detected by RT-qPCR, and the activities of antioxidant enzymes were detected by commercial kits. SPSS 26.0 was used to analyze the data. Additionally, GO, KEGG and principal component analysis (PCA) were carried out. Results: Compared with the solvent control group, there were no significant differences in body weight and length among the exposed groups. In general, exposure to bisphenol compounds could affect the expression of Ahr2 and AhR target genes (cyp1a1, cyp1a2, and cyp1c1), key genes of neural function (elavl3, gfap, mbp, syn2a, gap43, Zn5, shha, and ache), oxidative stress related genes (nrf2, gpx1a, gstp1/gstp1.2, gstp2/gstp1.1, sod1, sod2, and cat), and the activities of antioxidant enzymes (SOD, CAT and GSH-Px/GPX) in zebrafish brain tissue to some extent. Compared with the groups exposed to bisphenols alone, CH could antagonize the above interference effects caused by bisphenols to some extent. Therefore, the toxic effects of BPA, BPS and TBBPA might be produced through similar mechanisms. Conclusion: Environmentally related doses of bisphenols (BPA, BPS, TBBPA) could disturb the expression of key molecules of oxidative stress and neural function through activating the AhR signaling pathway, and ultimately lead to neurotoxicity.
RESUMO
Tri-n-butyl phosphate (TnBP) is commonly used as flame retardant and rubber plasticizer, and has been widely detected in aquatic organisms and natural waters. However, the potential toxicity of TnBP in fish remains unclear. In the present study, silver carp (Hypophthalmichthys molitrix) larvae were treated with environmentally relevant concentrations (100 or 1000 ng/L) of TnBP for 60 d and then they were depurated in clean water for 15 d, and the accumulation and depuration of the chemical in six tissues of silver carp were measured. Furthermore, effects on growth were evaluated and potential molecular mechanisms were explored. Results indicated that TnBP could be rapidly accumulated and depurated in silver carp tissues. In addition, the bio-accumulation of TnBP displayed tissue-specificity, where intestine contained the greatest and vertebra had the smallest level of TnBP. Furthermore, exposure to environmentally relevant concentrations of TnBP led to time- and concentration-dependent growth inhibition of silver carp, even though TnBP was completely depurated in tissues. Mechanistic studies suggested that exposure to TnBP up- and down-regulated the expression of ghr and igf1 in liver, respectively, and increased GH contents in plasma of silver carp. TnBP exposure also up-regulated the expression of ugt1ab and dio2 in liver, as well as decreased T4 contents in plasma of silver carp. Our findings provide direct evidence of health hazards of TnBP to fish in natural waters, calling for more attention of environmental risks of TnBP in aquatic environment.
Assuntos
Carpas , Animais , Bioacumulação , Organofosfatos/metabolismo , Fígado/metabolismoRESUMO
The research framework combining global sensitivity analysis (GSA) with quantitative high-throughput screening (qHTS), called GSA-qHTS, provides a potentially feasible way to screen for important factors that induce toxicities of complex mixtures. Despite its value, the mixture samples designed using the GSA-qHTS technique still have a shortage of unequal factor levels, which leads to an asymmetry in the importance of elementary effects (EEs). In this study, we developed a novel method for mixture design that enables equal frequency sampling of factor levels (called EFSFL) by optimizing both the trajectory number and the design and expansion of the starting points for the trajectory. The EFSFL has been successfully employed to design 168 mixtures of 13 factors (12 chemicals and time) that each have three levels. By means of high-throughput microplate toxicity analysis, the toxicity change rules of the mixtures are revealed. Based on EE analysis, the important factors affecting the toxicities of the mixtures are screened. It was found that erythromycin is the dominant factor and time is an important non-chemical factor in mixture toxicities. The mixtures can be classified into types A, B, and C mixtures according to their toxicities at 12 h, and all the types B and C mixtures contain erythromycin at the maximum concentration. The toxicities of the type B mixtures increase firstly over time (0.25 â¼ 9 h) and then decrease (12 h), while those of the type C mixtures consistently increase over time. Some type A mixtures produce stimulation that increases with time. With the present new approach to mixture design, the frequency of factor levels in mixture samples is equal. Consequently, the accuracy of screening important factors is improved based on the EE method, providing a new method for the study of mixture toxicity.
Assuntos
Vibrio , Eritromicina/farmacologia , Misturas Complexas , Ensaios de Triagem em Larga EscalaRESUMO
Extensive antibiotic use increases the environmental presence of their residues and may accelerate the development of antibiotic resistance, although this remains poorly understood at environmentally relevant concentrations. Herein, susceptible Escherichia coli K12 was continuously exposed to five antibiotics at such concentrations for 100 days. The de novo-evolved mutants rapidly obtained fluoroquinolone resistance within 10 days, as indicated by the 4- and 16-fold augmentation of minimum inhibitory concentrations against enrofloxacin and ciprofloxacin, respectively. Moreover, the mutants maintained heritable fluoroquinolone resistance after the withdrawal of antibiotics for 30 days. Genomic analysis identified Asp87Gly or Ser83Leu substitutions in the gyrA gene in the mutants. Transcriptomics data showed that the transcriptional response of the mutants to fluoroquinolones was primarily involved in biofilm formation, cellular motility, porin, oxidative stress defense, and energy metabolism. Homologous recombination and molecular docking revealed that mutations of gyrA primarily mainly conferred fluoroquinolone resistance, while mutations at different positions of gyrA likely endowed different fluoroquinolone resistance levels. Collectively, this study revealed that environmentally relevant concentrations of antibiotics could rapidly induce heritable antibiotic resistance; therefore, the discharge of antibiotics into the environment should be rigorously controlled to prevent the development of antibiotic resistance.
Assuntos
Escherichia coli , Fluoroquinolonas , Fluoroquinolonas/farmacologia , Escherichia coli/genética , Simulação de Acoplamento Molecular , DNA Girase/genética , Antibacterianos/farmacologia , Mutação , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genéticaRESUMO
The toxic effects of micro(nano)plastics are long-standing, flourishing and fadeless as a research topic because of its' underlying threats to the ecology and human health. Nevertheless, in most of the existing studies, some model organisms are exposed to micro(nano)plastics at a high concentration unlikely to occur in the real environment, and there is limited data available on the impact of micro(nano)plastics at environmentally relevant concentrations (ERC) on environmental organisms. To gain a better insight into micro(nano)plastic toxicity to the environmental organisms, here we integrate the related publications of micro(nano)plastic research at ERC in the past 10 years using a bibliometric analysis, and focus on the analysis of publication trends, research focuses, collaborations, and research status. In addition, we further analyze the 33 final filtered literature, and elucidate the organismal response to micro(nano)plastics at ERC from the perspective of in vivo toxic effects and mechanisms involved. This paper also puts forward some limitations of the current study and some suggestions for future research. Our study may be of great significance in further understanding the ecotoxicity of micro(nano)plastics.
Assuntos
Plásticos , Poluentes Químicos da Água , Humanos , Plásticos/análise , Ecologia , Poluentes Químicos da Água/análiseRESUMO
Metabolomic and gut microbial responses of soil fauna to environmentally relevant concentrations of microplastics indicate the potential molecular toxicity of microplastics; however, limited data exist on these responses. In this study, earthworms (Eisenia fetida) were exposed to spherical (25-30 µm diameter) polystyrene microplastic-contaminated soil (0.02%, w:w) for 14 days. Changes in weight, survival rate, intestinal microbiota and metabolic responses of the earthworms were assessed. The results showed that polystyrene microplastics did not influence the weight, survival rate, or biodiversity of the gut microbiota, but significantly decreased the relative abundance of Bacteroidetes at the phylum level. Moreover, polystyrene microplastics disturbed the osmoregulatory metabolism of earthworms, as indicated by the significantly decreased betaine, myo-inositol and lactate, and increased 2-hexyl-5-ethyl-furan-3-sulfonic acid at the metabolic level. This study provides important insights into the molecular toxicity of environmentally relevant concentrations of polystyrene microplastics on soil fauna.
Assuntos
Oligoquetos , Poluentes do Solo , Animais , Microplásticos/toxicidade , Microplásticos/metabolismo , Plásticos/metabolismo , Oligoquetos/metabolismo , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Solo , Poluentes do Solo/análiseRESUMO
Microplastics are a widespread environmental contaminant. Although detrimental effects on aquatic organisms are well documented, little is known about the long-term effects of microplastic exposure to filter-feeding organisms at ecologically realistic levels. This study investigates the effects of environmentally relevant concentrations of polyethylene micro beads ranging in size from 3 to 30 µm, on the physiology and energetics of a coastal filter-feeding crab Petrolisthes laevigatus. We evaluated the impact of microplastics by exposing P. laevigatus to two different concentrations and exposure times: i) a chronic exposure for five months at 250 particles L-1, and ii) an acute exposure for 48 h at 20,800 particles L-1, ~80 times higher than the chronic exposure. The results showed that only chronic exposures elicited negative effects on the coastal crab in both, metabolic and physiological parameters. Our findings demonstrate a strong correlation between the ingestion rate and weight loss, even at low concentrations, the crabs exhibited severe nutritional damage as a result of long-term microplastic exposure. By contrast, acute exposure revealed no significant effects to the crabs, a possible explanation for this being short-term compensatory responses. These results suggest that environmentally relevant concentrations of microplastics are harmful to marine organisms, and they should be evaluated during realistic temporal scales, as their effects strongly dependent on the exposure time. Our results also suggest that the effects of microplastics have been likely underestimated to date, due to the dominance of short-term exposures (acute) reported in the current literature.
Assuntos
Braquiúros , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos/toxicidade , Plásticos/metabolismo , Poluentes Químicos da Água/análise , Organismos Aquáticos/metabolismoRESUMO
The ecological risk assessment of microplastics under global warming receives increasing attention. Yet, such studies mostly focused on increased mean temperatures (MT), ignoring another key component of global warming, namely daily temperature fluctuations (DTF). Moreover, we know next to nothing about the combined effects of multigenerational exposure to microplastics and warming. In this study, Daphnia magna was exposed to an environmentally relevant concentration of polystyrene microplastics (5 µg L-1) under six thermal conditions (MT: 20 â, 24 â; DTF: 0 â, 5 â, 10 â) over two generations to investigate the interactive effects of microplastics and global warming. Results showed that microplastics had no effects on Daphnia at standard thermal conditions (constant 20 °C). Yet, microplastics increased the fecundity, heat tolerance, amount of energy storage, net energy budget and cytochrome P450 activity, and decreased the energy consumption when tested under an increased MT or DTF, indicating a hormesis effect induced by microplastics under warming. The unexpected increase in heat tolerance upon exposure to microplastics could be partly explained by the reduced energy consumption and/or increased energy availability. Overall, the present study highlighted the importance of including DTF and multigenerational exposure to improve the ecological risk assessment of microplastics under global warming.
Assuntos
Termotolerância , Poluentes Químicos da Água , Animais , Aquecimento Global , Microplásticos , Daphnia magna , Plásticos , Temperatura , Hormese , Daphnia , Poluentes Químicos da Água/análiseRESUMO
Suppression (p ≤ 0.05) of antioxidative/detoxification (except GPx and CYP3a) and cytoskeletal (except DHPR) genes but induction of metabolic (except for AST and TRY) and heat shock (except HSP60) genes of Labeo rohita hatchlings after 14 days of exposure to environmentally relevant concentrations of Triclosan (0.0063, 0.0126, 0.0252 and 0.06 mg/L) was followed by an increase (p ≤ 0.05) for most of the genes after 10 days recovery period. After recovery, LDH, ALT, CK, CHY, PA, HSP47 and DHPR declined, while SOD, CAT, GST, GR, GPx, CYP1a, CYP3a, AST, AChE, TRY, HSP60, HSP70, HSc71, HSP90 MLP-3, α-tropomyosin, desmin b and lamin b1 increased over exposure. Peak area of biomolecules (except 3290-3296, 2924-2925 and 2852-2855 cm-1) declined (p ≤ 0.01) more after recovery [except for an increase (p ≤ 0.01) at 1398-1401 cm-1]. CYP3a, CK, HSP90, MLP-3 and secondary structure of amide A are the most sensitive markers for the environmentally relevant concentrations of Triclosan.
Assuntos
Cyprinidae , Triclosan , Poluentes Químicos da Água , Animais , Triclosan/toxicidade , Transcriptoma , Citocromo P-450 CYP3A/genética , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Cyprinidae/genética , Cyprinidae/metabolismoRESUMO
It was reported that tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) could inhibit the growth of F0-generation fish. However, multi-generation effects of TDCIPP on survival and growth of fish remain unknown. In this study, the effects of TDCIPP on survival and growth in F1 generation zebrafish were evaluated after two-generation exposure. Results demonstrated that TDCIPP inhibited the survival and growth of F1-generation zebrafish at 96 hpf and 30 dpf. Moreover, compared with the F0 generation, two-generation exposure resulted in a greater accumulation of TDCIPP in F1 generation zebrafish, and strongly down-regulated the expression of genes related to the GH/IGF axis (gh, igf1, igf2b) and HPT axis (tshß). Taken together, for the first time, this study revealed that exposure to TDCIPP for two generations at environmentally relevant concentrations aggravated the adverse effects on growth and survival in zebrafish.
Assuntos
Retardadores de Chama , Poluentes Químicos da Água , Animais , Retardadores de Chama/metabolismo , Organofosfatos/metabolismo , Organofosfatos/toxicidade , Compostos Organofosforados/metabolismo , Fosfatos/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismoRESUMO
Although the biological effects of nanoplastics (<100 nm in size) in aquatic environments have been increasingly investigated, almost all such studies have been performed at observed-effect concentrations (higher than 1 µg/mL). The use of observed-effect concentrations of nanoplastics can provide essential data for evaluating the potential risks, but how these results apply to the effects of concentrations of nanoplastics observed in the environment remains unclear. Here, we show that exposure to both positively and negatively charged nanoplastics at the observed-effect concentration (ranging from 0 to 50 µg/mL) can result in physiological changes of Lemna minor L., a typical flowering aquatic plant species, inducing H2O2 and O2- accumulation and even cell death. However, the nanoplastics at environmentally relevant concentrations (lower than 0.1 µg/mL) had no obvious effects on phenotype of L. minor. Moreover, nanoplastics at both observed-effect and environmentally relevant concentrations were adsorbed onto the roots and fronds of the plants, whereas uptake by the roots and fronds occurred only at the observed-effect concentration. Although no phenotypic changes across 30 generations of cultivation were observed when the plants were exposed to 0.015 µg/mL nanoplastics, the expression of genes related to the response to stimuli and to oxidative and osmotic stress was upregulated under both observed-effect and environmentally relevant concentrations. Our findings suggest that the long-term presence of nanoplastics at environmentally relevant concentrations might induce some variations in the transcription level and have potential threat to floating microphytes and aquatic ecosystems.
Assuntos
Araceae , Poluentes Químicos da Água , Araceae/metabolismo , Ecossistema , Peróxido de Hidrogênio , Microplásticos/toxicidade , Poliestirenos , Poluentes Químicos da Água/metabolismoRESUMO
Microplastics (MPs) attract global concern due to their ubiquitous existence in aquatic environments. However, the genotoxic effect of MPs on aquatic organisms in the natural environment remains controversial. Therefore, this meta-analysis was conducted by recompiling 44 individual studies from 12 publications to determine whether MPs could induce genotoxicity in aquatic organisms at environmentally relevant concentrations (≤1 mg/L, median = 0.5 mg/L). Multiple genotoxic endpoints were involved, including the percentage of DNA in tail (TDNA%), tail length (TL), olive tail moment (OTM), and the number of micronuclei (NM), and their increases represented the biologically adverse effects (i.e. genotoxicity). The results showed that all included endpoints tended to increase after exposure to MPs, among which TDNA%, TL and NM were significantly increased by 20%, 32% and 81% compared with the control group, respectively. The overall estimate of all endpoints in the MPs-treated groups was remarkably increased by 24%, with high statistical power and no obvious publication bias, suggesting the evident genotoxicity caused by MPs. In addition, the magnitudes of MPs-induced genotoxicity were independent of selected endpoint, MP composition, morphology, exposure concentration and duration, but closely correlated with particle size, living habitat and tested species. Overall, this work provided a reference for the health risk assessment of MPs in the natural environment, contributing to our understanding the action mode of MPs at environmentally relevant concentrations.
Assuntos
Microplásticos , Poluentes Químicos da Água , Organismos Aquáticos , Dano ao DNA , Plásticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidadeRESUMO
Herbicides are among the most detected pesticides in coastal environments. Herbicides may impact non-target organisms, but invertebrates that have a symbiotic relationship with microalgae (zooxanthellae) may be particularly susceptible. How zooxanthellae influence the response of organisms to herbicides, however, remains untested. We exposed zooxanthellate and azooxanthellate Cassiopea xamachana medusae to environmentally relevant concentrations of the herbicide atrazine (0 µg L - 1, 7 µg L - 1 and 27 µg L - 1) for 20 days. We hypothesised that atrazine would have adverse effects on the size, rate of bell contractions and, respiration of medusae, but that effects would be more severe in zooxanthellate than azooxanthellate medusae. We also predicted that photosynthetic efficiency, chlorophyll a (Chla) content and zooxanthellae density would decrease in zooxanthellate medusae exposed to atrazine. Both zooxanthellate and azooxanthellate medusae shrank, yet the size-specific respiration rates were not constant during the experiment. Photosynthetic efficiency of zooxanthellate medusae significantly decreased at 7 and 27 µgL-1 atrazine, but atrazine did not affect the Chla content or zooxanthellae density. Our results showed that even though atrazine inhibited photosynthesis, zooxanthellae were not expelled from the host. We conclude that the presence of zooxanthellae did not increase the susceptibility of C. xamachana medusae to atrazine.
Assuntos
Herbicidas/toxicidade , Cifozoários/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Atrazina , Clorofila A , Microalgas , Fotossíntese/efeitos dos fármacos , Cifozoários/efeitos dos fármacos , SimbioseRESUMO
The occurrence of microplastics (MPs) in various marine and freshwater matrices has attracted great attention. However, the effect of MPs in natural environment on the locomotor performance of aquatic biota is still controversial. Therefore, this meta-analysis was conducted, involving 116 effect sizes from 2347 samples, to quantitatively evaluate the alteration in locomotor behavior of aquatic organisms induced by MPs at environmentally relevant concentrations (≤ 1 mg/L, median = 0.125 mg/L). It was shown that MP exposure signiï¬cantly inhibited the average speed and moved distance of aquatic organisms by 5% and 8% (p < 0.05), respectively, compared with the control, resulting in an obvious reduction of locomotor ability by 6% (p < 0.05). Egger's test indicated that the results were stable without publication bias (p > 0.05). The complex influence of MPs on the locomotor ability were characterized through random-effects meta-regression analyses, presenting size-, time-, concentration-dependent manners and multi-factors interactions. In addition, several physiological changes, including energy reserve reduction, metabolism disorder, gut microbiota dysbiosis, inflammation response, neurotoxic response, and oxidative stress, of aquatic organisms triggered by MP exposure at environmentally relevant concentrations were also provided, which might account for the MPs-induced locomotor activity decline.