RESUMO
Although Zeolitic Imidazolate Framework-8 (ZIF-8) shows significant promise in chemodynamic therapy of bacterial infections due to its large specific surface area and enzyme-like activity, it still faces a considerable gap compared to natural enzymes. The dependency on low pH and high concentrations of hydrogen peroxide ((H2O2) is a major factor limiting the clinical progress of nanozymes. Single-atom nanozymes (SA-zyme), which exhibit superior catalytic performance, are expected to overcome this limitation. In this study, we used ZIF-8 as a template to prepare structurally regular molybdenum-based single-atom nanozymes (Mo-zyme) by coordinating molybdenum atoms with nitrogen atoms within the zeolitic imidazolate framework and evaporating the zinc element at high temperatures. The cascade catalytic performance of the nanodrugs was enhanced by loading glucose oxidase (GOx) and encapsulating it with a hyaluronic acid (HA) layer to form a composite (Mo/GOx@HA). Upon contact with hyaluronidase from bacteria in infected tissues, the cascade reaction is triggered, resulting in the degradation of the HA shell, and releasing the encapsulated GOx. Once exposed, GOx catalyzes the oxidation of glucose into gluconic acid, resulting in a localized decrease in pH and continuous production of H2O2. The combination of lowered pH and increased H2O2 concentration significantly amplifies the catalytic activity of the Mo-zyme. This enhanced activity facilitates the in situ generation of hydroxyl radicals (â¢OH) on the bacterial surface, leading to effective and efficient bacterial eradication. Wound infection treatment has demonstrated that the as-prepared Mo/GOx@HA exhibits excellent antibacterial and anti-inflammatory activity. This work provided a promising enzymatic cascade reaction nanoplatform for the treatment of bacteria infected wounds.
RESUMO
17α-Hydroxyprogesterone (17α-OHP) is a steroid hormone with significant biological activity that can be obtained by catalyzing progesterone (PROG), the main product of sitosterol, through CYP17A1. However, increasing the catalytic specificity of HCYP17A1 for C17 hydroxylation of progesterone (PROG) poses a formidable challenge due to the close proximity of the C16 and C17 positions. In this study, a rational design was utilized to alter the spatial configuration of the substrate channel, leading to the complete abolition of its 16-hydroxylation activity. Subsequent molecular dynamics simulations revealed that the A105Y mutation heightened the rigidity of the G95-I112 region of CYP17A1, consequently regulating the direction of the entry of PROG into the catalytic pocket. Moreover, the establishment of hydrogen bonding between Y105 and R239, coupled with Pi-stacking of A105Y with F114, effectively immobilizes the substrate PROG in a fixed position, explaining the practically perfect regioselectivity observed in A105Y. Finally, a multifaceted enzymatic cascade system, incorporating A105Y, cytochrome P450 reductase (CPR), and glucose-6-phosphate dehydrogenase (ZWF) for NADPH cofactor regeneration, was constructed in Pichia pastoris GS115. The resulting biocatalyst produced 106 ± 3.2 mg L-1 17α-OHP, a 4.6-fold increase compared with A105Y alone. Thus, this study provides valuable insights for improving the regioselectivity and activity of P450 enzymes.
RESUMO
Alzheimer's disease (AD) is a chronic neurodegenerative disease that threatens to the health of global elderly population. Acetylcholinesterase (AChE) inhibitors are an effective therapeutic agent for AD, and screening of these substances is important for AD treatment. In this work, a Pd-Pt MXene nanoenzyme was successfully synthesized by using the in-situ reduction technique. A colorimetric method for sensitive AChE inhibitor detection was designed based on enzymatic cascade reaction between Pd-Pt MXene and AChE. Briefly, The Pd-Pt MXene material exhibited excellent peroxidase (POD)-like activity due to its bimetallic composition, effectively catalyzing the oxidation of colorless 3,3,5,5-tetramethylbenzidine (TMB) to generate blue oxidized TMB (oxTMB). Under the presence of AChE and acetylthiocholine chloride (ATCh), the POD-like activity of Pd-Pt MXene was significantly inhibited. The activity of this nanoenzyme could be restored after the addition of AChE inhibitors. Using donepezil as an example, colorimetric detection was conducted within a linear range of 0.1 nmol/L to 10 nmol/L and the lowest detection boundary was only 0.35 nmol/L (S/N = 3). Finally, a paper-based platform was designed and constructed, and it has been successfully employed for AChE inhibitor detection in real samples with the aid of a smartphone. In all, this work paves a new way for designing nanoenzyme-based devices towards medicine determination or screening like AChE inhibitor.
RESUMO
An integrated system of three membrane bioreactors (MBRs) has been developed that cascades three different enzymatic reactions. The integrated system was applied to produce hydroxytyrosol acetate from oleuropein extracted from olive leaves. Different reactor configurations for each reaction were tested and individually optimized to select the MBR to ensure high conversion and continuous production of oleuropein aglycone (OA), hydroxytyrosol (HY) and hydroxytyrosol acetate (HA). Based on this study, the most performing configuration of the integrated system was identified. In the first reaction, oleuropein was converted to OA using a biocatalytic membrane reactor (BMR) with immobilized ß-glucosidase in polymeric membranes (conversion 98%). The OA was then fed to another BMR, where it was converted to HY (conversion: 70%) by an immobilized mutant of the promiscuous hydrolase/acyltransferase (PestE) (from the thermophilic archaeon Pyrobaculum calidifontis VA1). The HY produced was then acetylated using PestE immobilized on magnetic nanoparticles in a multiphase MBR (conversion: 98%) and simultaneously extracted (extraction: 98%) in ethyl acetate. The work demonstrates that continuous cascade enzymatic reactions can be engineered using artificial membranes to tailor enzyme compartmentalization, mass transport and phase contact according to reaction requirements. Besides, environmental factors proved the sustainability of the integrated membrane bioreactive system.
RESUMO
This study introduces a novel one-pot enzymatic cascade approach for converting toxicants and continuously generating an electron acceptor for production of sugar acids. This method offers a promising solution to concerns about pesticide toxicity and environmental contamination by transforming hazardous substances into a useful electron acceptor. This acceptor is then utilized to produce valuable chemicals with broad industrial applications, particularly in the food and pharmaceutical sectors. The cascade reaction employs organophosphate hydrolase (OPD) to convert pesticides into 4-nitrophenol (4-NP), which is subsequently transformed into 1,4-benzoquinone by HadA monooxygenase (HadA). 1,4-benzoquinone serves as an electron acceptor in the catalysis of sugar acid formation via pyranose dehydrogenase (PDH). The results indicate that this cascade reaction effectively converts lactose to lactobionic acid and xylose to 2-keto-xylonic acid. The latter can be further processed into xylonic acid through NaBH4 reduction. Notably, the one-pot reaction yields up to 10% higher compared to the direct addition of 1,4-benzoquinone. The synthesized xylonic acid exhibits exceptional water uptake properties in hydrogels, and the synthesized lactobionic acid shows antioxidant activity comparable to well-established antioxidants. These findings demonstrate the technological viability of these reaction cascades for various applications.
RESUMO
Utilizing enzyme cascades as a promising approach for targeted cancer therapies holds significant potential, yet its clinical effectiveness is substantially hindered by functional losses during delivery. Complex coacervation emerges as an intriguing strategy for designing functional nanoreactors. In this study, a noteworthy achievement is presented in the development of lactobionic acid-modified tumor microenvironment (TME)-responsive polyelectrolyte complex vesicles (HGS-PCVs) based on bioinspired homopolypeptoids, which serve as a facile, intelligent, and highly efficient nanoreactor tunable for glucose oxidase, hemoglobin, and sorafenib (SRF) to hepatic cancer cells. The TME-responsive permeability of HGS-PCVs enables the selective entry of glucose into their interior, triggering an enzymatic cascade reaction within the tumor. This intricate process generates toxic hydroxyl radicals while concurrently lowering the pH. Consequently, this pH shift enhances the SRF release, effectively promoting ferroptosis and apoptosis in the target cancer cells. Further, the administration of the HGS-PCVs not only initiates immunogenic cell death but also plays a crucial role in inducing the maturation of dendritic cells within lymph nodes. It stimulates an adaptive T-cell response, a crucial mechanism that contributes to impeding the growth of distant tumors in vivo, demonstrating the promising potential of PCVs for cancer immunotherapy.
RESUMO
Multi-enzymatic cascade reaction provides a new avenue for CâC coupling directly from CO2 under mild conditions. In this study, a new pathway with four enzymes including formate dehydrogenase (PaFDH), formaldehyde dehydrogenase (BmFADH), glycolaldehyde synthase (PpGALS), and alcohol dehydrogenase (GoADH) is developed for directly converting CO2 gas molecules to ethylene glycol (EG) in vitro. A rhodium-based NADH regeneration electrode is constructed to continuously provide the proton and electron of this multi-enzymatic cascade reaction. The prepared electrode can reach the Faradaic Efficiency (FE) of 82.9% at -0.6 V (vs. Ag/AgCl) and the NADH productivity of 0.737 mM h-1. Shortening the reaction path is crucial for multi-enzymatic cascade reactions. Here, a hydrogen-bonded organic framework (HOF) nano-reactor is successfully developed to immobilize four enzymes in one pot with a striking enzyme loading capacity (990 mg enzyme g-1 material). Through integrating and optimization of NADH electro-regeneration and enzymatic catalysis in one pot, 0.15 mM EG is achieved with an average conversion rate of 7.15 × 10-7 mmol CO2 min-1 mg-1 enzymes in 6 h. These results shed light on electro-driven multi-enzymatic cascade conversion of CâC coupling from CO2 in the nano-reactor.
RESUMO
l-Arabinose has been produced by hydrolyzing arabinan, a component of hemicellulose. However, l-arabinose has limitations in industrial applications owing to its relatively high cost. Here, d-xylulose 4-epimerase as a new-type enzyme was developed from d-tagaturonate 3-epimerase from Thermotoga petrophila using structure-guided enzyme engineering. d-Xylulose 4-epimerase, which epimerized d-xylulose to l-ribulose, d-xylulokinase and sugar phosphatase, which overcame the equilibrium of d-xylose isomerase, were included to establish a new efficient conversion pathway from d-xylose to l-arabinose. l-Arabinose at 34 g/L was produced from 100 g/L xylan in 45 h by multi-enzymatic cascade reaction using xylanase and enzymes involved in the established conversion pathway. As l-ribulokinase was used instead of d-xylulokinase in the established conversion pathway, an efficient reverse-directed conversion pathway from l-arabinose to d-xylose and the production of d-xylose from arabinan using arabinanase and enzymes involved in the proposed pathway are proposed.
Assuntos
Arabinose , Xilanos , Arabinose/metabolismo , Xilanos/metabolismo , Xilanos/química , Estereoisomerismo , Xilose/metabolismo , Carboidratos Epimerases/metabolismo , Carboidratos Epimerases/química , Fosfotransferases (Aceptor do Grupo Álcool)RESUMO
Solution Gated Graphene Field-Effect Transistors (SGGT) are eagerly anticipated as an amplification platform for fabricating advanced ultra-sensitive sensors, allowing significant modulation of the drain current with minimal gate voltage. However, few studies have focused on light-matter interplay gating control for SGGT. Herein, this challenge is addressed by creating an innovative photoelectrochemical solution-gated graphene field-effect transistor (PEC-SGGT) functionalized with enzyme cascade reactions (ECR) for Organophosphorus (OPs) detection. The ECR system, consisting of acetylcholinesterase (AChE) and CuBTC nanomimetic enzymes, selectively recognizes OPs and forms o-phenylenediamine (oPD) oligomers sediment on the PEC electrode, with layer thickness related to the OPs concentration, demonstrating time-integrated amplification. Under light stimulation, the additional photovoltage generated on the PEC gate electrode is influenced by the oPD oligomers sediment layer, creating a differentiated voltage distribution along the gate path. PEC-SGGT, inherently equipped with built-in amplification circuits, sensitively captures gate voltage changes and delivers output with an impressive thousandfold current gain. The seamless integration of these three amplification modes in this advanced sensor allows a good linear range and highly sensitive detection of OPs, with a detection limit as low as 0.05 pm. This work provides a proof-of-concept for the feasibility of light-assisted functionalized gate-controlled PEC-SGGT for small molecule detection.
RESUMO
Biosensors based on carbon nanotube field-effect transistors (CNT-FETs) have shown great potential in biomarker detection due to their high sensitivity because of appreciable semiconducting electrical properties. However, background signal interferences in complex mediums may results in low signal-to-noise ratio, which may impose challenges for precise biomarker detection in physiological fluids. In this work, we develop an enzymatic CNT-FET, with scalable production at wafer scale, for detection of trace sarcosine that is a biopsy-correlated biomarker of prostate cancer. Enzymatic cascade rectors are constructed on the CNT to improve the reaction efficiency, thereby, enhancing the signal transduction. As such, a limit of detection as low as 105 zM is achieved in buffer solution. Owing to the enhanced reaction efficiency, the testing of clinical serum samples yields significant signal difference to discriminate the prostate cancer (PCa) samples from the benign prostatic hyperplasia (BPH) samples (P = 1.07 × 10-5), demonstrating immense potential in practical applications.
Assuntos
Biomarcadores Tumorais , Técnicas Biossensoriais , Nanotubos de Carbono , Neoplasias da Próstata , Transistores Eletrônicos , Nanotubos de Carbono/química , Humanos , Masculino , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/sangue , Técnicas Biossensoriais/instrumentação , Biomarcadores Tumorais/sangue , Limite de Detecção , Sarcosina/sangue , Sarcosina/análise , Desenho de Equipamento , Hiperplasia Prostática/diagnóstico , Hiperplasia Prostática/sangueRESUMO
Gas cluster ion beam (GCIB)-assisted deposition is used to build multilayered protein-based structures. In this process, Ar3000-5000+ clusters bombard and sputter molecules from a reservoir (target) to a collector, an operation that can be sequentially repeated with multiple targets. The process occurs under a vacuum, making it adequate for further sample conservation in the dry state, since many proteins do not have long-term storage stability in the aqueous state. First of all, the stability in time and versatility in terms of molecule selection are demonstrated with the fabrication of peptide multilayers featuring a clear separation. Then, lysozyme and trypsin are used as protein models to show that the activity remaining on the collector after deposition is linearly proportional to the argon ion dose. The energy per atom (E/n) of the Ar clusters is a parameter that was also changed for lysozyme deposition, and its increase negatively affects activity. The intact detection of larger protein molecules by SDS-PAGE gel electrophoresis and a bioassay (trypsin at ≈25 kDa and glucose oxidase (GOx) at ≈80 kDa) is demonstrated. Finally, GOx and horseradish peroxidase, two proteins involved in the same enzymatic cascade, are successively deposited on ß-d-glucose to build an on-demand release material in which the enzymes and the substrate (ß-d-glucose) are combined in a dry trilayer, and the reaction occurs only upon reintroduction in aqueous medium.
Assuntos
Glucose Oxidase , Peroxidase do Rábano Silvestre , Muramidase , Tripsina , Muramidase/química , Muramidase/metabolismo , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Tripsina/química , Tripsina/metabolismo , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Peptídeos/química , Animais , Glucose/químicaRESUMO
The synthesis of steroids is challenging through multistep steroidal core modifications with high site-selectivity and productivity. In this work, a novel enzymatic cascade system was constructed for synthesis of testolactone by specific C17 lactonization/Δ1-dehydrogenation from inexpensive androstenedione using an engineered polycyclic ketone monooxygenase (PockeMO) and an appropriate 3-ketosteroid-Δ1-dehydrogenase (ReKstD). The focused saturation mutagenesis in the substrate binding pocket was implemented for evolution of PockeMO to eliminate the bottleneck effect. A best mutant MU3 (I225L/L226V/L532Y) was obtained with 20-fold higher specific activity compared to PockeMO. The catalytic efficiency (kcat/Km) of MU3 was 171-fold higher and the substrate scope shifted to polycyclic ketones. Molecular dynamic simulations suggested that the activity was improved by stabilization of the pre-lactonization state and generation of productive orientation of 4-AD mediated by distal L532Y mutation. Based on that, the three genes, MU3, ReKstD and a ketoreductase for NADPH regeneration, were rationally integrated in one cell via expression fine-tuning to form the efficient single cell catalyst E. coli S9. The single whole-cell biocatalytic process was scaled up and could generate 9.0 g/L testolactone with the high space time yield of 1 g/L/h without steroidal by-product, indicating the potential for site-specific and one-pot synthesis of steroid.
Assuntos
Oxigenases de Função Mista , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/química , Escherichia coli/genética , Cetonas/química , Cetonas/metabolismo , Engenharia de Proteínas/métodos , Especificidade por Substrato , Simulação de Dinâmica Molecular , CinéticaRESUMO
BACKGROUND: Dodecanedioic acid (DDA), a typical medium-chain dicarboxylic fatty acid with widespread applications, has a great synthetic value and a huge industrial market demand. Currently, a sustainable, eco-friendly and efficient process is desired for dodecanedioic acid production. RESULTS: Herein, a multi-enzymatic cascade was designed and constructed for the production of DDA from linoleic acid based on the lipoxygenase pathway in plants. The cascade is composed of lipoxygenase, hydroperoxide lyase, aldehyde dehydrogenase, and unidentified double-bond reductase in E. coli for the main cascade reactions, as well as NADH oxidase for cofactor recycling. The four component enzymes involved in the cascade were co-expressed in E. coli, together with the endogenous double-bond reductase of E. coli. After optimizing the reaction conditions of the rate-limiting step, 43.8 g L- 1 d- 1 of DDA was obtained by a whole-cell one-pot process starting from renewable linoleic acid. CONCLUSIONS: Through engineering of the reaction system and co-expressing the component enzymes, a sustainable and eco-friendly DDA biosynthesis route was set up in E. coli, which afforded the highest space time yield for DDA production among the current artificial multi-enzymatic routes derived from the LOX-pathway, and the productivity achieved here ranks the second highest among the current research progress in DDA biosynthesis.
RESUMO
BACKGROUND: l-lactate detection is important for not only assessing exercise intensity, optimizing training regimens, and identifying the lactate threshold in athletes, but also for diagnosing conditions like L-lactateosis, monitoring tissue hypoxia, and guiding critical care decisions. Moreover, l-lactate has been utilized as a biomarker to represent the state of human health. However, the sensitivity of the present l-lactate detection technique is inadequate. RESULTS: Here, we reported a sensitive ratiometric fluorescent probe for l-lactate detection based on platinum octaethylporphyrin (PtOEP) doped semiconducting polymer dots (Pdots-Pt) with enzymatic cascade reaction. With the help of an enzyme cascade reaction, the l-lactate was continuously oxidized to pyruvic and then reduced back to l-lactate for the next cycle. During this process, oxygen and NADH were continuously consumed, which increased the red fluorescence of Pdots-Pt that responded to the changes of oxygen concentration and decreased the blue fluorescence of NADH at the same time. By comparing the fluorescence intensities at these two different wavelengths, the concentration of l-lactate was accurately measured. With the optimal conditions, the probes showed two linear detection ranges from 0.5 nM to 5.0 µM and 5.0 µM-50.0 µM for l-lactate detection. The limit of detection was calculated to be 0.18 nM by 3σ/slope method. Finally, the method shows good detection performance of l-lactate in both bovine serum and artificial serum samples, indicating its potential usage for the selective analysis of l-lactate for health monitoring and disease diagnosis. SIGNIFICANCE: The successful application of the sensing system in the complex biological sample (bovine serum and artificial serum samples) demonstrated that this method could be used for sensitive l-lactate detection in practical clinical applications. This detection system provided an extremely low detection limit, which was several orders of magnitude lower than methods proposed in other literatures.
Assuntos
Ácido Láctico , NAD , Humanos , Atletas , Compostos Orgânicos , Oxigênio , PolímerosRESUMO
D-Galactose derivatives, including galactosyl-conjugates and galactose-upgrading compounds, provide various physiological benefits and find applications in industries such as food, cosmetics, feed, pharmaceuticals. Many research on galactose derivatives focuses on identification, characterization, development, and mechanistic aspects of their physiological function, providing opportunities and challenges for the development of practical approaches for synthesizing galactose derivatives. This study focuses on recent advancements in enzymatic biosynthesis of galactose derivatives. Various strategies including isomerization, epimerization, transgalactosylation, and phosphorylation-dephosphorylation were extensively discussed under the perspectives of thermodynamic feasibility, theoretical yield, cost-effectiveness, and by-product elimination. Specifically, the enzymatic phosphorylation-dephosphorylation cascade is a promising enzymatic synthesis route for galactose derivatives because it can overcome the thermodynamic equilibrium of isomerization and utilize cost-effective raw materials. The study also elucidates the existing challenges and future trends in enzymatic biosynthesis of galactose derivatives. Collectively, this review provides a real-time summary aimed at promoting the practical biosynthesis of galactose derivatives through enzymatic catalysis.
Assuntos
Galactose , Galactose/metabolismo , Galactose/química , Galactose/biossíntese , Fosforilação , Enzimas/metabolismo , Enzimas/química , GlicosilaçãoRESUMO
BACKGROUND: Hereditary angioedema (HAE) is a genetic disorder that manifests as recurrent angioedema attacks, most frequently due to absent or reduced C1 inhibitor (C1INH) activity. C1INH is a crucial regulator of enzymatic cascades in the complement, fibrinolytic, and contact systems. Inter-α-trypsin inhibitor heavy chain 4 (ITIH4) is an abundant plasma protease inhibitor that can inhibit enzymes in the proteolytic pathways associated with HAE. Nothing is known about its role in HAE. OBJECTIVE: We investigated ITIH4 activation in HAE, establishing it as a potential biomarker, and explored its involvement in HAE-associated proteolytic pathways. METHODS: Specific immunoassays for noncleaved ITIH4 (intact ITIH4) and an assay detecting both intact and cleaved ITIH4 (total ITIH4) were developed. We initially tested serum samples from HAE patients (n = 20), angiotensin-converting enzyme inhibitor-induced edema patients (ACEI) (n = 20), and patients with HAE of unknown cause (HAE-UNK) (n = 20). Validation involved an extended cohort of 80 HAE patients (60 with HAE-C1INH type 1, 20 with HAE-C1INH type 2), including samples taken during attack and quiescent disease periods, as well as samples from 100 healthy controls. RESULTS: In 63% of HAE patients, intact ITIH4 assay showed lower signals than total ITIH4 assay. This difference was not observed in ACEI and HAE-UNK patients. Western blot analysis confirmed cleaved ITIH4 with low intact ITIH4 samples. In serum samples lacking intact endogenous ITIH4, we observed immediate cleavage of added recombinant ITIH4, suggesting continuous enzymatic activity in the serum. Confirmatory HAE cohort analysis revealed significantly lower intact ITIH4 levels in both type 1 and type 2 HAE patients compared to controls, with consistently low intact/total ITIH4 ratios during clinical HAE attacks. CONCLUSION: The disease-specific low intact ITIH4 levels highlight its unique nature in HAE. ITIH4 may exhibit compensatory mechanisms in HAE, suggesting its utility as a diagnostic and prognostic biomarker. The variations during quiescent and active disease periods raise intriguing questions about the dynamics of proteolytic pathways in HAE.
Assuntos
Angioedemas Hereditários , Biomarcadores , Proteínas Secretadas Inibidoras de Proteinases , Humanos , Angioedemas Hereditários/diagnóstico , Angioedemas Hereditários/tratamento farmacológico , Angioedemas Hereditários/sangue , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Biomarcadores/sangue , Idoso , Adolescente , Adulto Jovem , Glicoproteínas/sangue , Proteína Inibidora do Complemento C1/genéticaRESUMO
Cytidine triphosphate (CTP), as a substance involved in the metabolism of phospholipids, proteins and nucleic acids, has precise drug effects and is a direct precursor for the synthesis of drugs such as citicoline. In this study, we established an in vitro six-enzyme cascade system to generate CTP. To avoid thermodynamic bottlenecks, we employed a circuitous and two-stage reaction strategy. Using cytidine as the key substrate, the final product CTP is obtained via the deamination and uridine phosphorylation pathways, relying on the irreversible reaction of cytidine triphosphate synthase to catalyze the amination of uridine triphosphate. Several extremophilic microbial-derived deaminases were screened and characterized, and a suitable cytidine deaminase was selected to match the first-stage reaction conditions. In addition, directed evolution modification of the rate-limiting enzyme CTP synthetase in the pathway yielded a variant that successfully relieved the product feedback inhibition, along with a 1.7-fold increase in activity over the wild type. After optimizing the reaction conditions, we finally carried out the catalytic reaction at an initial cytidine concentration of 20 mM, and the yield of CTP exceeded 82% within 10.0 h.
RESUMO
BACKGROUND: Organophosphorus pesticides (OPs) play important roles in the natural environment, agricultural fields, and biological prevention. The development of OPs detection has gradually become an effective strategy to avoid the dangers of pesticides abuse and solve the severe environmental and health problems in humans. Although conventional assays for OPs analysis such as the bulky instrument required analytical methods have been well-developed, it still remains the limitation of inconvenient, inefficient and lab-dependence analysis in real samples. Hence, there is an urgent demand to develop efficient detection methods for OPs analysis in real scenarios. RESULTS: Here, by virtue of the highly efficient catalytic performance in Fe7S8 nanoflakes (Fe7S8 NFs), we propose an OPs detection method that rationally integrated Fe7S8 NFs into the acetylcholine (ACh) triggered enzymatic cascade reaction (ATECR) for proceeding better detection performances. In this method, OPs serve as the enzyme inhibitors for inhibiting ATECR among ACh, acetylcholinesterase (AChE), and choline oxidase (CHO), then reduce the generation of H2O2 to suppress the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) that catalyzed by Fe7S8 NFs. Benefiting from the integration of Fe7S8 NFs and ATECR, it enables a sensitive detection for OPs (e.g. dimethoate). The proposed method has presented good linear ranges of OPs detection ranging from 0.1 to 10 µg mL-1. Compared to the other methods, the comparable limits of detection (LOD) of OPs are as low as 0.05 µg mL-1. SIGNIFICANCE: Furthermore, the proposed method has also achieved a favorable visual detection performance of revealing OPs analysis in real samples. The visual signals of OPs can be transformed into RGB values and gathered by using smartphones, indicating the great potential in simple, sensitive, instrument-free and on-site analysis of pesticide residues in environmental monitoring and biosecurity research.
Assuntos
Técnicas Biossensoriais , Praguicidas , Piperidinas , Humanos , Praguicidas/análise , Acetilcolina/química , Acetilcolinesterase/química , Compostos Organofosforados/análise , Peróxido de Hidrogênio/química , Catálise , Técnicas Biossensoriais/métodosRESUMO
Enzyme-based glycosylation is of great interest in the context of natural products decoration. Yet, its industrial application is hindered by optimisation difficulties and hard-to-standardise productivities. In this study, five sugar nucleotide-dependent glucosyltransferases from different origins (bacterial, plant and fungal) were coupled with soy sucrose synthase (GmSuSy) to create a set of diverse cascade biocatalysts for flavonoid glucosylation, which evaluation brought new insights into the field. Investigations into co-expression conditions and reaction settings enabled to define optimal induction temperature (25 °C) and uridine diphosphate (UDP) concentration (0.5 mM) for all tested pairs of enzymes. Moreover, the influence of pH and substrate concentration on the monoglucosylated product distribution was detected and analysed. The utilisation of crude protein extracts as a cost-effective source of catalysts unveiled their glycosidase activity against flavonoid glucosides, resulting in decreased productivity, which, to our knowledge, has not previously been discussed in such a context. Additionally, examination of the commercially available EziG immobilisation resins showed that selection of suitable carrier for solid catalyst production can be problematic and not only enzyme's but also reagent's properties have to be considered. Flavonoids, due to their complexation and hydrophobic properties, can adsorb on different types of surfaces, including divalent metal ions required for IMAC based immobilisation, necessitating detailed examination of the resins while the catalysis design.
Assuntos
Flavonoides , Glucosiltransferases , Glucosiltransferases/metabolismo , Glicosilação , NucleotídeosRESUMO
BACKGROUND: Chitin, the main form of aminated polysaccharide in nature, is a biocompatible, polycationic, and antimicrobial biopolymer used extensively in industrial processes. Despite the abundance of chitin, applications thereof are hampered by difficulties in feedstock harvesting and limited structural versatility. To address these problems, we proposed a two-step cascade employing carbohydrate oxidoreductases and amine transaminases for plant polysaccharide aminations via one-pot reactions. Using a galactose oxidase from Fusarium graminearum for oxidation, this study compared the performance of CvATA (from Chromobacterium violaceum) and SpATA (from Silicibacter pomeroyi) on a range of oxidized carbohydrates with various structures and sizes. Using a rational enzyme engineering approach, four point mutations were introduced on the SpATA surface, and their effects on enzyme activity were evaluated. RESULTS: Herein, a quantitative colorimetric assay was developed to enable simple and accurate time-course measurement of the yield of transamination reactions. With higher operational stability, SpATA produced higher product yields in 36 h reactions despite its lower initial activity. Successful amination of oxidized galactomannan by SpATA was confirmed using a deuterium labeling method; higher aminated carbohydrate yields achieved with SpATA compared to CvATA were verified using HPLC and XPS. By balancing the oxidase and transaminase loadings, improved operating conditions were identified where the side product formation was largely suppressed without negatively impacting the product yield. SpATA mutants with multiple alanine substitutions besides E407A showed improved product yield. The E407A mutation reduced SpATA activity substantially, supporting its predicted role in maintaining the dimeric enzyme structure. CONCLUSIONS: Using oxidase-amine transaminase cascades, the study demonstrated a fully enzymatic route to polysaccharide amination. Although the activity of SpATA may be further improved via enzyme engineering, the low operational stability of characterized amine transaminases, as a result of low retention of PMP cofactors, was identified as a key factor limiting the yield of the designed cascade. To increase the process feasibility, future efforts to engineer improved SpATA variants should focus on improving the cofactor affinity, and thus the operational stability of the enzyme.