Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.967
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2403197, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946671

RESUMO

Modifying the coordination or local environments of single-, di-, tri-, and multi-metal atom (SMA/DMA/TMA/MMA)-based materials is one of the best strategies for increasing the catalytic activities, selectivity, and long-term durability of these materials. Advanced sheet materials supported by metal atom-based materials have become a critical topic in the fields of renewable energy conversion systems, storage devices, sensors, and biomedicine owing to the maximum atom utilization efficiency, precisely located metal centers, specific electron configurations, unique reactivity, and precise chemical tunability. Several sheet materials offer excellent support for metal atom-based materials and are attractive for applications in energy, sensors, and medical research, such as in oxygen reduction, oxygen production, hydrogen generation, fuel production, selective chemical detection, and enzymatic reactions. The strong metal-metal and metal-carbon with metal-heteroatom (i.e., N, S, P, B, and O) bonds stabilize and optimize the electronic structures of the metal atoms due to strong interfacial interactions, yielding excellent catalytic activities. These materials provide excellent models for understanding the fundamental problems with multistep chemical reactions. This review summarizes the substrate structure-activity relationship of metal atom-based materials with different active sites based on experimental and theoretical data. Additionally, the new synthesis procedures, physicochemical characterizations, and energy and biomedical applications are discussed. Finally, the remaining challenges in developing efficient SMA/DMA/TMA/MMA-based materials are presented.

2.
World J Gastroenterol ; 30(22): 2839-2842, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38947289

RESUMO

Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most prevalent chronic liver condition worldwide. Current liver enzyme-based screening methods have limitations that may missed diagnoses and treatment delays. Regarding Chen et al, the risk of developing MAFLD remains elevated even when alanine aminotransferase levels fall within the normal range. Therefore, there is an urgent need for advanced diagnostic techniques and updated algorithms to enhance the accuracy of MAFLD diagnosis and enable early intervention. This paper proposes two potential screening methods for identifying individuals who may be at risk of developing MAFLD: Lowering these thresholds and promoting the use of noninvasive liver fibrosis scores.


Assuntos
Fígado , Programas de Rastreamento , Hepatopatia Gordurosa não Alcoólica , Humanos , Fígado/patologia , Fígado/enzimologia , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/sangue , Programas de Rastreamento/métodos , Alanina Transaminase/sangue , Algoritmos , Biomarcadores/sangue , Cirrose Hepática/diagnóstico , Cirrose Hepática/sangue , Fatores de Risco , Diagnóstico Precoce
3.
Small ; : e2402655, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949408

RESUMO

Solution Gated Graphene Field-Effect Transistors (SGGT) are eagerly anticipated as an amplification platform for fabricating advanced ultra-sensitive sensors, allowing significant modulation of the drain current with minimal gate voltage. However, few studies have focused on light-matter interplay gating control for SGGT. Herein, this challenge is addressed by creating an innovative photoelectrochemical solution-gated graphene field-effect transistor (PEC-SGGT) functionalized with enzyme cascade reactions (ECR) for Organophosphorus (OPs) detection. The ECR system, consisting of acetylcholinesterase (AChE) and CuBTC nanomimetic enzymes, selectively recognizes OPs and forms o-phenylenediamine (oPD) oligomers sediment on the PEC electrode, with layer thickness related to the OPs concentration, demonstrating time-integrated amplification. Under light stimulation, the additional photovoltage generated on the PEC gate electrode is influenced by the oPD oligomers sediment layer, creating a differentiated voltage distribution along the gate path. PEC-SGGT, inherently equipped with built-in amplification circuits, sensitively captures gate voltage changes and delivers output with an impressive thousandfold current gain. The seamless integration of these three amplification modes in this advanced sensor allows a good linear range and highly sensitive detection of OPs, with a detection limit as low as 0.05 pm. This work provides a proof-of-concept for the feasibility of light-assisted functionalized gate-controlled PEC-SGGT for small molecule detection.

4.
J Med Food ; 27(6): 533-544, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38836511

RESUMO

Valproic acid is an effective treatment for generalized seizure and related neurological defects. Despite its efficacy and acceptability, its use is associated with adverse drug effects. Moringa oleifera leaves are rich in phytochemical and nutritional components. It has excellent antioxidant and ethnobotanical benefits, thus popular among folk medicines and nutraceuticals. In the present study, 70% ethanol extract of moringa leaves was assessed for its in vivo biochemical and histological effects against valproate-induced kidney damage. Female Sprague-Dawley rats were randomly divided into four groups: Group I: control animals given physiological saline (n = 8); Group II: Moringa extract-administered group (0.3 g/kg b.w./day, n = 8); Group III: valproate-administered animals (0.5 g/kg b.w./day, n = 15); and Group IV: valproate + moringa extract (given similar doses of both valproate and moringa extract, n = 12) administered group. Treatments were administered orally for 15 days, the animals were fasted overnight, anesthetized, and then tissue samples harvested. In the valproate-administered experimental group, serum urea and uric acid were elevated. In the kidney tissue of the valproate rats, glutathione was depleted, antioxidant enzyme activities (superoxide dismutase, catalase, glutathione reductase, glutathione S-transferase, and glutathione peroxidase) disrupted, while oxidative stress biomarker, inflammatory proteins (Tumor necrosis factor-alpha and interleukin-6), histological damage scores, and the number of PCNA-positive cells were elevated. M. oleifera attenuated all these biochemical defects through its plethora of diverse antioxidant and therapeutic properties.


Assuntos
Antioxidantes , Rim , Moringa oleifera , Estresse Oxidativo , Extratos Vegetais , Ratos Sprague-Dawley , Ácido Valproico , Animais , Moringa oleifera/química , Ácido Valproico/efeitos adversos , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Feminino , Ratos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Superóxido Dismutase/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Folhas de Planta/química , Glutationa/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-6/genética , Catalase/metabolismo , Glutationa Peroxidase/metabolismo
5.
Chemosphere ; : 142594, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38871186

RESUMO

The presence of microplastics (MPs) in water may affect the efficacy of the disinfection process and induce toxicity changes to MPs themselves during disinfection. Therefore, this study evaluated the two-way effects of polyethylene microplastic (MP) particles in water and wastewater during sodium hypochlorite (NaClO) disinfection. On the one hand, it has been confirmed that the presence of MPs reduced the disinfection efficiency of NaClO. The required CT (concentration of the disinfection × contact time) for a 2-4-log inactivation of Escherichia coli (E. coli) in different water samples was in the order of deionized water < turbid water (1 NTU) < water with MPs (1 mg/L) < turbid water (10 NTU). On the other hand, although exposure to MPs did induce significant changes in the activities of superoxide dismutase and glutathione, compared to pristine MPs, the MPs treated by NaClO at current conditions (0.3 and 3.0 mg/L for 30 min) did not show significant changes in their toxicity on zebrafish, at an MP exposure concentration of 1 mg/L. There was no significant difference in the survival rate and weight growth rate, neither as in the activities of the oxidative stress-related enzymes (superoxide dismutase, catalase, glutathione, glutathione peroxidase, and glutathione s-transferase) in both gut and muscle tissues of the zebrafish, between exposure to the pristine and NaClO-treated MPs. It is indicated that NaClO disinfection commonly applied for water and wastewater treatment would not pose a serious concern to effluent safety in the presence of mild levels of MPs.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38872038

RESUMO

Anthropogenic stressors can have an impact in a broad range of physiological processes and can be a major selective force leading to rapid evolution and local population adaptation. In this study, three populations of the invasive crayfish Procambarus clarkii were investigated. They are geographically separated for at least 20 years, and live in different abiotic environments: a freshwater inland lake (Salagou lake) with no major anthropogenic influence and two other coastal wetlands regularly polluted by pesticides along the Mediterranean coast (Camargue region and Bages-Sigean lagoon). Collected adults were genetically characterized using the mitochondrial COI gene and haplotype frequencies were analyzed for genetic variability within and between populations. Results revealed a higher genetic diversity for these invasive populations than any previous report in France, with more than seven different haplotypes in a single population. The contrasting genetic diversity between the Camargue and the other two populations suggest different times and sources of introduction. To identify differences in key physiological responses between these populations, individuals from each population were maintained in controlled conditions. Data on oxygen consumption rates indicate that the Salagou and Bages-Sigean populations possess a high inter-individual variability compared to the Camargue population. The low individual variability of oxygen consumption and low genetic diversity suggest a specific local adaptation for the Camargue population. Population-specific responses were identified when individuals were exposed to a pesticide cocktail containing azoxystrobin and oxadiazon at sublethal concentrations. The Salagou population was the only one with altered hydro-osmotic balance due to pollutant exposure and a change in protease activity in the hepatopancreas. These results revealed different phenotypic responses suggesting local adaptations at the population level.

7.
Angew Chem Int Ed Engl ; : e202404045, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874074

RESUMO

The thiamine diphosphate (ThDP)-binding motif, characterized by the canonical GDG(X)24-27N sequence, is highly conserved among ThDP-dependent enzymes. We investigated a ThDP-dependent lyase (JanthE from Janthinobacterium sp. HH01) with an unusual cysteine (C458) replacing the first glycine of this motif. We found that JanthE has a high substrate promiscuity accepting long aliphatic α-keto acids as donors. Sterically hindered aromatic aldehydes or non-activated ketones are acceptor substrates, giving access to a variety of secondary and tertiary alcohols as carboligation products. The crystal structure solved at a resolution of 1.9 Å reveals that C458 is not primarily involved in the cofactor binding as previously thought for the canonical glycine. Instead, it coordinates methionine 406, thus ensuring the integrity of the active site and the enzyme activity. We further determined the long-sought genuine tetrahedral intermediates formed with pyruvate and 2-oxo-butyrate in the pre-decarboxylation states and unravel atomic details for their stabilization in the active site. Collectively, we unravel an unexpected role for the first residue of the ThDP-binding motif and unlock a family of lyases able to perform valuable carboligation reactions.

8.
Carbohydr Res ; 541: 109169, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38838492

RESUMO

It is well established that tumour cells undergo metabolic changes to acquire biological advantage over normal cells with activation of the glycolytic pathway, a process termed "Warburg effect". Enzyme isoforms are alternative enzymatic forms with the same function but with different biochemical or epigenetic features. Moreover, isoforms may have varying impacts on different metabolic pathways. We challenge ourselves to analyse the glycolytic and gluconeogenic enzymes and isoforms in breast cancer, a complex and heterogeneous pathology, associated with high incidence and mortality rates especially among women. We analysed epithelial and tumour cell lines by RT-PCR and compared values to a publicly available database for the expression profile of normal and tumour tissues (Gepia) of enzymes and enzymatic isoforms from glycolytic and gluconeogenic pathways. Additionally, GeneMANIA was used to evaluate interactions, pathways, and attributes of each glycolytic/gluconeogenic steps. The findings reveal that the enzymes and enzymatic isoforms expressed in cell culture were somewhat different from those in breast tissue. We propose that the tumor microenvironment plays a crucial role in the expression of glycolytic and gluconeogenic enzymes and isoforms in tumour cells. Nonetheless, they not only participate in glycolytic and gluconeogenic enzymatic activities but may also influence other pathways, such as the Pentose-Phosphate-Pathway, TCA cycle, as well as other carbohydrate, lipid, and amino acid metabolism.


Assuntos
Neoplasias da Mama , Gluconeogênese , Glicólise , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/enzimologia , Feminino , Linhagem Celular Tumoral , Isoenzimas/metabolismo , Isoenzimas/genética
9.
Front Microbiol ; 15: 1374303, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868093

RESUMO

Arsenic (As) is a highly toxic metal that interferes with plant growth and disrupts various biochemical and molecular processes in plants. In this study, the harmful effects of As on rice were mitigated using combined inoculation of a root endophyte Serendipita indica and an actinobacterium Zhihengliuella sp. ISTPL4. A randomized experiment was conducted, in which rice plants were grown under controlled conditions and As-stressed conditions. The control and treatment groups consisted of untreated and non-stressed plants (C1), treated and non-stressed plants (C2), stressed and untreated plants (T1), and stressed and treated plants (T2). Various phenotypic characteristics such as shoot length (SL), root length (RL), shoot fresh weight (SFW), root fresh weight (RFW), shoot dry weight (SDW), and root dry weight (RDW) and biochemical parameters such as chlorophyll content, protein content, and antioxidant enzymatic activities were evaluated. The activity of various antioxidant enzymes was increased in T2 followed by T1 plants. Furthermore, high concentrations of phytohormones such as ethylene (ET), gibberellic acid (GA), and cytokinin (CK) were found at 4.11 µmol mg-1, 2.53 µmol mg-1, and 3.62 µmol mg-1 of FW of plant, respectively. The results of AAS indicated an increased As accumulation in roots of T2 plants (131.5 mg kg-1) than in roots of T1 plants (120 mg kg-1). It showed that there was an increased As accumulation and sequestration in roots of microbial-treated plants (T2) than in uninoculated plants (T1). Our data suggest that this microbial combination can be used to reduce the toxic effects of As in plants by increasing the activity of antioxidant enzymes such as SOD, CAT, PAL, PPO and POD. Furthermore, rice plants can withstand As stress owing to the active synthesis of phytohormones in the presence of microbial combinations.

10.
Clin Case Rep ; 12(6): e9050, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38868111

RESUMO

Key Clinical Message: This case signifies the importance of recognizing DIAIH within the context of antibiotic therapy, especially in older adults and even shortly after common drug exposures for treating UTI. Abstract: Various drugs can induce immune-mediated liver damage and in rare instances may lead to autoimmune hepatitis. Here we report an 84-year-old woman who developed autoimmune hepatitis less than 3 weeks after treatment for urinary tract infection with the antibiotic nitrofurantoin. She presented with jaundice, right upper quadrant abdominal pain, nausea, and vomiting. In the absence of a history of an autoimmune disorder or elevated liver enzymes in the past; elevated liver enzymes after a short course of Nitrofurantoin and the presence of smooth muscle antibodies strongly suggested autoimmune hepatitis, which was confirmed through biopsy sample analysis. The patient scored 7 points on the Naranjo adverse reaction probability scale. The patient's rapid recovery within 1 month of prednisone therapy supports the association of liver damage with nitrofurantoin use.

11.
Access Microbiol ; 6(5)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868372

RESUMO

KSHV viral FLICE inhibitory protein (vFLIP) is a potent activator of NF-κB signalling and an inhibitor of apoptosis and autophagy. Inhibition of vFLIP function and NF-κB signalling promotes lytic reactivation. Here we provide evidence for a novel function of vFLIP through inhibition of the deubiquitinating (DUB) activity of the negative regulator, A20. We demonstrate direct interaction of vFLIP with Itch and A20 and provide evidence for subsequent loss of A20 DUB activity. Our results provide further insight into the function of vFLIP in the regulation of NF-κB signalling.

12.
FASEB J ; 38(11): e23702, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38837439

RESUMO

Pyruvate kinase is a glycolytic enzyme that converts phosphoenolpyruvate and ADP into pyruvate and ATP. There are two genes that encode pyruvate kinase in vertebrates; Pkm and Pkl encode muscle- and liver/erythrocyte-specific forms, respectively. Each gene encodes two isoenzymes due to alternative splicing. Both muscle-specific enzymes, PKM1 and PKM2, function in glycolysis, but PKM2 also has been implicated in gene regulation due to its ability to phosphorylate histone 3 threonine 11 (H3T11) in cancer cells. Here, we examined the roles of PKM1 and PKM2 during myoblast differentiation. RNA-seq analysis revealed that PKM2 promotes the expression of Dpf2/Baf45d and Baf250a/Arid1A. DPF2 and BAF250a are subunits that identify a specific sub-family of the mammalian SWI/SNF (mSWI/SNF) of chromatin remodeling enzymes that is required for the activation of myogenic gene expression during differentiation. PKM2 also mediated the incorporation of DPF2 and BAF250a into the regulatory sequences controlling myogenic gene expression. PKM1 did not affect expression but was required for nuclear localization of DPF2. Additionally, PKM2 was required not only for the incorporation of phosphorylated H3T11 in myogenic promoters but also for the incorporation of phosphorylated H3T6 and H3T45 at myogenic promoters via regulation of AKT and protein kinase C isoforms that phosphorylate those amino acids. Our results identify multiple unique roles for PKM2 and a novel function for PKM1 in gene expression and chromatin regulation during myoblast differentiation.


Assuntos
Diferenciação Celular , Histonas , Mioblastos , Piruvato Quinase , Animais , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Camundongos , Fosforilação , Histonas/metabolismo , Histonas/genética , Mioblastos/metabolismo , Mioblastos/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a Hormônio da Tireoide , Humanos , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Isoenzimas/metabolismo , Isoenzimas/genética
13.
bioRxiv ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38853827

RESUMO

The ubiquitin-like protein ISG15 (interferon-stimulated gene 15) regulates the host response to bacterial and viral infections through its conjugation to proteins (ISGylation) following interferon production. ISGylation is antagonized by the highly specific cysteine protease USP18, which is the major deISGylating enzyme. However, mechanisms underlying USP18's extraordinary specificity towards ISG15 remains elusive. Here, we show that USP18 interacts with its paralog USP41, whose catalytic domain shares 97% identity with USP18. However, USP41 does not act as a deISGylase, which led us to perform a comparative analysis to decipher the basis for this difference, revealing molecular determinants of USP18's specificity towards ISG15. We found that USP18 C-terminus, as well as a conserved Leucine at position 198, are essential for its enzymatic activity and likely act as functional surfaces based on AlphaFold predictions. Finally, we propose that USP41 antagonizes conjugation of the understudied ubiquitin-like protein FAT10 (HLA-F adjacent transcript 10) from substrates in a catalytic-independent manner. Altogether, our results offer new insights into USP18's specificity towards ISG15, while identifying USP41 as a negative regulator of FAT10 conjugation.

14.
J Ethnopharmacol ; 333: 118446, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38857679

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The increasing incidence of osteoarthritis (OA), especially among the elderly population, highlights the need for more efficacious treatments that go beyond mere symptomatic relief. Tinospora crispa (L.) Hook. f. & Thomson (TC) boasts a rich traditional heritage, widespread use in Ayurveda, traditional Chinese medicine (TCM), and diverse indigenous healing practices throughout Southeast Asia for treating arthritis, rheumatism, fever, and inflammation. AIM OF THE STUDY: This study investigates the anti-inflammatory and chondroprotective potential of TC stem extracts, including ethanolic TC extract (ETCE) and aqueous TC extract (ATCE), in modulating OA pathogenesis through in vitro and in vivo approaches. MATERIALS AND METHODS: The study utilized LC-MS/MS to identify key compounds in TC stem extracts. In vitro experiments assessed the antioxidative and anti-inflammatory properties of ETCE and ATCE in activated macrophages, while an in vivo monoiodoacetate (MIA)-induced OA rat model evaluated the efficacy of ETCE treatment. Key markers of oxidative stress, such as superoxide dismutase (SOD) and catalase (CAT), were assessed alongside pro-inflammatory cytokines TNF-α and IL-1ß, and matrix-degrading enzymes, matrix metalloproteinase (MMP 13 and MMP 3), to evaluate the therapeutic effects of TC stem extracts on OA. RESULTS: Chemical profiling of the extracts was conducted using LC-MS/MS in positive ionization, identifying seven compounds, including pseudolaric acid B, stylopine, and reticuline, which were reported for the first time in this species. The study utilized varying concentrations of TC stem extracts, specifically 6.25-25 µg/mL for in vitro assays and 500 mg/kg for in vivo studies. Our findings also revealed that both ETCE and ATCE exhibit dose-dependent reduction in reactive oxygen species (41%-52%) and nitric oxide (NO) levels (50% and 72%), with ETCE displaying superior antioxidative efficacy and marked anti-inflammatory properties, significantly reducing TNF-α and IL-6 at concentrations above 12.5 µg/mL. In the MIA-induced OA rat model, ETCE treatment notably outperformed ATCE, markedly lowering TNF-α (1.91 ± 0.37 pg/mL) and IL-1ß (26.30 ± 3.68 pg/mL) levels and effectively inhibiting MMP 13 and MMP 3 enzymes. Furthermore, macroscopic and histopathological assessments, including ICRS scoring and OARSI grading, indicate that TC stem extracts reduce articular damage and proteoglycan loss in rat knee cartilage. These results suggest that TC stem extracts may play a role in preventing cartilage degradation and potentially alleviating inflammation and pain associated with OA, though further studies are needed to confirm these effects. CONCLUSION: This study highlights the potential of TC stem extracts as a novel, chondroprotective therapeutic avenue for OA management. By targeting oxidative stress, pro-inflammatory cytokines, and cartilage-degrading enzymes, TC stem extracts promise to prevent cartilage degradation and alleviate inflammation and pain associated with OA.

15.
Carbohydr Polym ; 340: 122317, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38858030

RESUMO

Brown macroalgae synthesize large amounts of fucoidans, sulfated fucose-containing polysaccharides, in the ocean. Fucoidans are of importance for their recently discovered contribution to marine carbon dioxide sequestration and due to their potential applications in biotechnology and biomedicine. However, fucoidans have high intra- and intermolecular diversity that challenges assignment of structure to biological function and the development of applications. Fucoidan-active enzymes may be used to simplify this diversity by producing defined oligosaccharides more applicable for structural refinement, characterization, and structure to function assignment for example via bioassays. In this study, we combined MALDI mass spectrometry with biocatalysis to show that the endo-fucoidanases P5AFcnA and Wv323 can produce defined oligosaccharide structures directly from unrefined macroalgal biomass. P5AFcnA released oligosaccharides from seven commercial fucoidan extracts in addition to unrefined biomass of three macroalgae species indicating a broadly applicable approach reproducible across 10 species. Both MALDI-TOF/TOF and AP-MALDI-Orbitrap systems were used, demonstrating that the approach is not instrument-specific and exploiting their combined high-throughput and high-resolution capabilities. Overall, the combination of MALDI-MS and endo-fucoidanase assays offers high-throughput evaluation of fucoidan samples and also enables extraction of defined oligosaccharides of known structure from unrefined seaweed biomass.


Assuntos
Glicosídeo Hidrolases , Polissacarídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Polissacarídeos/química , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/química , Hidrólise , Alga Marinha/química , Phaeophyceae/química , Phaeophyceae/enzimologia , Oligossacarídeos/química , Biomassa
16.
Bioresour Technol ; 406: 130970, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876285

RESUMO

The effects and mitigation mechanisms of biochar added at different composting stages on N2O emission were investigated. Four treatments were set as follows: CK: control, BB10%: +10 % biochar at beginning of composting, BB5%&T5%: +5% biochar at beginning and + 5 % biochar after thermophilic stage of composting, BT10%: +10 % after thermophilic stage of composting. Results showed that treatment BB10%, BB5%&T5%, and BT10% reduced total N2O emissions by 55 %, 37 %, and 36 %, respectively. N2O emission was closely related to most physicochemical properties, while it was only related to amoA gene and hydroxylamine oxidoreductase. Different addition strategies of biochar changed the contributions of physicochemical properties, functional genes and enzymes to N2O emission. Organic matter and C/N contributed 23.7 % and 27.6 % of variations in functional gene abundances (P < 0.05), respectively. pH and C/N (P < 0.05) contributed 37.3 % and 17.3 % of variations in functional enzyme activities. These findings provided valuable insights into mitigating N2O emissions during composting.

17.
Plants (Basel) ; 13(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891242

RESUMO

The need for the increasing geographical spread of fire blight (FB) affecting fruit crops to be addressed led to large-scale chemicalization of the environmental matrices and reduction of plant productivity. The current study aimed to assess the effects of novel biopreparations at different exposure durations on photosynthetic pigment content and antioxidant enzyme activity in leaves of apple and pear varieties with varying levels of resistance to FB. Biopreparations were formulated from a cultural broth containing Lacticaseibacillus paracasei M12 or Bacillus amyloliquefaciens MB40 isolated from apple trees' phyllosphere. Aseptic leaves from blight-resistant (endemic Malus sieversii cv. KG10), moderately resistant (Pyrus pyraster cv. Wild), and susceptible (endangered Malus domestica cv. Aport and Pyrus communis cv. Shygys) varieties were employed. The impact of biopreparations on fruit crop antioxidant systems and photosynthetic apparatuses was investigated in vitro. Study results indicated that FB-resistant varieties exhibit enhanced adaptability and oxidative stress resistance compared to susceptible ones. Plant response to biopreparations varied based on the plant's initial FB sensitivity and exposure duration. Indeed, biopreparations improved the adaptive response of the assimilation apparatus, protein synthesis, and catalase and superoxide dismutase activity in susceptible varieties, suggesting that biopreparations have the potential for future commercialization to manage FB in fruit crops.

18.
Plants (Basel) ; 13(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38891304

RESUMO

Citrus Huanglongbing (HLB), caused by the phloem-inhibiting bacterium Candidatus Liberibacter asiaticus (CLas), is the most devastating citrus disease, intimidating citrus production worldwide. Although commercially cultivated citrus cultivars are vulnerable to CLas infection, HLB-tolerant attributes have, however, been observed in certain citrus varieties, suggesting a possible pathway for identifying innate defense regulators that mitigate HLB. By adopting transcriptome and small RNAome analysis, the current study compares the responses of HLB-tolerant lemon (Citrus limon L.) with HLB-susceptible Shatangju mandarin (Citrus reticulata Blanco cv. Shatangju) against CLas infection. Transcriptome analysis revealed significant differences in gene expression between lemon and Shatangju. A total of 1751 and 3076 significantly differentially expressed genes were identified in Shatangju and lemon, respectively. Specifically, CLas infected lemon tissues demonstrated higher expressions of genes involved in antioxidant enzyme activity, protein phosphorylation, carbohydrate, cell wall, and lipid metabolism than Shatangju. Wet-lab experiments further validated these findings, demonstrating increased antioxidant enzyme activity in lemon: APX (35%), SOD (30%), and CAT (64%) than Shatangju. Conversely, Shatangju plants exhibited higher levels of oxidative stress markers like H2O2 (44.5%) and MDA content (65.2%), alongside pronounced ion leakage (11.85%), than lemon. Moreover, microscopic investigations revealed that CLas infected Shatangju phloem exhibits significantly more starch and callose accumulation than lemon. Furthermore, comparative sRNA profiles revealed the potential defensive regulators for HLB tolerance. In Shatangju, increased expression of csi-miR166 suppresses the expression of disease-resistant proteins, leading to inadequate defense against CLas. Conversely, reduced expression of csi-miR166 in lemon plants enables them to combat HLB by activating disease-resistance proteins. The above findings indicate that when infected with CLas, lemon exhibits stronger antioxidative activity and higher expression of disease-resistant genes, contributing to its enhanced tolerance to HLB. In contrast, Shatangju shows lower antioxidative activity, reduced expression of disease-resistant genes, significant ion leakage, and extensive callose deposition, possibly related to damage to plant cell structure and blockage of phloem sieve tubes, thereby promoting the development of HLB symptoms.

19.
Animals (Basel) ; 14(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891562

RESUMO

The experiment aimed to investigate the effects of plant polysaccharides combined with boric acid on digestive function, immune function and harmful gas and heavy metal contents in the faeces of fatteners. For this study, 90 healthy crossbred fatteners were selected and randomly divided into five groups: the control group was fed with a basal diet (Con); experimental group I was fed with basal diet + 40 mg/kg boric acid (BA); experimental group II was fed with basal diet + 40 mg/kg boric acid + 400 mg/kg Astragalus polysaccharides (BA+APS); experimental group III was fed with basal diet + 40 mg/kg boric acid + 200 mg/kg Ganoderma lucidum polysaccharides (BA+GLP); and experimental group IV was fed with basal diet + 40 mg/kg boric acid + 500 mg/kg Echinacea polysaccharides (BA+EPS). Compared with Con, the average daily gain (ADG), the trypsin activities in the duodenum and jejunum, the IL-2 levels in the spleen, the T-AOC activities and GSH-Px contents in the lymph node of fattening were increased in the BA group (p < 0.05), but malondialdehyde content in the lymph and spleen, and the contents of NH3, H2S, Hg, Cu, Fe and Zn in the feces and urine were decreased (p < 0.05). Compared with the BA, the ADG, gain-to-feed ratio (G/F), the trypsin and maltase activities in the duodenum and jejunum were increased in the BA+APS (p < 0.05), and the T-SOD activities in the spleen and T-AOC activities in the lymph node were also increased (p < 0.05), but the H2S level was decreased in the feces and urine (p < 0.05). Compared with the BA, the ADG, G/F and the trypsin and maltase activities in the duodenum were increased in the BA+GLP and BA+EPS (p < 0.05), the activities of maltase and lipase in the duodenum of fatteners in the BA+GLP and the activities of trypsin, maltase and lipase in the BA+EPS were increased (p < 0.05). Gathering everything together, our findings reveal that the combined addition of boric acid and plant polysaccharides in the diet of fatteners synergistically improved their growth performance and immune status. That may be achieved by regulating the activity of intestinal digestive enzymes, improving the antioxidant function and then promoting the digestion and absorption of nutrients. Furthermore, the above results reduce the emission of harmful gases and heavy metals in feces and urine.

20.
Animals (Basel) ; 14(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891581

RESUMO

In ruminants, supplementing appropriate amounts of amino acids improves growth, feed utilization efficiency, and productivity. This study aimed to assess the effects of different Lys/Met ratios on the ruminal microbial community and the metabolic profiling in Tibetan sheep using 16S rDNA sequencing and non-target metabolomics. Ninety-two-month-old Tibetan rams (initial weight = 15.37 ± 0.92 kg) were divided into three groups and fed lysine/methionine (Lys/Met) of 1:1 (LP-L), 2:1 (LP-M), and 3:1 (LP-H) in low-protein diet, respectively. Results: The T-AOC, GSH-Px, and SOD were significantly higher in the LP-L group than in LP-H and LP-M groups (p < 0.05). Cellulase activity was significantly higher in the LP-L group than in the LP-H group (p < 0.05). In the fermentation parameters, acetic acid concentration was significantly higher in the LP-L group than in the LP-H group (p < 0.05). Microbial sequencing analysis showed that Ace and Chao1 indicators were significantly higher in LP-L than in LP-H and LP-M (p < 0.05). At the genus level, the abundance of Rikenellaceae RC9 gut group flora and Succiniclasticum were significantly higher in LP-L than in LP-M group (p < 0.05). Non-target metabolomics analyses revealed that the levels of phosphoric acid, pyrocatechol, hydrocinnamic acid, banzamide, l-gulono-1,4-lactone, cis-jasmone, Val-Asp-Arg, and tropinone content were higher in LP-L. However, l-citrulline and purine levels were lower in the LP-L group than in the LP-M and LP-H groups. Banzamide, cis-jasmone, and Val-Asp-Arg contents were positively correlated with the phenotypic contents, including T-AOC, SOD, and cellulase. Phosphoric acid content was positively correlated with cellulase and lipase activities. In conclusion, the Met/Lys ratio of 1:1 in low-protein diets showed superior antioxidant status and cellulase activity in the rumen by modulating the microbiota and metabolism of Tibetan sheep.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA