Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Phys ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096435

RESUMO

The evolutionary origin of the inverted retina in the vertebrate eye is unknown. This paper explores a hypothetical evolutionary scenario that explains the unique orientation of the photoreceptors in the vertebrate retina. The proposed scenario follows the scientific accepted scenario for eye evolution and gradually builds up towards an eye prototype by considering light direction detection and increase in achievable spatial resolution as the driving forces. It suggests that eye retinas developed along two different morphological processes, an evagination process that results in the inverted retina in vertebrate eyes and an invagination process that results in a verted retina in cephalopod eyes. The development of the inverted vertebrate retina and eye prototype morphology is strongly substantiated by physics of vision. The proposed evolutionary sequence for vertebrate eye development is simple and has the full potential to explain the origin of the inverted retina and leads to an eye prototype enabling visual detection and orientation. It allows the emergence of eye structures like, extraocular muscles, tapetum lucidum, biconvex lens, cornea, and pupil. This study supports the suggestion that a primitive inverted retina in the predecessor of vertebrates is of ectodermal origin and available before neurulation occurred.

2.
BMC Genomics ; 24(1): 702, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993800

RESUMO

Animals typically have either compound eyes, or camera-type eyes, both of which have evolved repeatedly in the animal kingdom. Both eye types include two important kinds of cells: photoreceptor cells, which can be excited by light, and non-neuronal support cells (SupCs), which provide essential support to photoreceptors. At the molecular level deeply conserved genes that relate to the differentiation of photoreceptor cells have fueled a discussion on whether or not a shared evolutionary origin might be considered for this cell type. In contrast, only a handful of studies, primarily on the compound eyes of Drosophila melanogaster, have demonstrated molecular similarities in SupCs. D. melanogaster SupCs (Semper cells and primary pigment cells) are specialized eye glia that share several molecular similarities with certain vertebrate eye glia, including Müller glia. This led us to question if there could be conserved molecular signatures of SupCs, even in functionally different eyes such as the image-forming larval camera eyes of the sunburst diving beetle Thermonectus marmoratus. To investigate this possibility, we used an in-depth comparative whole-tissue transcriptomics approach. Specifically, we dissected the larval principal camera eyes into SupC- and retina-containing regions and generated the respective transcriptomes. Our analysis revealed several common features of SupCs including enrichment of genes that are important for glial function (e.g. gap junction proteins such as innexin 3), glycogen production (glycogenin), and energy metabolism (glutamine synthetase 1 and 2). To evaluate similarities, we compared our transcriptomes with those of fly (Semper cells) and vertebrate (Müller glia) eye glia as well as respective retinas. T. marmoratus SupCs were found to have distinct genetic overlap with both fly and vertebrate eye glia. These results suggest that T. marmoratus SupCs are a form of glia, and like photoreceptors, may be deeply conserved.


Assuntos
Besouros , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Besouros/genética , Larva/genética , Retina , Neuroglia/metabolismo
3.
Elife ; 122023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37750868

RESUMO

Gene expression has been employed for homologizing body regions across bilateria. The molecular comparison of vertebrate and fly brains has led to a number of disputed homology hypotheses. Data from the fly Drosophila melanogaster have recently been complemented by extensive data from the red flour beetle Tribolium castaneum with its more insect-typical development. In this review, we revisit the molecular mapping of the neuroectoderm of insects and vertebrates to reconsider homology hypotheses. We claim that the protocerebrum is non-segmental and homologous to the vertebrate fore- and midbrain. The boundary between antennal and ocular regions correspond to the vertebrate mid-hindbrain boundary while the deutocerebrum represents the anterior-most ganglion with serial homology to the trunk. The insect head placode is shares common embryonic origin with the vertebrate adenohypophyseal placode. Intriguingly, vertebrate eyes develop from a different region compared to the insect compound eyes calling organ homology into question. Finally, we suggest a molecular re-definition of the classic concepts of archi- and prosocerebrum.


Assuntos
Besouros , Placa Neural , Animais , Drosophila melanogaster , Insetos , Encéfalo , Vertebrados/genética , Expressão Gênica
4.
Proc Natl Acad Sci U S A ; 120(16): e2214815120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036996

RESUMO

The vertebrate eye was described by Charles Darwin as one of the greatest potential challenges to a theory of natural selection by stepwise evolutionary processes. While numerous evolutionary transitions that led to the vertebrate eye have been explained, some aspects appear to be vertebrate specific with no obvious metazoan precursor. One critical difference between vertebrate and invertebrate vision hinges on interphotoreceptor retinoid-binding protein (IRBP, also known as retinol-binding protein, RBP3), which enables the physical separation and specialization of cells in the vertebrate visual cycle by promoting retinoid shuttling between cell types. While IRBP has been functionally described, its evolutionary origin has remained elusive. Here, we show that IRBP arose via acquisition of novel genetic material from bacteria by interdomain horizontal gene transfer (iHGT). We demonstrate that a gene encoding a bacterial peptidase was acquired prior to the radiation of extant vertebrates >500 Mya and underwent subsequent domain duplication and neofunctionalization to give rise to vertebrate IRBP. Our phylogenomic analyses on >900 high-quality genomes across the tree of life provided the resolution to distinguish contamination in genome assemblies from true instances of horizontal acquisition of IRBP and led us to discover additional independent transfers of the same bacterial peptidase gene family into distinct eukaryotic lineages. Importantly, this work illustrates the evolutionary basis of a key transition that led to the vertebrate visual cycle and highlights the striking impact that acquisition of bacterial genes has had on vertebrate evolution.


Assuntos
Genes Bacterianos , Vertebrados , Animais , Vertebrados/metabolismo , Proteínas do Olho/genética , Retinoides/metabolismo , Invertebrados/genética , Visão Ocular/genética
5.
J Exp Zool B Mol Dev Evol ; 340(5): 342-353, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36855226

RESUMO

The phylogenetic position of chaetognaths, or arrow worms, has been debated for decades, however recently they have been grouped into the Gnathifera, a sister clade to all other Spiralia. Chaetognath photoreceptor cells are anatomically unique by exhibiting a highly modified cilium and are arranged differently in the eyes of the various species. Studies investigating eye development and underlying gene regulatory networks are so far missing. To gain insights into the development and the molecular toolkit of chaetognath photoreceptors and eyes a new transcriptome of the epibenthic species Spadella cephaloptera was searched for opsins. Our screen revealed two copies of xenopsin and a single copy of peropsin. Gene expression analyses demonstrated that only xenopsin1 is expressed in photoreceptor cells of the developing lateral eyes. Adults likewise exhibit two xenopsin1 + photoreceptor cells in each of their lateral eyes. Beyond that, a single cryptochrome gene was uncovered and found to be expressed in photoreceptor cells of the lateral developing eye. In addition, cryptochrome is also expressed in the cerebral ganglia in a region in which also peropsin expression was observed. This condition is reminiscent of a nonvisual photoreceptive zone in the apical nervous system of the annelid Platynereis dumerilii that performs circadian entrainment and melatonin release. Cryptochrome is also expressed in cells of the corona ciliata, an organ in the posterior dorsal head region, indicating a role in circadian entrainment. Our study highlights the importance of the Gnathifera for unraveling the evolution of photoreceptors and eyes in Spiralia and Bilateria.


Assuntos
Anelídeos , Opsinas , Animais , Filogenia , Opsinas/genética , Opsinas/metabolismo , Criptocromos/genética , Células Fotorreceptoras/metabolismo
6.
Cells ; 11(24)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36552730

RESUMO

Understanding the molecular underpinnings of the evolution of complex (multi-part) systems is a fundamental topic in biology. One unanswered question is to what the extent do similar or different genes and regulatory interactions underlie similar complex systems across species? Animal eyes and phototransduction (light detection) are outstanding systems to investigate this question because some of the genetics underlying these traits are well characterized in model organisms. However, comparative studies using non-model organisms are also necessary to understand the diversity and evolution of these traits. Here, we compare the characteristics of photoreceptor cells, opsins, and phototransduction cascades in diverse taxa, with a particular focus on cnidarians. In contrast to the common theme of deep homology, whereby similar traits develop mainly using homologous genes, comparisons of visual systems, especially in non-model organisms, are beginning to highlight a "deep diversity" of underlying components, illustrating how variation can underlie similar complex systems across taxa. Although using candidate genes from model organisms across diversity was a good starting point to understand the evolution of complex systems, unbiased genome-wide comparisons and subsequent functional validation will be necessary to uncover unique genes that comprise the complex systems of non-model groups to better understand biodiversity and its evolution.


Assuntos
Cnidários , Evolução Molecular , Animais , Opsinas/genética , Transdução de Sinal Luminoso/genética , Células Fotorreceptoras
7.
Bioessays ; 44(12): e2200163, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36317531

RESUMO

Pioneering molecular work on chelicerate visual system development in the horseshoe crab Limulus polyphemus surprised with the possibility that this process may not depend on the deeply conserved retinal determination function of Pax6 transcription factors. Genomic, transcriptomic, and developmental studies in spiders now reveal that the arthropod Pax6 homologs eyeless and twin of eyeless act as ancestral determinants of the ocular head segment in chelicerates, which clarifies deep gene regulatory and structural homologies and recommends more unified terminologies in the comparison of arthropod visual systems. Following this phylotypic stage, chelicerate visual system development differs fundamentally from other arthropods during the compartmentalization of the ocular segment in that eye and optic neuropil primordia originate independently from each other. Comparative analyses of this phase identified further gene regulatory homologies but also major differences, most notably the possibly compensatory replacement of Pax6 by Pax2 in lateral eye specification. Also see the video abstract here: https://youtu.be/Hdfr3z5kEXU.


Assuntos
Olho , Caranguejos Ferradura , Animais , Genoma , Caranguejos Ferradura/genética , Fator de Transcrição PAX6/genética
8.
Curr Biol ; 32(23): 5045-5056.e3, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36356573

RESUMO

Coleoid cephalopods, including squid, cuttlefish, and octopus, have large and complex nervous systems and high-acuity, camera-type eyes. These traits are comparable only to features that are independently evolved in the vertebrate lineage. The size of animal nervous systems and the diversity of their constituent cell types is a result of the tight regulation of cellular proliferation and differentiation in development. Changes in the process of development during evolution that result in a diversity of neural cell types and variable nervous system size are not well understood. Here, we have pioneered live-imaging techniques and performed functional interrogation to show that the squid Doryteuthis pealeii utilizes mechanisms during retinal neurogenesis that are hallmarks of vertebrate processes. We find that retinal progenitor cells in the squid undergo nuclear migration until they exit the cell cycle. We identify retinal organization corresponding to progenitor, post-mitotic, and differentiated cells. Finally, we find that Notch signaling may regulate both retinal cell cycle and cell fate. Given the convergent evolution of elaborate visual systems in cephalopods and vertebrates, these results reveal common mechanisms that underlie the growth of highly proliferative neurogenic primordia. This work highlights mechanisms that may alter ontogenetic allometry and contribute to the evolution of complexity and growth in animal nervous systems.


Assuntos
Decapodiformes , Neurogênese , Retina , Animais , Retina/citologia , Retina/fisiologia
9.
BMC Biol ; 20(1): 1, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34983491

RESUMO

BACKGROUND: Across the Metazoa, similar genetic programs are found in the development of analogous, independently evolved, morphological features. The functional significance of this reuse and the underlying mechanisms of co-option remain unclear. Cephalopods have evolved a highly acute visual system with a cup-shaped retina and a novel refractive lens in the anterior, important for a number of sophisticated behaviors including predation, mating, and camouflage. Almost nothing is known about the molecular-genetics of lens development in the cephalopod. RESULTS: Here we identify the co-option of the canonical bilaterian limb patterning program during cephalopod lens development, a functionally unrelated structure. We show radial expression of transcription factors SP6-9/sp1, Dlx/dll, Pbx/exd, Meis/hth, and a Prdl homolog in the squid Doryteuthis pealeii, similar to expression required in Drosophila limb development. We assess the role of Wnt signaling in the cephalopod lens, a positive regulator in the developing Drosophila limb, and find the regulatory relationship reversed, with ectopic Wnt signaling leading to lens loss. CONCLUSION: This regulatory divergence suggests that duplication of SP6-9 in cephalopods may mediate the co-option of the limb patterning program. Thus, our study suggests that this program could perform a more universal developmental function in radial patterning and highlights how canonical genetic programs are repurposed in novel structures.


Assuntos
Cefalópodes , Animais , Cefalópodes/genética , Drosophila/genética , Extremidades , Olho , Regulação da Expressão Gênica no Desenvolvimento , Organogênese
10.
Dev Biol ; 479: 126-138, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34343526

RESUMO

The arthropod compound eye represents one of two major eye types in the animal kingdom and has served as an essential experimental paradigm for defining fundamental mechanisms underlying sensory organ formation, function, and maintenance. One of the most distinguishing features of the compound eye is the highly regular array of lens facets that define individual eye (ommatidial) units. These lens facets are produced by a deeply conserved quartet of cuticle-secreting cells, called Semper cells (SCs). Also widely known as cone cells, SCs were originally identified for their secretion of the dioptric system, i.e. the corneal lens and underlying crystalline cones. Additionally, SCs are now known to execute a diversity of patterning and glial functions in compound eye development and maintenance. Here, we present an integrated account of our current knowledge of SC multifunctionality in the Drosophila compound eye, highlighting emerging gene regulatory modules that may drive the diverse roles for these cells. Drawing comparisons with other deeply conserved retinal glia in the vertebrate single lens eye, this discussion speaks to glial cell origins and opens new avenues for understanding sensory system support programs.


Assuntos
Olho Composto de Artrópodes/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Animais , Olho Composto de Artrópodes/metabolismo , Córnea/metabolismo , Córnea/fisiologia , Drosophila/genética , Proteínas de Drosophila/genética , Olho/metabolismo , Proteínas do Olho/genética , Cristalino/metabolismo , Cristalino/fisiologia , Neuroglia/fisiologia , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Relação Estrutura-Atividade
11.
Proc Biol Sci ; 287(1937): 20202055, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33081641

RESUMO

The cephalopod visual system is an exquisite example of convergence in biological complexity. However, we have little understanding of the genetic and molecular mechanisms underpinning its elaboration. The generation of new genetic material is considered a significant contributor to the evolution of biological novelty. We sought to understand if this mechanism may be contributing to cephalopod-specific visual system novelties. Specifically, we identified duplications in the Krüppel-like factor/specificity protein (KLF/SP) sub-family of C2H2 zinc-finger transcription factors in the squid Doryteuthis pealeii. We cloned and analysed gene expression of the KLF/SP family, including two paralogs of the DpSP6-9 gene. These duplicates showed overlapping expression domains but one paralog showed unique expression in the developing squid lens, suggesting a neofunctionalization of DpSP6-9a. To better understand this neofunctionalization, we performed a thorough phylogenetic analysis of SP6-9 orthologues in the Spiralia. We find multiple duplications and losses of the SP6-9 gene throughout spiralian lineages and at least one cephalopod-specific duplication. This work supports the hypothesis that gene duplication and neofunctionalization contribute to novel traits like the cephalopod image-forming eye and to the diversity found within Spiralia.


Assuntos
Cefalópodes/fisiologia , Visão Ocular/fisiologia , Animais , Decapodiformes , Evolução Molecular , Duplicação Gênica , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição Kruppel-Like/metabolismo , Filogenia , Sensibilidade e Especificidade , Fatores de Transcrição
12.
Front Cell Dev Biol ; 8: 705, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850825

RESUMO

The evolution of the vertebrate eye remains so far unresolved. Amphioxus frontal eye pigment cells and photoreceptors were proposed to be homologous to vertebrate photoreceptors and retinal pigmented epithelium, based on ultrastructural morphology and gene expression analysis in B. floridae. Here, we present comparative molecular data using two additional amphioxus species, a closely related B. lanceolatum, and the most divergent A. lucayanum. Taking advantage of a unique set of specific antibodies we characterized photoreceptors and putative interneurons of the frontal eye and investigated its neuronal circuitry. Our results corroborate generally conserved molecular fingerprint among cephalochordate species. Furthermore, we performed pharmacological perturbations and found that the Notch signaling pathway, a key regulator of retina development in vertebrates, is required for correct ratios among frontal eye cell types. In summary, our study provides a valuable insight into cell-type relationships in chordate visual organs and strengthens the previously proposed homology between amphioxus frontal eye and vertebrate eyes.

13.
J R Soc Interface ; 17(163): 20190750, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32019468

RESUMO

Animal eyes typically possess specialized regions for guiding different behavioural tasks within their specific visual habitat. These specializations, and evolutionary changes to them, can be crucial for understanding an animal's ecology. Here, we explore how the visual systems of some of the smallest flying insects, fungus gnats, have adapted to different types of forest habitat over time (approx. 30 Myr to today). Unravelling how behavioural, environmental and phylogenetic factors influence the evolution of visual specializations is difficult, however, because standard quantitative techniques often require fresh tissue and/or provide data in eye-centric coordinates that prevent reliable comparisons between species with different eye morphologies. Here, we quantify the visual world of three gnats from different time periods and habitats using X-ray microtomography to create high-resolution three-dimensional models of the compound eyes of specimens in different preservation states-fossilized in amber, dried or stored in ethanol. We present a method for analysing the geometric details of individual corneal facets and for estimating and comparing the sensitivity, spatial resolution and field of view of species across geographical space and evolutionary time. Our results indicate that, despite their miniature size, fungus gnats do have variations in visual properties across their eyes. We also find some indication that these visual specializations vary across species and may represent adaptations to their different forest habitats. Overall, the findings demonstrate how such investigations can be used to study the evolution of visual specializations-and sensory ecology in general-across a range of insect taxa from different geographical locations and across time.


Assuntos
Ceratopogonidae , Dípteros , Animais , Olho , Fungos , Filogenia , Microtomografia por Raio-X
14.
J Anim Ecol ; 89(10): 2258-2267, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33460050

RESUMO

Most animals are visually oriented, and their eyes provide their 'window to the world'. Eye size correlates positively with visual performance, because larger eyes can house larger pupils that increase photon catch and contrast discrimination, particularly under dim light, which have positive effects on behaviours that enhance fitness, including predator avoidance and foraging. Recent studies have linked predation risk to selection for larger eyes and pupils, and such changes should be of importance for the majority of teleost fishes as they have a pupil that is fixed in size (eyes lack a pupillary sphincter muscle) and, hence, do not respond to changes in light conditions. Here, we quantify eye and pupil size of individual crucian carp, a common freshwater fish, following controlled manipulations of perceived predation risk (presence/absence). We also tested if crucian carp responded to increased predation risk by shifts in diel activity patterns. We found that crucian carp show phenotypic plasticity with regards to pupil size, but not eye size, as pupil size increased when exposed to predators (pike). Predator-exposed crucian carp also shifted from diurnal to nocturnal activity. Using a modelling exercise, we moreover show that the plastically enlarged pupils significantly increase visual range, especially for small objects under dim light conditions. Overall, our results provide compelling evidence for predator-induced pupil enlargement resulting in enhanced visual capabilities in a teleost fish. Pupil size plasticity in combination with the observed shift towards nocturnal activity may allow for efficient foraging also under dark conditions when predation risk from diurnal and visually oriented predators is reduced. The data highlight the powerful role of predation risk for eye development and evolution.


Assuntos
Carpas , Comportamento Predatório , Adaptação Fisiológica , Animais , Esocidae , Olho
15.
J Exp Biol ; 221(Pt 19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30127078

RESUMO

To better understand relationships between the structures and functions of the distributed visual systems of chitons, we compare how morphological differences between the light-sensing structures of these animals relate to their visually guided behaviors. All chitons have sensory organs - termed aesthetes - embedded within their protective shell plates. In some species, the aesthetes are interspersed with small, image-forming eyes. In other species, the aesthetes are paired with pigmented eyespots. Previously, we compared the visually influenced behaviors of chitons with aesthetes to those of chitons with both aesthetes and eyes. Here, we characterize the visually influenced behaviors of chitons with aesthetes and eyespots. We find that chitons with eyespots engage in behaviors consistent with spatial vision, but appear to use spatial vision for different tasks than chitons with eyes. Unlike chitons with eyes, Chiton tuberculatus and C. marmoratus fail to distinguish between sudden appearances of overhead objects and equivalent, uniform changes in light levels. We also find that C. tuberculatus orients to static objects with angular sizes as small as 10 deg. Thus, C. tuberculatus demonstrates spatial resolution that is at least as fine as that demonstrated by chitons with eyes. The eyespots of Chiton are smaller and more numerous than the eyes found in other chitons and they are separated by angles of <0.5 deg, suggesting that the light-influenced behaviors of Chiton may be more accurately predicted by the network properties of their distributed visual system than by the structural properties of their individual light-detecting organs.


Assuntos
Exoesqueleto/ultraestrutura , Células Fotorreceptoras de Invertebrados/fisiologia , Poliplacóforos/fisiologia , Visão Ocular/fisiologia , Percepção Visual/fisiologia , Animais , Microscopia Eletrônica de Varredura , Modelos Biológicos , Orientação Espacial , Poliplacóforos/anatomia & histologia , Especificidade da Espécie
16.
Genome Biol Evol ; 9(8): 2075-2092, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28903537

RESUMO

The birth of novel genes, including their cell-specific transcriptional control, is a major source of evolutionary innovation. The lens-preferred proteins, crystallins (vertebrates: α- and ß/γ-crystallins), provide a gateway to study eye evolution. Diversity of crystallins was thought to originate from convergent evolution through multiple, independent formation of Pax6/PaxB-binding sites within the promoters of genes able to act as crystallins. Here, we propose that αB-crystallin arose from a duplication of small heat shock protein (Hspb1-like) gene accompanied by Pax6-site and heat shock element (HSE) formation, followed by another duplication to generate the αA-crystallin gene in which HSE was converted into another Pax6-binding site. The founding ß/γ-crystallin gene arose from the ancestral Hspb1-like gene promoter inserted into a Ca2+-binding protein coding region, early in the cephalochordate/tunicate lineage. Likewise, an ancestral aldehyde dehydrogenase (Aldh) gene, through multiple gene duplications, expanded into a multigene family, with specific genes expressed in invertebrate lenses (Ω-crystallin/Aldh1a9) and both vertebrate lenses (η-crystallin/Aldh1a7 and Aldh3a1) and corneas (Aldh3a1). Collectively, the present data reconstruct the evolution of diverse crystallin gene families.


Assuntos
Cristalinas/genética , Evolução Molecular , Regulação da Expressão Gênica , Fator de Transcrição PAX6/metabolismo , Animais , Sítios de Ligação , Cálcio/metabolismo , Ciona intestinalis/genética , Cristalinas/metabolismo , Duplicação Gênica , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico/genética , Invertebrados/genética , Camundongos , Chaperonas Moleculares , Proteínas de Neoplasias/genética , Fator de Transcrição PAX6/genética , Regiões Promotoras Genéticas , Cadeia A de alfa-Cristalina/genética , Cadeia A de alfa-Cristalina/metabolismo , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/metabolismo
17.
Dev Biol ; 421(1): 67-76, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27693434

RESUMO

Drosophila has three types of visual organs, the larval eyes or Bolwig's organs (BO), the ocelli (OC) and the compound eyes (CE). In all, the bHLH protein Atonal (Ato) functions as the proneural factor for photoreceptors and effects the transition from progenitor cells to differentiating neurons. In this work, we investigate the regulation of ato expression in the BO primordium (BOP). Surprisingly, we find that ato transcription in the BOP is entirely independent of the shared regulatory DNA for the developing CE and OC. The core enhancer for BOP expression, atoBO, lies ~6kb upstream of the ato gene, in contrast to the downstream location of CE and OC regulatory elements. Moreover, maintenance of ato expression in the neuronal precursors through autoregulation-a common and ancient feature of ato expression that is well-documented in eyes, ocelli and chordotonal organs-does not occur in the BO. We also show that the atoBO enhancer contains two binding sites for the transcription factor Sine oculis (So), a core component of the progenitor specification network in all three visual organs. These binding sites function in vivo and are specifically bound by So in vitro. Taken together, our findings reveal that the control of ato transcription in the evolutionarily derived BO has diverged considerably from ato regulation in the more ancestral compound eyes and ocelli, to the extent of acquiring what appears to be a distinct and evolutionarily novel cis-regulatory module.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Olho/crescimento & desenvolvimento , Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Homeostase/genética , Região 5'-Flanqueadora/genética , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação/genética , DNA/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/metabolismo , Larva/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Especificidade de Órgãos , Transcrição Gênica , Ativação Transcricional/genética
18.
Dev Biol ; 418(1): 10-16, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27565023

RESUMO

The fruit fly Drosophila melanogaster has two types of external visual organs, a pair of compound eyes and a group of three ocelli. At the time of neurogenesis, the proneural transcription factor Atonal mediates the transition from progenitor cells to differentiating photoreceptor neurons in both organs. In the developing compound eye, atonal (ato) expression is directly induced by transcriptional regulators that confer retinal identity, the Retinal Determination (RD) factors. Little is known, however, about control of ato transcription in the ocelli. Here we show that a 2kb genomic DNA fragment contains distinct and common regulatory elements necessary for ato induction in compound eyes and ocelli. The three binding sites that mediate direct regulation by the RD factors Sine oculis and Eyeless in the compound eye are also required in the ocelli. However, in the latter, these sites mediate control by Sine oculis and the other Pax6 factor of Drosophila, Twin of eyeless, which can bind the Pax6 sites in vitro. Moreover, the three sites are differentially utilized in the ocelli: all three are similarly essential for atonal induction in the posterior ocelli, but show considerable redundancy in the anterior ocellus. Strikingly, this difference parallels the distinct control of ato transcription in the posterior and anterior progenitors of the developing compound eyes. From a comparative perspective, our findings suggest that the ocelli of arthropods may have originated through spatial partitioning from the dorsal edge of an ancestral compound eye.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Olho Composto de Artrópodes/embriologia , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Células Fotorreceptoras de Invertebrados/citologia , Ativação Transcricional/genética , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , Olho Composto de Artrópodes/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Ensaio de Desvio de Mobilidade Eletroforética , Ativação Enzimática , Proteínas do Olho/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição PAX6/genética , Transativadores/genética
19.
Development ; 143(17): 3168-81, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27510978

RESUMO

Photoreception is a ubiquitous sensory ability found across the Metazoa, and photoreceptive organs are intricate and diverse in their structure. Although the morphology of the compound eye in Drosophila and the single-chambered eye in vertebrates have elaborated independently, the amount of conservation within the 'eye' gene regulatory network remains controversial, with few taxa studied. To better understand the evolution of photoreceptive organs, we established the cephalopod Doryteuthis pealeii as a lophotrochozoan model for eye development. Utilizing histological, transcriptomic and molecular assays, we characterize eye formation in Doryteuthis pealeii Through lineage tracing and gene expression analyses, we demonstrate that cells expressing Pax and Six genes incorporate into the lens, cornea and iris, and the eye placode is the sole source of retinal tissue. Functional assays demonstrate that Notch signaling is required for photoreceptor cell differentiation and retinal organization. This comparative approach places the canon of eye research in traditional models into perspective, highlighting complexity as a result of both conserved and convergent mechanisms.


Assuntos
Cefalópodes/embriologia , Cefalópodes/metabolismo , Olho/embriologia , Olho/metabolismo , Células Fotorreceptoras/citologia , Células Fotorreceptoras/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Morfogênese/genética , Morfogênese/fisiologia
20.
Evolution ; 70(10): 2268-2295, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27488448

RESUMO

Eye reduction occurs in many troglobitic, fossorial, and deep-sea animals but there is no clear consensus on its evolutionary mechanism. Given the highly conserved and pleiotropic nature of many genes instrumental to eye development, degeneration might be expected to follow consistent evolutionary trajectories in closely related animals. We tested this in a comparative study of ocular anatomy in solariellid snails from deep and shallow marine habitats using morphological, histological, and tomographic techniques, contextualized phylogenetically. Of 67 species studied, 15 lack retinal pigmentation and at least seven have eyes enveloped by surrounding epithelium. Independent instances of reduction follow numerous different morphological trajectories. We estimate eye loss has evolved at least seven times within Solariellidae, in at least three different ways: characters such as pigmentation loss, obstruction of eye aperture, and "lens" degeneration can occur in any order. In one instance, two morphologically distinct reduction pathways appear within a single genus, Bathymophila. Even amongst closely related animals living at similar depths and presumably with similar selective pressures, the processes leading to eye loss have more evolutionary plasticity than previously realized. Although there is selective pressure driving eye reduction, it is clearly not morphologically or developmentally constrained as has been suggested by previous studies.


Assuntos
Evolução Biológica , Olho/anatomia & histologia , Caramujos/genética , Animais , Filogenia , Pigmentação/genética , Caramujos/anatomia & histologia , Caramujos/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA