Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39202967

RESUMO

Penicillide is the founder product of a class of natural products of fungal origin. Although this compound and its analogues have been identified from taxonomically heterogeneous fungi, they are most frequently and typically reported from the species of Talaromyces and Penicillium. The producing strains have been isolated in various ecological contexts, with a notable proportion of endophytes. The occurrence of penicillides in these plant associates may be indicative of a possible role in defensive mutualism based on their bioactive properties, which are also reviewed in this paper. The interesting finding of penicillides in fruits and seeds of Phyllanthus emblica is introductory to a new ground of investigation in view of assessing whether they are produced by the plant directly or as a result of the biosynthetic capacities of some endophytic associates.


Assuntos
Penicillium , Talaromyces , Talaromyces/química , Penicillium/química , Penicillium/metabolismo , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Estrutura Molecular , Humanos , Endófitos/química
2.
J Invertebr Pathol ; 194: 107804, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35933037

RESUMO

Ascosphaera (Eurotiomycetes: Onygenales) is a diverse genus of fungi that is exclusively found in association with bee nests and comprises both saprophytic and entomopathogenic species. To date, most genomic analyses have been focused on the honeybee pathogen A. apis, and we lack a genomic understanding of how pathogenesis evolved more broadly in the genus. To address this gap we sequenced the genomes of the leaf-cutting bee pathogen A. aggregata as well as three commensal species: A. pollenicola, A. atra and A. acerosa. De novo annotation and comparison of the assembled genomes was carried out, including the previously published genome of A. apis. To identify candidate virulence genes in the pathogenic species, we performed secondary metabolite-oriented analyses and clustering of biosynthetic gene clusters (BGCs). Additionally, we captured single copy orthologs to infer their phylogeny and created codon-aware alignments to determine orthologs under selective pressure in our pathogenic species. Our results show several shared BGCs between A. apis, A. aggregata and A. pollenicola, with antifungal resistance related genes present in the bee pathogens and commensals. Genes involved in metabolism and protein processing exhibit signatures of enrichment and positive selection under a fitted branch-site model. Additional known virulence genes in A. pollenicola, A. acerosa and A. atra are identified, supporting previous hypotheses that these commensals may be opportunistic pathogens. Finally, we discuss the importance of such genes in other fungal pathogens, suggesting a common route to evolution of pathogenicity in Ascosphaera.


Assuntos
Ascomicetos , Onygenales , Animais , Antifúngicos , Ascomicetos/genética , Abelhas , Genômica , Onygenales/genética , Filogenia
3.
Fungal Syst Evol ; 10: 91-101, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36789281

RESUMO

Here we describe two new species of the genus Penicillium section Torulomyces with solitary phialides. Penicillium poederi sp. nov. was isolated from volcanic soils in Iceland. Penicillium tirolense sp. nov. was isolated from a sporocarp of Serpula lacrymans. Both species are characterised by slow growth rates and the production of a brown soluble pigment on CYA, conidiophores with solitary ampulliform phialides with smooth-walled stipes and warty, globose conidia and with connectives without visible rings. The spores of. P. poederi are 2.5 µm diam, while the spores of P. tirolense are 2.0 µm diam. In a multigene phylogeny based on the ITS, BenA, CaM and RPB2 gene regions P. tubakianum and P. wollemiicola are the closest relatives of P. poederi. This species differs from P. tubakianum and P. wollemiicola by its growth rates and by its pigmentation. The holotype of P. poederi is IB2017/0007, while SF014017 (CBS 147622) is a culture derived from the holotype. The closest relatives of P. tirolense are P. austricola and P. riverlandense. It differs from P. austricola by lower growth rates on all tested media and temperatures and by its larger spores. It differs from P. riverlandense by lower growth rates and the absence of growth at 37 °C. The holotype of P. tirolense is IBF2019/0162, while SF015108 (CBS 147625) is a culture derived from the holotype. Citation: Kirchmair M, Embacher J, Heimdörfer D, Walch G, Neuhauser S (2022). Penicillium poederi and Penicillium tirolense, two new species of section Torulomyces. Fungal Systematics and Evolution 10: 91-101. doi: 10.3114/fuse.2022.10.03.

4.
Fungal Divers ; 111(1): 1-335, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899100

RESUMO

This article is the 13th contribution in the Fungal Diversity Notes series, wherein 125 taxa from four phyla, ten classes, 31 orders, 69 families, 92 genera and three genera incertae sedis are treated, demonstrating worldwide and geographic distribution. Fungal taxa described and illustrated in the present study include three new genera, 69 new species, one new combination, one reference specimen and 51 new records on new hosts and new geographical distributions. Three new genera, Cylindrotorula (Torulaceae), Scolecoleotia (Leotiales genus incertae sedis) and Xenovaginatispora (Lindomycetaceae) are introduced based on distinct phylogenetic lineages and unique morphologies. Newly described species are Aspergillus lannaensis, Cercophora dulciaquae, Cladophialophora aquatica, Coprinellus punjabensis, Cortinarius alutarius, C. mammillatus, C. quercoflocculosus, Coryneum fagi, Cruentomycena uttarakhandina, Cryptocoryneum rosae, Cyathus uniperidiolus, Cylindrotorula indica, Diaporthe chamaeropicola, Didymella azollae, Diplodia alanphillipsii, Dothiora coronicola, Efibula rodriguezarmasiae, Erysiphe salicicola, Fusarium queenslandicum, Geastrum gorgonicum, G. hansagiense, Helicosporium sexualis, Helminthosporium chiangraiensis, Hongkongmyces kokensis, Hydrophilomyces hydraenae, Hygrocybe boertmannii, Hyphoderma australosetigerum, Hyphodontia yunnanensis, Khaleijomyces umikazeana, Laboulbenia divisa, Laboulbenia triarthronis, Laccaria populina, Lactarius pallidozonarius, Lepidosphaeria strobelii, Longipedicellata megafusiformis, Lophiotrema lincangensis, Marasmius benghalensis, M. jinfoshanensis, M. subtropicus, Mariannaea camelliae, Melanographium smilaxii, Microbotryum polycnemoides, Mimeomyces digitatus, Minutisphaera thailandensis, Mortierella solitaria, Mucor harpali, Nigrograna jinghongensis, Odontia huanrenensis, O. parvispina, Paraconiothyrium ajrekarii, Parafuscosporella niloticus, Phaeocytostroma yomensis, Phaeoisaria synnematicus, Phanerochaete hainanensis, Pleopunctum thailandicum, Pleurotheciella dimorphospora, Pseudochaetosphaeronema chiangraiense, Pseudodactylaria albicolonia, Rhexoacrodictys nigrospora, Russula paravioleipes, Scolecoleotia eriocamporesi, Seriascoma honghense, Synandromyces makranczyi, Thyridaria aureobrunnea, Torula lancangjiangensis, Tubeufia longihelicospora, Wicklowia fusiformispora, Xenovaginatispora phichaiensis and Xylaria apiospora. One new combination, Pseudobactrodesmium stilboideus is proposed. A reference specimen of Comoclathris permunda is designated. New host or distribution records are provided for Acrocalymma fici, Aliquandostipite khaoyaiensis, Camarosporidiella laburni, Canalisporium caribense, Chaetoscutula juniperi, Chlorophyllum demangei, C. globosum, C. hortense, Cladophialophora abundans, Dendryphion hydei, Diaporthe foeniculina, D. pseudophoenicicola, D. pyracanthae, Dictyosporium pandanicola, Dyfrolomyces distoseptatus, Ernakulamia tanakae, Eutypa flavovirens, E. lata, Favolus septatus, Fusarium atrovinosum, F. clavum, Helicosporium luteosporum, Hermatomyces nabanheensis, Hermatomyces sphaericoides, Longipedicellata aquatica, Lophiostoma caudata, L. clematidis-vitalbae, Lophiotrema hydei, L. neoarundinaria, Marasmiellus palmivorus, Megacapitula villosa, Micropsalliota globocystis, M. gracilis, Montagnula thailandica, Neohelicosporium irregulare, N. parisporum, Paradictyoarthrinium diffractum, Phaeoisaria aquatica, Poaceascoma taiwanense, Saproamanita manicata, Spegazzinia camelliae, Submersispora variabilis, Thyronectria caudata, T. mackenziei, Tubeufia chiangmaiensis, T. roseohelicospora, Vaginatispora nypae, Wicklowia submersa, Xanthagaricus necopinatus and Xylaria haemorrhoidalis. The data presented herein are based on morphological examination of fresh specimens, coupled with analysis of phylogenetic sequence data to better integrate taxa into appropriate taxonomic ranks and infer their evolutionary relationships.

5.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34846290

RESUMO

Exophiala is an important genus, with several species associated with infections in humans and animals. In a survey of soil fungal diversity in Yunnan province, PR China, a novel taxon, Exophiala pseudooligosperma sp. nov., was identified based on combined morphological and molecular phylogenetic features. Morphologically, this species is characterized by having torulose, septate hyphae and swollen, terminal or intercalary conidiogenous cells arising at acute angles from aerial hyphae. Phylogenetic analysis of the combined sequences of the internal transcribed spacer, the small and large nuclear subunit of the rRNA gene and part of the ß-tubulin gene confirmed the phylogenetic position of the new species within the genus Exophiala.


Assuntos
Ascomicetos , Exophiala , Filogenia , Microbiologia do Solo , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Composição de Bases , China , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Exophiala/genética , Técnicas de Tipagem Micológica , Análise de Sequência de DNA
6.
Life (Basel) ; 10(12)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352712

RESUMO

The polyphyletic group of black fungi within the Ascomycota (Arthoniomycetes, Dothideomycetes, and Eurotiomycetes) is ubiquitous in natural and anthropogenic habitats. Partly because of their dark, melanin-based pigmentation, black fungi are resistant to stresses including UV- and ionizing-radiation, heat and desiccation, toxic metals, and organic pollutants. Consequently, they are amongst the most stunning extremophiles and poly-extreme-tolerant organisms on Earth. Even though ca. 60 black fungal genomes have been sequenced to date, [mostly in the family Herpotrichiellaceae (Eurotiomycetes)], the class Dothideomycetes that hosts the largest majority of extremophiles has only been sparsely sampled. By sequencing up to 92 species that will become reference genomes, the "Shed light in The daRk lineagES of the fungal tree of life" (STRES) project will cover a broad collection of black fungal diversity spread throughout the Fungal Tree of Life. Interestingly, the STRES project will focus on mostly unsampled genera that display different ecologies and life-styles (e.g., ant- and lichen-associated fungi, rock-inhabiting fungi, etc.). With a resequencing strategy of 10- to 15-fold depth coverage of up to ~550 strains, numerous new reference genomes will be established. To identify metabolites and functional processes, these new genomic resources will be enriched with metabolomics analyses coupled with transcriptomics experiments on selected species under various stress conditions (salinity, dryness, UV radiation, oligotrophy). The data acquired will serve as a reference and foundation for establishing an encyclopedic database for fungal metagenomics as well as the biology, evolution, and ecology of the fungi in extreme environments.

7.
Curr Biol ; 30(13): 2495-2507.e7, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32502407

RESUMO

Interspecific hybridization substantially alters genotypes and phenotypes and can give rise to new lineages. Hybrid isolates that differ from their parental species in infection-relevant traits have been observed in several human-pathogenic yeasts and plant-pathogenic filamentous fungi but have yet to be found in human-pathogenic filamentous fungi. We discovered 6 clinical isolates from patients with aspergillosis originally identified as Aspergillus nidulans (section Nidulantes) that are actually allodiploid hybrids formed by the fusion of Aspergillus spinulosporus with an unknown close relative of Aspergillus quadrilineatus, both in section Nidulantes. Evolutionary genomic analyses revealed that these isolates belong to Aspergillus latus, an allodiploid hybrid species. Characterization of diverse infection-relevant traits further showed that A. latus hybrid isolates are genomically and phenotypically heterogeneous but also differ from A. nidulans, A. spinulosporus, and A. quadrilineatus. These results suggest that allodiploid hybridization contributes to the genomic and phenotypic diversity of filamentous fungal pathogens of humans.


Assuntos
Aspergillus/genética , Genoma Fúngico , Hibridização Genética , Aspergillus/isolamento & purificação , Diploide , Genômica
8.
Fungal Syst Evol ; 5: 283-300, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32467925

RESUMO

The North European species of Elaphomyces section Elaphomyces (Eurotiales, Pezizomycotina) are studied. Three new species, E. citrinopapillatus, E. pusillus, and E. roseoviolaceus are introduced and verified by morphology and sequence data from ITS, nuclear LSU, mitochondrial SSU, and ß-tubulin. A lectotype for Elaphomyces granulatus is selected. Elaphomyces granulatus and E. muricatus are epitypified with sequenced material from the Femsjö region in South Sweden. Elaphomyces striatosporus is epitypified with sequenced material from the vicinity of the type locality in Norway. A key to all species of Elaphomyces occurring in Denmark, Norway, and Sweden is provided.

9.
MycoKeys ; 63: 119-161, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32189979

RESUMO

During a survey on fungi associated with wood necroses of Prunus trees in Germany, strains belonging to the Leotiomycetes and Eurotiomycetes were detected by preliminary analyses of ITS sequences. Multi-locus phylogenetic analyses (LSU, ITS, TUB, EF-1α, depending on genus) of 31 of the 45 strains from Prunus and reference strains revealed several new taxa, including Arboricolonus gen. nov., a new genus in the Helotiales (Leotiomycetes) with a collophorina-like asexual morph. Seven Cadophora species (Helotiales, Leotiomycetes) were treated. The 29 strains from Prunus belonged to five species, of which C. luteo-olivacea and C. novi-eboraci were dominating; C. africana sp. nov., C. prunicola sp. nov. and C. ramosa sp. nov. were revealed as new species. The genus Cadophora was reported from Prunus for the first time. Phialophora bubakii was combined in Cadophora and differentiated from C. obscura, which was resurrected. Asexual morphs of two Proliferodiscus species (Helotiales, Leotiomycetes) were described, including one new species, Pr. ingens sp. nov. Two Minutiella species (Phaeomoniellales, Eurotiomycetes) were detected, including the new species M. pruni-avium sp. nov. Prunus avium and P. domestica are reported as host plants of Minutiella.

10.
Persoonia ; 42: 36-49, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31551613

RESUMO

Phylogenetic analyses of a combined DNA data matrix containing nuclear small and large subunits (nSSU, nLSU) and mitochondrial small subunit (mtSSU) ribosomal RNA and the largest and second largest subunits of the RNA polymerase II (rpb1, rpb2) of representative Pezizomycotina revealed that the enigmatic genera Xylobotryum and Cirrosporium form an isolated, highly supported phylogenetic lineage within Leotiomyceta. Acknowledging their morphological and phylogenetic distinctness, we describe the new class Xylobotryomycetes, containing the new order Xylobotryales with the two new families Xylobotryaceae and Cirrosporiaceae. The two currently accepted species of Xylobotryum, X. andinum and X. portentosum, are described and illustrated by light and scanning electron microscopy. The generic type species X. andinum is epitypified with a recent collection for which a culture and sequence data are available. Acknowledging the phylogenetic distinctness of Candelariomycetidae from Lecanoromycetes revealed in previous and the current phylogenetic analyses, the new class Candelariomycetes is proposed.

11.
mBio ; 10(4)2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289177

RESUMO

The filamentous fungal family Aspergillaceae contains >1,000 known species, mostly in the genera Aspergillus and Penicillium Several species are used in the food, biotechnology, and drug industries (e.g., Aspergillus oryzae and Penicillium camemberti), while others are dangerous human and plant pathogens (e.g., Aspergillus fumigatus and Penicillium digitatum). To infer a robust phylogeny and pinpoint poorly resolved branches and their likely underlying contributors, we used 81 genomes spanning the diversity of Aspergillus and Penicillium to construct a 1,668-gene data matrix. Phylogenies of the nucleotide and amino acid versions of this full data matrix as well as of several additional data matrices were generated using three different maximum likelihood schemes (i.e., gene-partitioned, unpartitioned, and coalescence) and using both site-homogenous and site-heterogeneous models (total of 64 species-level phylogenies). Examination of the topological agreement among these phylogenies and measures of internode certainty identified 11/78 (14.1%) bipartitions that were incongruent and pinpointed the likely underlying contributing factors, which included incomplete lineage sorting, hidden paralogy, hybridization or introgression, and reconstruction artifacts associated with poor taxon sampling. Relaxed molecular clock analyses suggest that Aspergillaceae likely originated in the lower Cretaceous and that the Aspergillus and Penicillium genera originated in the upper Cretaceous. Our results shed light on the ongoing debate on Aspergillus systematics and taxonomy and provide a robust evolutionary and temporal framework for comparative genomic analyses in Aspergillaceae More broadly, our approach provides a general template for phylogenomic identification of resolved and contentious branches in densely genome-sequenced lineages across the tree of life.IMPORTANCE Understanding the evolution of traits across technologically and medically significant fungi requires a robust phylogeny. Even though species in the Aspergillus and Penicillium genera (family Aspergillaceae, class Eurotiomycetes) are some of the most significant technologically and medically relevant fungi, we still lack a genome-scale phylogeny of the lineage or knowledge of the parts of the phylogeny that exhibit conflict among analyses. Here, we used a phylogenomic approach to infer evolutionary relationships among 81 genomes that span the diversity of Aspergillus and Penicillium species, to identify conflicts in the phylogeny, and to determine the likely underlying factors of the observed conflicts. Using a data matrix comprised of 1,668 genes, we found that while most branches of the phylogeny of the Aspergillaceae are robustly supported and recovered irrespective of method of analysis, a few exhibit various degrees of conflict among our analyses. Further examination of the observed conflict revealed that it largely stems from incomplete lineage sorting and hybridization or introgression. Our analyses provide a robust and comprehensive evolutionary genomic roadmap for this important lineage, which will facilitate the examination of the diverse technologically and medically relevant traits of these fungi in an evolutionary context.


Assuntos
Aspergillus/genética , Evolução Molecular , Genoma Fúngico , Penicillium/genética , Filogenia , Aspergillus/classificação , Biotecnologia , Genômica , Penicillium/classificação , Análise de Sequência de DNA
12.
Persoonia ; 38: 197-239, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29151633

RESUMO

Elaphomyces ('deer truffles') is one of the most important ectomycorrhizal fungal genera in temperate and subarctic forest ecosystems, but also one of the least documented in public databases. The current systematics are mainly based on macromorphology, and is not significantly different from that proposed by Vittadini (1831). Within the 49 species recognised worldwide, 23 were originally described from Europe and 17 of these were described before the 20th century. Moreover, very recent phylogenetic treatments of the genus are mainly based on a few extra-European species and most common European species are still poorly documented. Based on an extensive taxonomic sampling mainly made in the biogeographically rich Cantabrian area (Spain), complemented with collections from France, Greece, Italy, Norway, Portugal and Sweden, all currently recognized species in Europe have been sequenced at the ITS and 28S of the rDNA. Combined phylogenetic analyses yielded molecular support to sections Elaphomyces and Ceratogaster (here emended), while a third, basal lineage encompasses the sections Malacodermei and Ascoscleroderma as well as the tropical genus Pseudotulostoma. Species limits are discussed and some taxa formerly proposed as genuine species based on morphology and biogeography are re-evaluated as varieties or forms. Spore size and ornamentation, features of the peridial surface, structure of the peridium, and the presence of mycelium patches attached to the peridial surface emerge as the most significant systematic characters. Four new species: E. barrioi, E. quercicola, E. roseolus and E. violaceoniger, one new variety: E. papillatus var. sulphureopallidus, and two new forms: E. granulatus forma pallidosporus and E. anthracinus forma talosporus are introduced, as well as four new combinations in the genus: E. muricatus var. reticulatus, E. muricatus var. variegatus, E. papillatus var. striatosporus and E. morettii var. cantabricus. Lectotypes and epitypes are designated for most recognised species. For systematic purposes, new infrageneric taxa are introduced: E. sect. Ascoscleroderma stat. nov., E. subsect. Sclerodermei stat. nov., E. subsect. Maculati subsect. nov., E. subsect. Muricati subsect. nov., and E. subsect. Papillati subsect. nov. Lastly, E.laevigatus, E. sapidus, E. sulphureopallidus and E. trappei are excluded from the genus and referred to Rhizopogon roseolus, Astraeus sapidus comb. nov., Astraeus hygrometricus and Terfezia trappei comb. nov. (syn.: Terfezia cistophila), respectively.

13.
Stud Mycol ; 86: 53-97, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28626275

RESUMO

During a survey of saprophytic microfungi on decomposing woody, herbaceous debris and soil from different regions in Southern Europe, a wide range of interesting species of asexual ascomycetes were found. Phylogenetic analyses based on partial gene sequences of SSU, LSU and ITS proved that most of these fungi were related to Sordariomycetes and Dothideomycetes and to lesser extent to Leotiomycetes and Eurotiomycetes. Four new monotypic orders with their respective families are proposed here, i.e. Lauriomycetales, Lauriomycetaceae; Parasympodiellales, Parasympodiellaceae; Vermiculariopsiellales, Vermiculariopsiellaceae and Xenospadicoidales, Xenospadicoidaceae. One new order and three families are introduced here to accommodate orphan taxa, viz. Kirschsteiniotheliales, Castanediellaceae, Leptodontidiaceae and Pleomonodictydaceae. Furthermore, Bloxamiaceae is validated. Based on morphology and phylogenetic affinities Diplococcium singulare, Trichocladium opacum and Spadicoides atra are moved to the new genera Paradiplococcium, Pleotrichocladium and Xenospadicoides, respectively. Helicoon fuscosporum is accommodated in the genus Magnohelicospora. Other novel genera include Neoascotaiwania with the type species N. terrestris sp. nov., and N. limnetica comb. nov. previously accommodated in Ascotaiwania; Pleomonodictys with P. descalsii sp. nov. as type species, and P. capensis comb. nov. previously accommodated in Monodictys; Anapleurothecium typified by A. botulisporum sp. nov., a fungus morphologically similar to Pleurothecium but phylogenetically distant; Fuscosclera typified by F. lignicola sp. nov., a meristematic fungus related to Leotiomycetes; Pseudodiplococcium typified by P. ibericum sp. nov. to accommodate an isolate previously identified as Diplococcium pulneyense; Xyladictyochaeta typified with X. lusitanica sp. nov., a foliicolous fungus related to Xylariales and similar to Dictyochaeta, but distinguished by polyphialidic conidiogenous cells produced on setiform conidiophores. Other novel species proposed are Brachysporiella navarrica, Catenulostroma lignicola, Cirrenalia iberica, Conioscypha pleiomorpha, Leptodontidium aureum, Pirozynskiella laurisilvatica, Parasympodiella lauri and Zanclospora iberica. To fix the application of some fungal names, lectotypes and/or epitypes are designated for Magnohelicospora iberica, Sporidesmium trigonellum, Sporidesmium opacum, Sporidesmium asperum, Camposporium aquaticum and Psilonia atra.

14.
Molecules ; 22(5)2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28513562

RESUMO

Microscopic and molecular studies suggest that lichen symbioses contain a plethora of associated fungi. These are potential producers of novel bioactive compounds, but strains isolated on standard media usually represent only a minor subset of these fungi. By using various in vitro growth conditions we are able to modulate and extend the fraction of culturable lichen-associated fungi. We observed that the presence of iron, glucose, magnesium and potassium in growth media is essential for the successful isolation of members from different taxonomic groups. According to sequence data, most isolates besides the lichen mycobionts belong to the classes Dothideomycetes and Eurotiomycetes. With our approach we can further explore the hidden fungal diversity in lichens to assist in the search of novel compounds.


Assuntos
Biodiversidade , Meios de Cultura/química , Líquens/crescimento & desenvolvimento , Líquens/isolamento & purificação , DNA Fúngico/análise , Glucose/farmacologia , Ferro/farmacologia , Líquens/classificação , Magnésio/farmacologia , Filogenia , Potássio/farmacologia , Análise de Sequência de DNA , Simbiose
15.
Microb Ecol ; 71(2): 452-68, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26370111

RESUMO

Plants in all terrestrial ecosystems form symbioses with endophytic fungi that inhabit their healthy tissues. How these foliar endophytes respond to wildfires has not been studied previously, but is important given the increasing frequency and intensity of severe wildfires in many ecosystems, and because endophytes can influence plant growth and responses to stress. The goal of this study was to examine effects of severe wildfires on endophyte communities in forest trees, with a focus on traditionally fire-dominated, montane ecosystems in the southwestern USA. We evaluated the abundance, diversity, and composition of endophytes in foliage of Juniperus deppeana (Cupressaceae) and Quercus spp. (Fagaceae) collected contemporaneously from areas affected by recent wildfire and paired areas not affected by recent fire. Study sites spanned four mountain ranges in central and southern Arizona. Our results revealed significant effects of fires on endophyte communities, including decreases in isolation frequency, increases in diversity, and shifts in community structure and taxonomic composition among endophytes of trees affected by recent fires. Responses to fire were similar in endophytes of each host in these fire-dominated ecosystems and reflect regional fire-return intervals, with endophytes after fire representing subsets of the regional mycoflora. Together, these findings contribute to an emerging perspective on the responses of diverse communities to severe fire, and highlight the importance of considering fire history when estimating endophyte diversity and community structure for focal biomes.


Assuntos
Endófitos/isolamento & purificação , Fungos/isolamento & purificação , Folhas de Planta/microbiologia , Árvores/microbiologia , Biodiversidade , Endófitos/classificação , Endófitos/genética , Incêndios , Florestas , Fungos/classificação , Fungos/genética , Folhas de Planta/química , Árvores/química , Árvores/classificação
16.
Fungal Biol ; 119(11): 1046-1062, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26466879

RESUMO

We are studying the freshwater lignicolous fungi along a north-south latitudinal gradient in Asia. In this paper, fresh collections of Minimelanolocus from submerged wood in streams in Yunnan Province, China are characterised based on morphology and molecular phylogeny based on three rDNA regions: 18S (SSU), ITS1-5.8S-ITS2 (ITS) and 28S nuclear rDNA (LSU). The phylogenetic analysis of combined LSU and SSU sequence data and a separate analysis of ITS placed the isolates within the family Herpotrichiellaceae, order Chaetothyriales. An updated phylogenetic backbone tree for Chaetothyriales is provided with available ex-type and additional isolates. One of the isolates collected was identified as Minimelanolocus obscurus based on morphology and molecular data. Minimelanolocus aquaticus, M. asiaticus, M. curvatus and M. melanicus are described as new species considering the interspecific ITS variability and morphology. The phylogenetic placement of Minimelanolocus in Chaetothyriales is novel and provides new sequence data for the genus as a distinct lineage in Chaetothyriales. The conidial characters of all the known species in the genus are summarized. Descriptions and illustrations are provided for the five species of Minimelanolocus with notes on their taxonomy and phylogeny.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , Água Doce/microbiologia , Variação Genética , Filogenia , Ascomicetos/citologia , Ascomicetos/crescimento & desenvolvimento , China , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Ecossistema , Microscopia , Dados de Sequência Molecular , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , RNA Ribossômico 5,8S/genética , Análise de Sequência de DNA
17.
Mol Phylogenet Evol ; 85: 117-30, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25701073

RESUMO

Symbiotic fungi living in plants as endophytes, and in lichens as endolichenic fungi, cause no apparent symptoms to their hosts. They are ubiquitous, ecologically important, hyperdiverse, and represent a rich source of secondary compounds for new pharmaceutical and biocontrol products. Due in part to the lack of visible reproductive structures and other distinctive phenotypic traits for many species, the diversity and phylogenetic affiliations of these cryptic fungi are often poorly known. The goal of this study was to determine the phylogenetic placement of representative endophytes within the Eurotiomycetes (Pezizomycotina, Ascomycota), one of the most diverse and evolutionarily dynamic fungal classes, and to use that information to infer processes of macroevolution in trophic modes. Sequences of a single locus marker spanning the nuclear ribosomal internal transcribed spacer region (nrITS) and 600 base pairs at the 5' end of the nuclear ribosomal large subunit (nrLSU) were obtained from previous studies of >6000 endophytic and endolichenic fungi from diverse biogeographic locations and hosts. We conducted phylum-wide phylogenetic searches using this marker to determine which fungal strains belonged to Eurotiomycetes and the results were used as the basis for a class-wide, seven-locus phylogenetic study focusing on endophytic and endolichenic Eurotiomycetes. Our cumulative supermatrix-based analyses revealed that representative endophytes within Eurotiomycetes are distributed in three main clades: Eurotiales, Chaetothyriales and Phaeomoniellales ord. nov., a clade that had not yet been described formally. This new order, described herein, is sister to the clade including Verrucariales and Chaetothyriales. It appears to consist mainly of endophytes and plant pathogens. Morphological characters of endophytic Phaeomoniellales resemble those of the pathogenic genus Phaeomoniella. This study highlights the capacity of endophytic and endolichenic fungi to expand our understanding of the ecological modes associated with particular clades, and provides a first estimation of their phylogenetic relationships in the Eurotiomycetes.


Assuntos
Ascomicetos/classificação , Evolução Biológica , Endófitos/classificação , Filogenia , Ascomicetos/genética , Teorema de Bayes , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Líquens/microbiologia , Funções Verossimilhança , Fenótipo , Plantas/microbiologia , Subunidades Ribossômicas Maiores de Eucariotos/genética , Análise de Sequência de DNA
18.
Mycology ; 5(3): 102-109, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-25379334

RESUMO

Secondary metabolite phenotypes in nine species of the Hamigera clade were analysed to assess their correlations to a multi-gene species-level phylogeny. High-pressure-liquid-chromatography-based chemical analysis revealed three distinctive patterns of secondary metabolite production: (1) the nine species could be divided into two groups on the basis of production of the sesquiterpene tricinonoic acid; (2) the tricinonoic acid-producing group produced two cyclic peptides avellanins A and B; (3) the tricinonoic acid-non-producing group could be further divided into two groups according to the production of avellanins A and B. The chemical phenotype was consistent with the phylogeny of the species, although metabolite patterns were not diagnostic at the species level. In addition, the taxonomy of the Hamigera clade was updated with the new combination Hamigera ingelheimensis proposed for Merimbla ingelheimensis, so that all species in the clade are now in the same genus.

19.
Stud Mycol ; 61: 111-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19287533

RESUMO

Rock surfaces are unique terrestrial habitats in which rapid changes in the intensity of radiation, temperature, water supply and nutrient availability challenge the survival of microbes. A specialised, but diverse group of free-living, melanised fungi are amongst the persistent settlers of bare rocks. Multigene phylogenetic analyses were used to study relationships of ascomycetes from a variety of substrates, with a dataset including a broad sampling of rock dwellers from different geographical locations. Rock-inhabiting fungi appear particularly diverse in the early diverging lineages of the orders Chaetothyriales and Verrucariales. Although these orders share a most recent common ancestor, their lifestyles are strikingly different. Verrucariales are mostly lichen-forming fungi, while Chaetothyriales, by contrast, are best known as opportunistic pathogens of vertebrates (e.g. Cladophialophora bantiana and Exophiala dermatitidis, both agents of fatal brain infections) and saprophytes. The rock-dwelling habit is shown here to be key to the evolution of these two ecologically disparate orders. The most recent common ancestor of Verrucariales and Chaetothyriales is reconstructed as a non-lichenised rock-inhabitant. Ancestral state reconstructions suggest Verrucariales as one of the independent ascomycetes group where lichenisation has evolved on a hostile rock surface that might have favored this shift to a symbiotic lifestyle. Rock-inhabiting fungi are also ancestral to opportunistic pathogens, as they are found in the early diverging lineages of Chaetothyriales. In Chaetothyriales and Verrucariales, specific morphological and physiological traits (here referred to as extremotolerance) evolved in response to stresses in extreme conditions prevailing on rock surfaces. These factors facilitated colonisation of various substrates including the brains of vertebrates by opportunistic fungal pathogens, as well as helped establishment of a stable lichen symbiosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA