Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.784
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38980910

RESUMO

Traumatic brain injury poses serious physical, psychosocial, and economic threats. Although systemic administration of stem cell-derived exosomes has recently been proven to be a promising modality for traumatic brain injury treatment, they come with distinct drawbacks. Luckily, various biomaterials have been developed to assist local delivery of exosomes to improve the targeting of organs, minimize nonspecific accumulation in vital organs, and ensure the protection and release of exosomes. In this study, we developed an electrospun nanofibrous scaffold to provide sustained delivery of dual exosomes derived from mesenchymal stem cells and neural stem cells for traumatic brain injury treatment. The electrospun nanofibrous scaffold employed a functionalized layer of polydopamine on electrospun poly(ε-caprolactone) nanofibers, thereby enhancing the efficient incorporation of exosomes through a synergistic interplay of adhesive forces, hydrogen bonding, and electrostatic interactions. First, the mesenchymal stem cell-derived exosomes and the neural stem cell-derived exosomes were found to modulate microglial polarization toward M2 phenotype, play an important role in the modulation of inflammatory responses, and augment axonal outgrowth and neural repair in PC12 cells. Second, the nanofibrous scaffold loaded with dual stem cell-derived exosomes (Duo-Exo@NF) accelerated functional recovery in a murine traumatic brain injury model, as it mitigated the presence of reactive astrocytes and microglia while elevating the levels of growth associated protein-43 and doublecortin. Additionally, multiomics analysis provided mechanistic insights into how dual stem cell-derived exosomes exerted its therapeutic effects. These findings collectively suggest that our novel Duo-Exo@NF system could function as an effective treatment modality for traumatic brain injury using sustained local delivery of dual exosomes from stem cells.

2.
J Extracell Vesicles ; 13(7): e12480, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38978304

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a global cancer burden with a 5-year overall survival rate of around 50%, stagnant for decades. A tumour-induced immunosuppressive microenvironment contributes to HNSCC progression, with the adenosine (ADO) pathway and an upregulated expression of inhibitory immune checkpoint regulators playing a key role in this context. The correlation between high neutrophil-to-lymphocyte ratio (NLR) with advanced tumour staging suggests involvement of neutrophils (NØ) in cancer progression. Interestingly, we associated a high NLR with an increased intracellular PD-L1 localization in primary HNSCC samples, potentially mediating more aggressive tumour characteristics and therefore synergistically favouring tumour progression. Still, further research is needed to harness this knowledge for effective treatments and overcome resistance. Since it is hypothesized that the tumour microenvironment (TME) may be influenced by small extracellular vesicles (sEVs) secreted by tumours (TEX), this study aims to investigate the impact of HNSCC-derived TEX on NØ and blockade of ADO receptors as a potential strategy to reverse the pro-tumour phenotype of NØ. UMSCC47-TEX exhibited CD73 enzymatic activity involved in ADO signalling, as well as the immune checkpoint inhibitor PD-L1. Data revealed that TEX induce chemotaxis of NØ and the sustained interaction promotes a shift into a pro-tumour phenotype, dependent on ADO receptors (P1R), increasing CD170high subpopulation, CD73 and PD-L1 expression, followed by an immunosuppressive secretome. Blocking A3R reduced CD73 and PD-L1 expression. Co-culture experiments with HNSCC cells demonstrated that TEX-modulated NØ increase the CD73/PD-L1 axis, through Cyclin D-CDK4/6 signalling. To support these findings, the CAM model with primary tumour was treated with NØ supernatant. Moreover, these NØ promoted an increase in migration, invasion, and reduced cell death. Targeting P1R on NØ, particularly A3R, exhibited potential therapeutic strategy to counteract immunosuppression in HNSCC. Understanding the TEX-mediated crosstalk between tumours and NØ offers insights into immunomodulation for improving cancer therapies.


Assuntos
5'-Nucleotidase , Antígeno B7-H1 , Vesículas Extracelulares , Neoplasias de Cabeça e Pescoço , Neutrófilos , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral , Humanos , Antígeno B7-H1/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Neutrófilos/metabolismo , Neutrófilos/imunologia , Microambiente Tumoral/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , 5'-Nucleotidase/metabolismo , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Linhagem Celular Tumoral , Imunomodulação , Adenosina/metabolismo , Proteínas Ligadas por GPI
3.
Artigo em Inglês | MEDLINE | ID: mdl-38970345

RESUMO

Postoperative Delirium (POD) can cause poor patient outcomes in older adults who undergo surgery. In this study, we tested plasma extracellular vesicle (EV) miRNAs obtained before the delirium event to find predictive POD biomarkers after spine surgery. We recruited patients who are over 70 years old and have undergone spine surgery. Finally, POD patients (n=31) were included, with no-POD patients matched in age, sex, medical history, and type of surgery (n=31). Peripheral blood was collected from patients in the operating room after the operation was completed. EVs were isolated from plasma, and the 798 miRNA expression level from EVs was measured using a NanoString platform. Sixty-two patients were included in the study; all were Korean, 67.7% were females, and the median age was 75 years. Preoperative medical history was not statistically different between no-POD and POD patients except for hypertension and the American Society of Anesthesiologists (ASA) physical status. From the miRNA profiling, we identified 142 significantly differentially expressed miRNAs in POD patients compared to no-POD patients, which are associated with psychological/neurological disorders. The top 10 differentially expressed miRNAs including miR-548ar-5p and miR-627-5p were all upregulated in POD patients and the results were validated using qRT-PCR from the independent sets of samples (n=96). We demonstrated the potential of plasma EV-miRNAs as predictive biomarkers to identify the risk group of POD after spine surgery. It also provides opportunities for future studies investigating the role of EV-miRNAs in delirium pathology.

4.
Small ; : e2402434, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970554

RESUMO

Exosomes are nanovesicles secreted by cells, which play a crucial role in various pathological processes. Exosomes have shown great promise as tumor biomarkers because of the abundant secretion during tumor formation. The development of a convenient, efficient, and cost-effective method for simultaneously enriching and detecting exosomes is of utmost importance for both basic research and clinical applications. In this study, an aptamer-functionalized magnetic Ti3C2 composite material (Fe3O4@Ti3C2@PEI@DSP@aptamer@FAM-ssDNA) is prepared for the simultaneous enrichment and detection of exosomes. CD63 aptamers are utilized to recognize and capture the exosomes, followed by magnetic separation. The exosomes are then released by cleaving the disulfide bonds of DSP. Compared to traditional methods, Fe3O4@Ti3C2@PEI@DSP@aptamer@FAM-ssDNA exhibited superior efficiency in enriching exosomes while preserving their structural and functional integrity. Detection of exosome concentration is achieved through the fluorescence quenching of Ti3C2 and the competitive binding between the exosomes and a fluorescently labeled probe. This method exhibited a low detection limit of 4.21 × 104 particles mL-1, a number that is comparable to the state-of-the-art method in the detection of exosomes. The present study demonstrates a method of simultaneous enrichment and detection of exosomes with a high sensitivity, accuracy, specificity, and cost-effectiveness providing significant potential for clinical research and diagnosis.

5.
Neurospine ; 21(2): 642-655, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38955534

RESUMO

OBJECTIVE: The therapeutic benefits of exosomes obtained from mesenchymal stem cells (MSCs) in acute spinal cord injury (SCI) have been demonstrated in recent years, but the precise mechanisms remain unknown. In this study, the efficacy and mechanisms of MSC-derived exosomes (MSC-Exo) in acute SCI were investigated. METHODS: By utilizing a BV2 ferroptosis cellular model and an SCI rat model, we investigated the effects of MSC-Exo on iron death related indicators and NF-E2 related factor 2 (Nrf2)/GTP cyclolase I (GCH1)/5,6,7,8-tetrahydrobiopterin (BH4) signaling axis, as well as their therapeutic effects on SCI rats. RESULTS: The results revealed that MSC-Exo effectively inhibited the production of ferrous iron, lipid peroxidation products malonaldehyde and reactive oxygen species, and ferroptosis-promoting factor prostaglandin-endoperoxide synthase 2. Concurrently, they upregulated ferroptosis suppressors FTH-1 (ferritin heavy chain 1), SLC7A11 (solute carrier family 7 member 11), FSP1 (ferroptosis suppressor protein 1), and GPX4 (glutathione peroxidase 4), contributing to enhanced neurological recovery in SCI rats. Further analysis showed the Nrf2/GTP/BH4 signaling pathway's critical role in suppressing ferroptosis. Additionally, MSC-Exo was found to inhibit lipopolysaccharide-induced ferroptosis in BV2 cells and SCI rats by activating the Nrf2/GCH1/BH4 axis. CONCLUSION: In summary, the study demonstrates that MSC-Exo mitigates microglial cell ferroptosis via the Nrf2/GCH1/BH4 axis, showing potential for preserving and restoring neurological function post-SCI.

6.
J Extracell Vesicles ; 13(7): e12458, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38958077

RESUMO

Nowadays, it has become clear that extracellular vesicles (EVs) are not a cellular waste disposal vesicle but are an essential part of an intercellular communication system. Besides the use of EVs in biomarker studies and diagnostics, the potential of EV-therapeutics has been seen by many. They provide unique properties for disease therapy, including strong immune-modulatory actions, the possibility of engineering, low immunogenicity, and the capability of crossing biological barriers. Proof-of-concept of EV-therapeutics for various pathologies has been achieved in preclinical studies. However, clinical trials with EVs have only been emerging slowly. Here, we aim to provide a comprehensive overview of the current state-of-the-art concerning clinical studies using EVs in human therapy. By approaching the current knowledge in a systematic manner, we were able to include 21 reports for meta-analysis of safety and evaluation of efficacy outcomes. Overall, we have shown that EV-based therapy is safe with a low incidence of serious adverse events (SAE; 0.7% (95%-CI: 0.1-5.2%), and adverse events (AE; 4.4% (95%-CI: 0.7-22.2%). Subgroup analysis showed no significant difference in SAE when comparing autologous versus allogeneic administration, as well as engineered versus non-engineered EV products. A significantly higher number of AE was seen in autologous versus allogeneic administration. However, the clinical relevance remains questionable. Evaluation of the clinical outcomes of immunostimulatory, immunosuppressive or regenerative EV-therapies indicated improvement in the majority of treated patients. Despite these promising results, data need to be approached with caution due to a high heterogeneity in the EVs manufacturing methods, study design, and reporting of (S)AE. Overall, we conclude that EV-based therapy is safe and presents a promising opportunity in therapy. More efforts are needed in the standardization and harmonization of reporting of EV isolation and characterization data as well as in the reporting of (S)AE to allow inter-study comparison.


Assuntos
Ensaios Clínicos como Assunto , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo
7.
J Endocr Soc ; 8(8): bvae114, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38966710

RESUMO

Background: Diabetic nephropathy (DN) represents a major chronic kidney disorder and a leading cause of end-stage renal disease (ESRD). Small RNAs have been showing great promise as diagnostic markers as well as drug targets. Identifying dysregulated micro RNAs (miRNAs) could help in identifying disease biomarkers and investigation of downstream interactions, shedding light on the molecular pathophysiology of DN. In this study, we analyzed small RNAs within human urinary extracellular vesicles (ECVs) from DN patients using small RNA next-generation sequencing. Method: In this cross-sectional study, urine samples were collected from 88 participants who were divided into 3 groups: type 2 diabetes (T2D) with DN (T2D + DN, n = 20), T2D without DN (T2D - DN, n = 40), and healthy individuals (n = 28). The study focused on isolating urinary ECVs to extract and sequence small RNAs. Differentially expressed small RNAs were identified, and a functional enrichment analysis was conducted. Results: The study revealed a distinct subset of 13 miRNAs and 10 Piwi-interacting RNAs that were significantly dysregulated in urinary ECVs of the DN group when compared to other groups. Notably, miR-151a-3p and miR-182-5p exhibited a unique expression pattern, being downregulated in the T2D - DN group, and upregulated in the T2D + DN group, thus demonstrating their effectiveness in distinguishing patients between the 2 groups. Eight driver genes were identified PTEN, SMAD2, SMAD4, VEGFA, CCND2, CDK6, LIN28B, and CHD1. Conclusion: Our findings contribute valuable insights into the pathogenesis of DN, uncovering novel biomarkers and identifying potential therapeutic targets that may aid in managing and potentially decelerating the progression of the disease.

8.
Anal Chim Acta ; 1316: 342819, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969421

RESUMO

BACKGROUND: Exosomes, as emerging biomarkers in liquid biopsies in recent years, offer profound insights into cancer diagnostics due to their unique molecular signatures. The glycosylation profiles of exosomes have emerged as potential biomarkers, offering a novel and less invasive method for cancer diagnosis and monitoring. Colorectal cancer (CRC) represents a substantial global health challenge and burden. Thus there is a great need for the aberrant glycosylation patterns on the surface of CRC cell-derived exosomes, proposing them as potential biomarkers for tumor characterization. RESULTS: The interactions of 27 lectins with exosomes from three CRC cell lines (SW480, SW620, HCT116) and one normal colon epithelial cell line (NCM460) have been analyzed by the lectin microarray. The result indicates that Ulex Europaeus Agglutinin I (UEA-I) exhibits high affinity and specificity towards exosomes derived from SW480 cells. The expression of glycosylation related genes within cells has been analyzed by high-throughput quantitative polymerase chain reaction (HT-qPCR). The experimental result of HT-qPCR is consistent with that of lectin microarray. Moreover, the limit of detection (LOD) of UEA-I microarray is calculated to be as low as 2.7 × 105 extracellular vehicles (EVs) mL-1 (three times standard deviation (3σ) of blank sample). The UEA-I microarray has been successfully utilized to dynamically monitor the progression of tumors in mice-bearing SW480 CRC subtype, applicable in tumor sizes ranging from 2 mm to 20 mm in diameter. SIGNIFICANCE: The results reveal that glycan expression pattern of exosome is linked to specific CRC subtypes, and regulated by glycosyltransferase and glycosidase genes of mother cells. Our findings illuminate the potential of glycosylation molecules on the surface of exosomes as reliable biomarkers for diagnosis of tumor at early stage and monitoring of cancer progression.


Assuntos
Neoplasias Colorretais , Exossomos , Lectinas , Polissacarídeos , Exossomos/metabolismo , Exossomos/química , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/diagnóstico , Humanos , Polissacarídeos/metabolismo , Polissacarídeos/química , Animais , Lectinas/metabolismo , Lectinas/química , Camundongos , Progressão da Doença , Linhagem Celular Tumoral , Biomarcadores Tumorais/metabolismo
9.
Health Sci Rep ; 7(7): e2228, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38983683

RESUMO

Objective: Coronary artery disease (CAD) is a debilitating condition that can lead to myocardial infarction (MI). Exosomal miRNAs (exo-miRNA) can be diagnostic biomarkers for detecting MI. Here, we conduct a study to evaluate the efficacy of exo-miRNA-21-5p/3p for early detection of MI. Methods: A total of 135 CAD patients and 150 healthy subjects participated in this study. Additionally, we randomly divided 26 male Wistar rats (12 weeks old) into two groups: control and induced MI. Angiographic images were used to identify patients and healthy individuals of all genders. In the following, serum exosomes were obtained, and exo-miRNA-21-5p/3p was measured by reverse-transcriptase polymerase chain reaction. Results: We observed an upregulation of exo-miRNA-21-5p/3p in CAD patient and MI-induced animal groups compared to controls. Analysis of the ROC curves defined 82% and 88% of the participants' exo-miRNA-21-5p and exo-miRNA-21-3p diagnostic power, respectively, which in the animal model was 92 and 82. Conclusion: This study revealed that the mean expression levels of exo-miRNA-21-5p/3p were significantly increased in CAD patients and animal models of induced MI. Also, these results are associated with the atherogenic lipid profile of CAD patients, which may play an important role in the progression of the disease. Therefore, they can be considered as novel biomarkers.

10.
Clin Cosmet Investig Dermatol ; 17: 1603-1612, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38984321

RESUMO

Alopecia is considered a widespread yet troubling health issue, with limited treatment options. As membranous structures derived from cells carrying proteins, nucleic acids and lipids, exosomes functionally medicate intercellular communication and alter the responses of recipient cells, resulting in disease restraint or promotion. Exosomes have broad prospects in diagnosis and treatment of diseases. Studies using animal models and at the cellular level have clearly shown that exosomes from several types of cells, including dermal papilla cells and mesenchymal stem cells, have a notable capacity to promote hair growth, suggesting that exosomes may provide a new option to treat alopecia. Here, we present a thorough review of the most recent progress in the application of exosomes to hair growth.

11.
Front Mol Biosci ; 11: 1417306, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021878

RESUMO

Lung cancer is the leading cause of death among malignant tumors in the world. High lung cancer mortality rate is due to most of patients diagnosed at advanced stage. The Liquid biopsy of lung cancer have received recent interest for early diagnosis. One of the components of liquid biopsy is the exosome. The exosome cargos non-coding-RNAs, especially long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs). The lung cancer derived exosomal non-coding RNAs play the pivotal roles of lung cancer in carcinogenesis, diagnosis, therapy, drug resistance and prognosis of lung cancer. Given ceRNA (competitive endogenous RNA) mechanism, lncRNA or circRNA can act as ceRNA to compete to bind miRNAs and alter the expression of the targeted mRNA, contributing to the development and progression of lung cancer. The current research progress of the roles of the exosomal non-coding-RNAs and the interplay of ceRNAs and miRNAs in mediated lung cancer is illustrated in this article. Hence, we presented an experimentally validated lung cancer derived exosomal non-coding RNAs-regulated target gene axis from already existed evidence in lung cancer. Then LncRNA/circRNA-miRNA-mRNA axis may be a potential target for lung cancer treatment and has great potential in the diagnosis and prognosis of lung cancer.

12.
J Extracell Biol ; 3(7): e166, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39022723

RESUMO

Natural killer cell-derived extracellular vesicles (NK-EVs) are candidate biotherapeutics against various cancers. However, standardised potency assays are necessary for a reliable assessment of NK-EVs' cytotoxicity. This study aims to thoroughly evaluate a highly sensitive resazurin phenoxazine-based cell viability potency assay (measurement of the cellular redox metabolism) for quantifying the cytotoxicity of NK-EVs against leukaemia K562 cells (suspension model) and breast cancer MDA-MB-231 cells (adherent model) in vitro. The assay was evaluated based on common analytical parameters setforth by regulatory guidelines, including specificity, selectivity,accuracy, precision, linearity, range and stability. Our results revealed that this resazurin-based cell viability potency assay reliably and reproducibly measured a dose-response of NK-EVs' cytotoxic activity against both cancer models. The assay showed precision with 5% and 20% variation for intra-run and inter-run variability. The assay signal showed specificity and selectivity of NK-EVs against cancer target cells, as evidenced by the diminished viability of cancer cells following a 5-hour treatment with NK-EVs, without any detectable interference or background. The linearity analysis of target cancer cells revealed strong linearity for densities of 5000 K562 and 1000 MDA-MB-231 cells per test with a consistent range. Importantly, NK-EVs' dose-response for cytotoxicity showed a strong correlation (|ρ| ∼ 0.8) with the levels of known cytotoxic factors associated with the NK-EVs' corona (FasL, GNLY, GzmB, PFN and IFN-γ), thereby validating the accuracy of the assay. The assay also distinguished cytotoxicity changes in degraded NK-EVs, indicating the ability of the assay to detect the potential loss of sample integrity. Compared to other commonly reported bioassays (i.e., flow cytometry, cell counting, lactate dehydrogenase release assay, DNA-binding reporter assay and confluence assay), our results support this highly sensitive resazurin-based viability potency assay as a high-throughput and quantitative method for assessing NK-EVs' cytotoxicity against both suspension and adherent cancer models for evaluating NK-EVs' biotherapeutics.

13.
Wound Repair Regen ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39022990

RESUMO

There is a lack of effective treatment options for diabetic refractory wounds, which presents a critical clinical issue that needs to be addressed urgently. Our research has demonstrated that human placenta-derived mesenchymal stem cells (plaMSCs) facilitate the migration and proliferation of HaCat cells, thereby enhancing diabetic wound healing primarily via the exosomes derived from plaMSCs (plaMSCs-Ex). Using label-free proteomics, plaMSCs and their exosomes were analysed for proteome taxonomic content in order to explore the underlying effective components mechanism of plaMSCs-Ex in diabetic wound healing. Differentially expressed proteins enriched in plaMSCs-Ex were identified and underwent bioinformatics analysis including GO annotation, KEGG pathway enrichment, gene set enrichment analysis (GSEA) and protein-protein interaction analysis (PPI). Results showed that the proteins enriched in plaMSCs-Ex are significantly involved in extracellular matrix organisation, epithelium morphogenesis, cell growth, adhesion, proliferation and angiogenesis. PPI analysis filtered 2 wound healing-related clusters characterised by hub proteins such as POSTN, FN1, SPARC, TIMP1, SERPINE1, LRP1 and multiple collagens. In brief, the exosomal proteins derived from plaMSCs reveal diverse functions of regeneration and tissue remodelling based on proteomics analysis and potentially play a role in diabetic wound healing.

14.
Heliyon ; 10(11): e32376, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961907

RESUMO

Exosomes are naturally present extracellular vesicles (EVs) released into the surrounding body fluids upon the fusion of polycystic and plasma membranes. They facilitate intercellular communication by transporting DNA, mRNA, microRNA, long non-coding RNA, circular RNA, proteins, lipids, and nucleic acids. They contribute to the onset and progression of Central Nervous System (CNS) tumors. In addition, they can be used as biomarkers of tumor proliferation, migration, and blood vessel formation, thereby affecting the Tumor Microenvironment (TME). This paper reviews the recent advancements in the diagnosis and treatment of exosomes in various CNS tumors, the promise and challenges of exosomes as natural carriers of CNS tumors, and the therapeutic prospects of exosomes in CNS tumors. Furthermore, we hope this research can contribute to the development of more targeted and effective treatments for central nervous system tumors.

15.
J Nanobiotechnology ; 22(1): 382, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951872

RESUMO

Reperfusion therapy is critical for saving heart muscle after myocardial infarction, but the process of restoring blood flow can itself exacerbate injury to the myocardium. This phenomenon is known as myocardial ischemia-reperfusion injury (MIRI), which includes oxidative stress, inflammation, and further cell death. microRNA-146a (miR-146a) is known to play a significant role in regulating the immune response and inflammation, and has been studied for its potential impact on the improvement of heart function after myocardial injury. However, the delivery of miR-146a to the heart in a specific and efficient manner remains a challenge as extracellular RNAs are unstable and rapidly degraded. Milk exosomes (MEs) have been proposed as ideal delivery platform for miRNA-based therapy as they can protect miRNAs from RNase degradation. In this study, the effects of miR-146a containing MEs (MEs-miR-146a) on improvement of cardiac function were examined in a rat model of MIRI. To enhance the targeting delivery of MEs-miR-146a to the site of myocardial injury, the ischemic myocardium-targeted peptide IMTP was modified onto the surfaces, and whether the modified MEs-miR-146a could exert a better therapeutic role was examined by echocardiography, myocardial injury indicators and the levels of inflammatory factors. Furthermore, the expressions of miR-146a mediated NF-κB signaling pathway-related proteins were detected by western blotting and qRT-PCR to further elucidate its mechanisms. MiR-146 mimics were successfully loaded into the MEs by electroporation at a square wave 1000 V voltage and 0.1 ms pulse duration. MEs-miR-146a can be up-taken by cardiomyocytes and protected the cells from oxygen glucose deprivation/reperfusion induced damage in vitro. Oral administration of MEs-miR-146a decreased myocardial tissue apoptosis and the expression of inflammatory factors and improved cardiac function after MIRI. The miR-146a level in myocardium tissues was significantly increased after the administration IMTP modified MEs-miR-146a, which was higher than that of the MEs-miR-146a group. In addition, intravenous injection of IMTP modified MEs-miR-146a enhanced the targeting to heart, improved cardiac function, reduced myocardial tissue apoptosis and suppressed inflammation after MIRI, which was more effective than the MEs-miR-146a treatment. Moreover, IMTP modified MEs-miR-146a reduced the protein levels of IRAK1, TRAF6 and p-p65. Therefore, IMTP modified MEs-miR-146a exerted their anti-inflammatory effect by inhibiting the IRAK1/TRAF6/NF-κB signaling pathway. Taken together, our findings suggested miR-146a containing MEs may be a promising strategy for the treatment of MIRI with better outcome after modification with ischemic myocardium-targeted peptide, which was expected to be applied in clinical practice in future.


Assuntos
Exossomos , MicroRNAs , Traumatismo por Reperfusão Miocárdica , NF-kappa B , Ratos Sprague-Dawley , Transdução de Sinais , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Exossomos/metabolismo , NF-kappa B/metabolismo , Ratos , Masculino , Leite/química , Miocárdio/metabolismo , Cardiotônicos/farmacologia , Miócitos Cardíacos/metabolismo
16.
Tuberculosis (Edinb) ; 148: 102541, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39002312

RESUMO

Bovine tuberculosis (bTB), primarily caused by Mycobacterium bovis (M. bovis), is a globally zoonotic disease with significant economic impacts. Plasma exosomes have been extensively used for investigating disease processes and exploring biomarkers. While mass spectrometry (MS)-based proteomic analysis of plasma exosomes has been employed for human tuberculosis (TB) studies, it has not yet been applied to bTB. Therefore, a comprehensive proteomic overview of plasma exosomes from M. bovis-infected cows is essential. In this study, we presented an extensive proteomic analysis of plasma exosomes from 89 M. bovis-infected cows across three farms, using data dependent acquisition (DDA) mode. Our analysis encompasses 239,894 spectra, 6,011 peptides and 835 proteins. The proteomic overview revealed both consistencies and differences among individual cows, supplements 595 proteins to the bovine exosome library, and enriches tuberculosis and related pathways. Additionally, six pathways were validated as immune response pathways, and three proteins (CATHL1, H1-1, and LCN2) were identified as potential indicators of bTB. This study is the first to investigate the exosome proteome of plasma from cows infected with M. bovis, providing a valuable dataset for exploring candidate bTB markers and understanding the mechanisms of host defense against M. bovis.

17.
Exp Neurol ; : 114882, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002923

RESUMO

Stem cell-derived exosomes have gained attention in regenerative medicine for their role in encouraging nerve regeneration and potential use in treating neurological diseases. These nanosized extracellular vesicles act as carriers of bioactive molecules, facilitating intercellular communication and enhancing the regenerative process in neural tissues. This comprehensive study explores the methods by which exosomes produced from various stem cells contribute to nerve healing, with a particular emphasis on their role in angiogenesis, inflammation, and cellular signaling pathways. By examining cutting-edge developments and exploring the potential of exosomes in delivering disease-specific miRNAs and proteins, we highlight their versatility in tailoring personalized therapeutic strategies. The findings presented here highlight the potential of stem cell-produced exosomes for use in neurological diseases therapy, establishing the door for future research into exosome-based neurotherapies.

18.
J Crohns Colitis ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001689

RESUMO

BACKGROUND AND AIMS: Exosome-based therapies are gaining increasing attention, with growing evidence suggesting a link between alterations in mesentery adipose tissue (MAT) and intestinal disease in Crohn's disease (CD). However, the specific mechanism by which mesenchymal stem cells (MSCs)-Exos may alleviate colitis through targeting MAT remains not fully understood. METHODS: Human umbilical cord MSCs (HucMSCs) were cultured to isolate the corresponding exosomes (HucMSCs-Exos), which were confirmed by their morphology, size distribution, and expression of markers. In vivo, 2,4,6-trinitrobenzenesulfonic acid solution (TNBS) and dextran sodium sulfate (DSS) -induced mouse colitis models were used to detect the therapeutic effects of HucMSCs-Exos. ELISA, qRT-PCR, western blotting, and immunofluorescence determined the expression of key molecules. Luciferase reporter assay was used to confirm the relationship between miR-21-5p and SPRY2. RESULTS: Exosomes treatment through mesenteric injection demonstrated therapeutic effects on mesenteric inflammation and colitis. These therapeutic benefits were contingent on macrophages, significantly facilitating the M2 polarization of mesenteric macrophages. The expression data from GSE159814 and GSE211008 revealed that exosomal miR-21-5p was enriched in HucMSCs-Exos and could be delivered to macrophages. Additionally, the results indicated that miR-21-5p could directly target the 3'UTR of SPRY2 and activate the phosphorylation of ERK to modify macrophage phenotypes. Mechanistically, exosomal miR-21-5p derived from HucMSCs could promote macrophage M2 polarization via the SPRY2/ERK axis. CONCLUSION: Mesenteric injection of HucMSCs-Exos significantly alleviates mesenteric inflammation and colitis by promoting mesenteric macrophage M2 polarization, making it a promising approach to treat colitis and suggesting therapeutic potential role of exosomal miR-21-5p in CD.

19.
Exp Gerontol ; : 112508, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986855

RESUMO

hTERT gene therapies hold significant promise for treating age-related diseases. However, further research is required to address the challenges of delivery and ethical considerations. We hypothesized that exosomes derived from hTERT-immortalized cells could function similarly to hTERT gene therapies by maintaining telomere length and attenuating cellular senescence biomarkers. In this study, we overexpressed the hTERT gene in Human Foreskin Fibroblast-1 cells (HFF cells) to produce hTERT-immortalized HFF cells (hT-HFF cells). We then used exosomes derived from these hT-HFF cells to treat human fibroblasts, HFF cells. Our results demonstrated that these exosomes effectively attenuated biomarkers of cellular senescence in HFF cells. Furthermore, analysis revealed that hTERT mRNA was indeed packaged into the exosomes from hT-HFF cells. This mRNA was capable of elongating telomeres and delaying cellular senescence in HFF cells. Therefore, exosomes from hT-HFF cells show potential as a treatment for age-related diseases.

20.
Biochem Biophys Res Commun ; 727: 150316, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38959732

RESUMO

Type 2 diabetes (T2D) is on a notable rise worldwide, which leads to unfavorable outcomes during implant treatments. Surface modification of implants and exosome treatment have been utilized to enhance osseointegration. However, there has been insufficient approach to improve adverse osseointegration in T2D conditions. In this study, we successfully loaded TNF-α-treated mesenchymal stem cell (MSC)-derived exosomes onto micro/nano-network titanium (Ti) surfaces. TNF-α-licensed exosome-integrated titanium (TNF-exo-Ti) effectively enhanced M2 macrophage polarization in hyperglycemic conditions, with increased secretion of anti-inflammatory cytokines and decreased secretion of pro-inflammatory cytokines. In addition, TNF-exo-Ti pretreated macrophage further enhanced angiogenesis and osteogenesis of endothelial cells and bone marrow MSCs. More importantly, TNF-exo-Ti markedly promoted osseointegration in T2D mice. Mechanistically, TNF-exo-Ti activated macrophage autophagy to promote M2 polarization through inhibition of the PI3K/AKT/mTOR pathway, which could be abolished by PI3K agonist. Thus, this study established TNF-α-licensed exosome-immobilized titanium surfaces that could rectify macrophage immune states and accelerate osseointegration in T2D conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA