Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 841228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251109

RESUMO

Rice sheath blight (ShB) caused by Rhizoctonia solani is one of the most destructive diseases in rice. Fungicides are widely used to control ShB in agriculture. However, decades of excessive traditional fungicide use have led to environmental pollution and increased pathogen resistance. Generally, plant elicitors are regarded as environmentally friendly biological pesticides that enhance plant disease resistance by triggering plant immunity. Previously, we identified that the plant immune inducer ZhiNengCong (ZNC), a crude extract of the endophyte, has high activity and a strong ability to protect plants against pathogens. Here, we further found that guanine, which had a significant effect on inducing plant resistance to pathogens, might be an active component of ZNC. In our study, guanine activated bursts of reactive oxygen species, callose deposition and mitogen-activated protein kinase phosphorylation. Moreover, guanine-induced plant resistance to pathogens depends on ethylene and jasmonic acid but is independent of the salicylic acid signaling pathway. Most importantly, guanine functions as a new plant elicitor with broad-spectrum resistance to activate plant immunity, providing an efficient and environmentally friendly biological elicitor for bacterial and fungal disease biocontrol.

2.
Biotechnol Biofuels ; 13: 180, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133238

RESUMO

BACKGROUND: Molasses is a wildly used feedstock for fermentation, but it also poses a severe wastewater-disposal problem worldwide. Recently, the wastewater from yeast molasses fermentation is being processed into fulvic acid (FA) powder as a fertilizer for crops, but it consequently induces a problem of soil acidification after being directly applied into soil. In this study, the low-cost FA powder was bioconverted into a value-added product of γ-PGA by a glutamate-independent producer of Bacillus velezensis GJ11. RESULTS: FA power could partially substitute the high-cost substrates such as sodium glutamate and citrate sodium for producing γ-PGA. With FA powder in the fermentation medium, the amount of sodium glutamate and citrate sodium used for producing γ-PGA were both decreased around one-third. Moreover, FA powder could completely substitute Mg2+, Mn2+, Ca2+, and Fe3+ in the fermentation medium for producing γ-PGA. In the optimized medium with FA powder, the γ-PGA was produced at 42.55 g/L with a productivity of 1.15 g/(L·h), while only 2.87 g/L was produced in the medium without FA powder. Hydrolyzed γ-PGA could trigger induced systemic resistance (ISR), e.g., H2O2 accumulation and callose deposition, against the pathogen's infection in plants. Further investigations found that the ISR triggered by γ-PGA hydrolysates was dependent on the ethylene (ET) signaling and nonexpressor of pathogenesis-related proteins 1 (NPR1). CONCLUSIONS: To our knowledge, this is the first report to use the industry waste, FA powder, as a sustainable substrate for microbial synthesis of γ-PGA. This bioprocess can not only develop a new way to use FA powder as a cheap feedstock for producing γ-PGA, but also help to reduce pollution from the wastewater of yeast molasses fermentation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA