Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Mol Cancer ; 23(1): 11, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200551

RESUMO

Dysregulation of R-loop homeostasis is closely related to various human diseases, including cancer. However, the causality of aberrant R-loops in tumor progression remains unclear. In this study, using single-cell RNA-sequencing datasets from lung adenocarcinoma (LUAD), we constructed an R-loop scoring model to characterize the R-loop state according to the identified R-loop regulators related to EGFR mutations, tissue origins, and TNM stage. We then evaluated the relationships of the R-loop score with the tumor microenvironment (TME) and treatment response. Furthermore, the potential roles of FANCI-mediated R-loops in LUAD were explored using a series of in vitro experiments. Results showed that malignant cells with low R-loop scores displayed glycolysis and epithelial-mesenchymal transition pathway activation and immune escape promotion, thereby hampering the antitumor therapeutic effects. Cell communication analysis suggested that low R-loop scores contributed to T cell exhaustion. We subsequently validated the prognostic value of R-loop scores by using bulk transcriptome datasets across 33 tumor types. The R-loop scoring model well predicted patients' therapeutic response to targeted therapy, chemotherapy, or immunotherapy in 32 independent cohorts. Remarkably, changes in R-loop distribution mediated by FANCI deficiency blocked the activity of Ras signaling pathway, suppressing tumor-cell proliferation and dissemination. In conclusion, this study reveals the underlying molecular mechanism of metabolic reprogramming and T cell exhaustion under R-loop score patterns, and the changes in R-loops mediated by R-loop regulators resulting in tumor progression. Therefore, incorporating anticancer methods based on R-loop or R-loop regulators into the treatment schemes of precision medicine may be beneficial.


Assuntos
Adenocarcinoma de Pulmão , Anemia de Fanconi , Neoplasias Pulmonares , Humanos , Estruturas R-Loop , Reprogramação Metabólica , Evasão da Resposta Imune , Adenocarcinoma de Pulmão/genética , Comunicação Celular , Análise de Célula Única , Neoplasias Pulmonares/genética , Microambiente Tumoral/genética
2.
Front Immunol ; 14: 1295831, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077326

RESUMO

Background: As a member of tumor, Skin cutaneous melanoma (SKCM) poses a serious threat to people's health because of its strong malignancy. Unfortunately, effective treatment methods for SKCM remain lacking. FANCI plays a vital role in the occurrence and metastasis of various tumor types. However, its regulatory role in SKCM is unclear. The purpose of this study was to explore the association of FANCI with SKCM. Methods: This study investigated the expression of FANCI in GSE46517, GSE15605, and GSE114445 from the Gene Expression Omnibus database and The Cancer Genome Atlas (TCGA)-SKCM datasets using the package "limma" or "DESeq2" in R environment and also investigated the prognostic significance of FANCI by utilizing the GEPIA database. Additionally, our research made use of real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemical (IHC) staining to verify FANCI expression between SKCM and normal tissues and developed the knockdown of FANCI in A375 and A875 cells to further analyze the function of FANCI. Finally, this study analyzed the correlation of FANCI and tumor-infiltrating immune cells by CIBERSORT, ESTIMATE, and ssGSEA algorithms. Results: The FANCI level was increasing in SKCM tissues from GSE46517, GSE15605, GSE114445, and TCGA-SKCM. However, high FANCI expression correlated with poor overall survival. The RT-qPCR and IHC confirmed the accuracy of bioinformatics. Knocking down FANCI suppresses A375 and A875 cell proliferation, migration, and invasion. FANCI could be involved in the immunological milieu of SKCM by regulating immune responses and infiltrating numerous immune cells, particularly neutrophils, CD8+ T cells, and B cells. Furthermore, patients with SKCM who have a high FANCI expression level are reported to exhibit immunosuppression, whereas those with a low FANCI expression level are more likely to experience positive outcomes from immunotherapy. Conclusions: The increased FANCI expression in SKCM can be a prognostic biomarker. Knockdown FANCI can reduce the occurrence and progression of SKCM. The FANCI expression provides a foundation for predicting the immune status and treatment of SKCM.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Neoplasias Cutâneas/genética , Prognóstico , Biomarcadores , Proteínas de Grupos de Complementação da Anemia de Fanconi
3.
Cell Rep ; 42(7): 112721, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37392383

RESUMO

The Fanconi anemia (FA) pathway repairs DNA interstrand crosslinks (ICLs) in humans. Activation of the pathway relies on loading of the FANCD2/FANCI complex onto chromosomes, where it is fully activated by subsequent monoubiquitination. However, the mechanism for loading the complex onto chromosomes remains unclear. Here, we identify 10 SQ/TQ phosphorylation sites on FANCD2, which are phosphorylated by ATR in response to ICLs. Using a range of biochemical assays complemented with live-cell imaging including super-resolution single-molecule tracking, we show that these phosphorylation events are critical for loading of the complex onto chromosomes and for its subsequent monoubiquitination. We uncover how the phosphorylation events are tightly regulated in cells and that mimicking their constant phosphorylation leads to an uncontrolled active state of FANCD2, which is loaded onto chromosomes in an unrestrained fashion. Taken together, we describe a mechanism where ATR triggers FANCD2/FANCI loading onto chromosomes.


Assuntos
Cromatina , Anemia de Fanconi , Humanos , Fosforilação , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Dano ao DNA , Ubiquitinação , Reparo do DNA , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
4.
Int J Med Sci ; 20(7): 918-932, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324186

RESUMO

Objective: This study aimed to validate FANCI as a potential marker for both prognosis and therapy in liver hepatocellular carcinoma. Method: FANCI expression data were acquired from GEPIA, HPA, TCGA, and GEO databases. The impact of clinicopathological features was analyzed by UALCAN. The prognosis of Liver Hepatocellular Carcinoma (LIHC) patients with highly expressed FANCI was constructed utilizing Kaplan-Meier Plotter. GEO2R was employed to identify differentially expressed genes (DEGs). Metascape was used to analyze functional pathways correlations. Protein-Protein interaction (PPI) networks were generated by Cytoscape. Furthermore, molecular complex detection (MCODE) was utilized to recognize Hub genes, which were selected to establish a prognostic model. Lastly, the relationship between FANCI and immune cell infiltration in LIHC was examined. Results: Compared to adjacent tissues, FANCI expression levels were significantly higher in LIHC tissues and were positively correlated to the cancer grade, stage, and prior hepatitis B virus (HBV) infection. High expression of FANCI was found to be associated with poor prognosis in LIHC (HR=1.89, p<0.001). DEGs that were positively correlated with FANCI were involved in various processes, including the cell cycle, VEGF pathway, immune system processes, and biogenesis of ribonucleoproteins. MCM10, TPX2, PRC1, and KIF11 were identified as key genes closely related to FANCI and poor prognosis. A reliable five-variable prognostic model was constructed with strong predictive capability. Lastly, a positive correlation was observed between FANCI expression and tumor-infiltration levels of CD8+ T cells, B cells, regulatory T (Tregs), CD4+ T helper 2 (Th2), and macrophage M2 cells. Conclusion: FANCI may hold promise as a potential biomarker for predicting prognostic outcomes, and a valuable therapeutic target for LIHC patients, with a focus on anti-proliferation, anti-chemoresistance, and combination with immunotherapy.


Assuntos
Carcinoma Hepatocelular , Anemia de Fanconi , Hepatite B , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Prognóstico , Proteínas de Grupos de Complementação da Anemia de Fanconi
5.
Transl Androl Urol ; 12(2): 308-319, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36915884

RESUMO

Background: Germline pathogenic variants are estimated to affect 3-5% of patients with renal cell carcinoma (RCC). The identification of patients with hereditary RCC is important for cancer screening and treatment guidance. Methods: Whole-exome sequencing (WES) (n=69) or gene panel sequencing containing 139 genes (n=54) related to germline cancer predisposition was used to analyze germline mutations in 123 patients with RCC admitted to Department of Urology, The Third Medical Center of Chinese PLA General Hospital. Chi-square test (χ2) was used to analyze relationship between clinicopathologic parameters and germline mutations. Results: A total of 13 (10.57%) patients carried pathogenic or likely pathogenic germline mutations in 10 cancer predisposition genes, including VHL, FH, FLCN, SDHB, MUTYH, RAD51C, NBN, RAD50, FANCI, and FANCM. A total of 6 of these 10 cancer predisposition genes were associated with maintenance of genomic stability and DNA repair. Patients harboring pathogenic germline mutations tended to have an earlier RCC onset. The prevalence of deleterious mutations was higher in patients with bilateral or multifocal RCC compared to patients without bilateral or multifocal RCC. Patients with non-clear cell RCC (nccRCC) were significantly more likely to have RCC-associated gene mutations. Conclusions: To our knowledge, this is the first report of pathogenic germline mutations in the FANCI and FANCM genes and heterozygous germline missense mutation in exon 5 of the FH gene c.563A>T:p.N188I in RCC. Young RCC patients, patients with bilateral or multifocal RCC, or patients with nccRCC are more likely to have pathogenic/potentially pathogenic germline mutations.

6.
Genes (Basel) ; 14(2)2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36833203

RESUMO

FANCI was recently identified as a new candidate ovarian cancer (OC)-predisposing gene from the genetic analysis of carriers of FANCI c.1813C>T; p.L605F in OC families. Here, we aimed to investigate the molecular genetic characteristics of FANCI, as they have not been described in the context of cancer. We first investigated the germline genetic landscape of two sisters with OC from the discovery FANCI c.1813C>T; p.L605F family (F1528) to re-affirm the plausibility of this candidate. As we did not find other conclusive candidates, we then performed a candidate gene approach to identify other candidate variants in genes involved in the FANCI protein interactome in OC families negative for pathogenic variants in BRCA1, BRCA2, BRIP1, RAD51C, RAD51D, and FANCI, which identified four candidate variants. We then investigated FANCI in high-grade serous ovarian carcinoma (HGSC) from FANCI c.1813C>T carriers and found evidence of loss of the wild-type allele in tumour DNA from some of these cases. The somatic genetic landscape of OC tumours from FANCI c.1813C>T carriers was investigated for mutations in selected genes, copy number alterations, and mutational signatures, which determined that the profiles of tumours from carriers were characteristic of features exhibited by HGSC cases. As other OC-predisposing genes such as BRCA1 and BRCA2 are known to increase the risk of other cancers including breast cancer, we investigated the carrier frequency of germline FANCI c.1813C>T in various cancer types and found overall more carriers among cancer cases compared to cancer-free controls (p = 0.007). In these different tumour types, we also identified a spectrum of somatic variants in FANCI that were not restricted to any specific region within the gene. Collectively, these findings expand on the characteristics described for OC cases carrying FANCI c.1813C>T; p.L605F and suggest the possible involvement of FANCI in other cancer types at the germline and/or somatic level.


Assuntos
Proteínas de Grupos de Complementação da Anemia de Fanconi , Predisposição Genética para Doença , Neoplasias Ovarianas , Feminino , Humanos , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Genes BRCA2 , Biologia Molecular , Mutação , Neoplasias Ovarianas/genética
7.
J Comput Chem ; 44(5): 697-709, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36440947

RESUMO

Fanpy is a free and open-source Python library for developing and testing multideterminant wavefunctions and related ab initio methods in electronic structure theory. The main use of Fanpy is to quickly prototype new methods by making it easier to convert the mathematical formulation of a new wavefunction ansätze to a working implementation. Fanpy is designed based on our recently introduced Flexible Ansatz for N-electron Configuration Interaction (FANCI) framework, where multideterminant wavefunctions are represented by their overlaps with Slater determinants of orthonormal spin-orbitals. In the simplest case, a new wavefunction ansatz can be implemented by simply writing a function for evaluating its overlap with an arbitrary Slater determinant. Fanpy is modular in both implementation and theory: the wavefunction model, the system's Hamiltonian, and the choice of objective function are all independent modules. This modular structure makes it easy for users to mix and match different methods and for developers to quickly explore new ideas. Fanpy is written purely in Python with standard dependencies, making it accessible for various operating systems. In addition, it adheres to principles of modern software development, including comprehensive documentation, extensive testing, quality assurance, and continuous integration and delivery protocols. This article is considered to be the official release notes for the Fanpy library.


Assuntos
Teoria Quântica , Software , Elétrons
8.
Gene ; 851: 147053, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36395972

RESUMO

FANCI, a member of the Fanconi anemia (FA) complementation group, normally associates with FANCD2 to play an important role in ribosome biogenesis and DNA repair. However, the correlation of FANCI with prognostic value and the molecular mechanism in patients with lung adenocarcinoma (LUAD) remains unclear. In the present study, bioinformatics analysis was performed on LUAD data from TCGA and GEO databases, and further confirmed by in vitro experiments. We found that a high level of FANCI was significantly correlated with a worse survival probability in patients with LUAD. Moreover, the results from in vitro experiments revealed high levels of FANCI in LUAD specimens and cell lines. Knockdown of FANCI expression in A549 and H460 cells significantly inhibited cell viability and clone formation of LUAD cells in vitro and in vivo. Furthermore, high FANCI levels were negatively correlated with a variety of tumor-infiltrating immune cells. Importantly, the overexpression of FANCI significantly inhibited the activation of M1 macrophages. All the data demonstrated that FANCI was a useful prognostic biomarker in patients with LUAD, and knockdown of FANCI inhibited tumor growth of LUAD cells in vitro and in vivo, partly by suppressing the activation of M1 macrophages.


Assuntos
Adenocarcinoma de Pulmão , Anemia de Fanconi , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Macrófagos , Neoplasias Pulmonares/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética
9.
Cancers (Basel) ; 14(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36428813

RESUMO

Bioinformatics tools were used to identify prognosis-related molecular subtypes and biomarkers of hepatocellular carcinoma (HCC). Differential expression analysis of four datasets identified 3330 overlapping differentially expressed genes (DEGs) in the same direction in all four datasets. Those genes were involved in the cell cycle, FOXO signaling pathway, as well as complement and coagulation cascades. Based on non-negative matrix decomposition, two molecular subtypes of HCC with different prognoses were identified, with subtype C2 showing better overall survival than subtype C1. Cox regression and Kaplan-Meier analysis showed that 217 of the overlapping DEGs were closely associated with HCC prognosis. The subset of those genes showing an area under the curve >0.80 was used to construct random survival forest and least absolute shrinkage and selection operator models, which identified seven feature genes (SORBS2, DHRS1, SLC16A2, RCL1, IGFALS, GNA14, and FANCI) that may be involved in HCC occurrence and prognosis. Based on the feature genes, risk score and recurrence models were constructed, while a univariate Cox model identified FANCI as a key gene involved mainly in the cell cycle, DNA replication, and mismatch repair. Further analysis showed that FANCI had two mutation sites and that its gene may undergo methylation. Single-sample gene set enrichment analysis showed that Th2 and T helper cells are significantly upregulated in HCC patients compared to controls. Our results identify FANCI as a potential prognostic biomarker for HCC.

10.
Curr Cancer Drug Targets ; 22(7): 591-602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35362384

RESUMO

BACKGROUND: Ovarian cancer (OVCA) has unique epigenetic alterations and defects in homologous recombination (HR). Despite initial sensitivity to platinum-based chemotherapy, HR dysfunctional tumors eventually acquire drug resistance. Fanconi anemia (FA) is characterized by bone marrow failure (BMF) and a reduced ability to eradicate DNA interstrand cross-links (ICL). However, the mechanism of chemoresistance mediated by FANCI was unclear in OVCA. OBJECTIVE: We explore to identify whether FANCI was involved in chemoresistance in OVCA. METHODS: FANCI expression and epigenetic alterations were analyzed, respectively, using TIMER and cBioPortal. The correlation between FANCI expression and the survival of OVCA patients was analyzed using Kaplan-Meier Plotter, GSE63885, and TCGA-OVCA dataset. FANCI expression in OVCA was detected by immunohistochemistry. Cell proliferation, migration, and invasion in FANCI inhibiting cells were assessed by CCK-8 and Transwell. Apoptosis and DNA damage were examined by flow cytometry and immunofluorescence. Meanwhile, the activity of caspase 3/7 was detected by Caspase-Glo® 3/7 kit. In addition, the expression of FANCI, γH2AX, and apoptosis effectors was examined by Western blot. RESULTS: FANCI has copy number variations (CNVs) in OVCA. The high expression of FANCI in OVCA patients was associated with poor survival. Moreover, FANCI expression was correlated with the response to chemotherapy in OVCA. FANCI expression in OVCA cells was induced by carboplatin in a time-dependent manner. Silencing of FANCI had no effect on cell proliferation, but hindered OVCA cell migration and invasion. Mechanically, knockdown of FANCI enhanced DNA damage-induced apoptosis through the CHK1/2-P53-P21 pathway. CONCLUSION: FANCI may be a potential therapeutic target for OVCA patients.


Assuntos
Anemia de Fanconi , Neoplasias Ovarianas , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Carcinoma Epitelial do Ovário , Variações do Número de Cópias de DNA , Dano ao DNA , Anemia de Fanconi/tratamento farmacológico , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/química , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética
11.
FEBS J ; 289(16): 4811-4829, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34137174

RESUMO

Fanconi anemia (FA) is a rare genetic disorder caused by mutations in any of the currently 22 known FA genes. The products of these genes, along with other FA-associated proteins, participate in a biochemical pathway, known as the FA pathway. This pathway is responsible for the repair of DNA interstrand cross-links (ICL) and the maintenance of genomic stability in response to replication stress. At the center of the pathway is the monoubiquitination of two FA proteins, FANCD2 and FANCI, on two specific lysine residues. This is achieved by the combined action of the UBE2T ubiquitin-conjugating enzyme and a large multicomponent E3 ligase, known as the FA-core complex. This E2-E3 pair specifically targets the FANCI-FANCD2 heterodimer (ID2 complex) for ubiquitination on DNA. Deubiquitination of both FANCD2 and FANCI, which is also critical for ICL repair, is achieved by the USP1-UAF1 complex. Recent work suggests that FANCD2 ubiquitination transforms the ID2 complex into a sliding DNA clamp. Further ubiquitination on FANCI does not alter this closed-on-DNA ID2 conformation. However, the resulting dimonoubiquitinated complex is highly resistant to USP1-UAF1 deubiquitination. This review will provide an update on recent work focusing on how specificity in FANCD2 ubiquitination and deubiquitination is achieved. Recent findings shedding light to the mechanisms, molecular functions, and biological roles of FANCI/FANCD2 ubiquitination and deubiquitination will be also discussed. ENZYMES: UBA1 (6.2.1.45), UBE2T (2.3.2.23), FANCL (2.3.2.27), USP1 (3.4.19.12).


Assuntos
Anemia de Fanconi , DNA/metabolismo , Reparo do DNA , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Humanos , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
12.
Genome Med ; 13(1): 186, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34861889

RESUMO

BACKGROUND: Familial ovarian cancer (OC) cases not harbouring pathogenic variants in either of the BRCA1 and BRCA2 OC-predisposing genes, which function in homologous recombination (HR) of DNA, could involve pathogenic variants in other DNA repair pathway genes. METHODS: Whole exome sequencing was used to identify rare variants in HR genes in a BRCA1 and BRCA2 pathogenic variant negative OC family of French Canadian (FC) ancestry, a population exhibiting genetic drift. OC cases and cancer-free individuals from FC and non-FC populations were investigated for carrier frequency of FANCI c.1813C>T; p.L605F, the top-ranking candidate. Gene and protein expression were investigated in cancer cell lines and tissue microarrays, respectively. RESULTS: In FC subjects, c.1813C>T was more common in familial (7.1%, 3/42) than sporadic (1.6%, 7/439) OC cases (P = 0.048). Carriers were detected in 2.5% (74/2950) of cancer-free females though female/male carriers were more likely to have a first-degree relative with OC (121/5249, 2.3%; Spearman correlation = 0.037; P = 0.011), suggesting a role in risk. Many of the cancer-free females had host factors known to reduce risk to OC which could influence cancer risk in this population. There was an increased carrier frequency of FANCI c.1813C>T in BRCA1 and BRCA2 pathogenic variant negative OC families, when including the discovery family, compared to cancer-free females (3/23, 13%; OR = 5.8; 95%CI = 1.7-19; P = 0.005). In non-FC subjects, 10 candidate FANCI variants were identified in 4.1% (21/516) of Australian OC cases negative for pathogenic variants in BRCA1 and BRCA2, including 10 carriers of FANCI c.1813C>T. Candidate variants were significantly more common in familial OC than in sporadic OC (P = 0.04). Localization of FANCD2, part of the FANCI-FANCD2 (ID2) binding complex in the Fanconi anaemia (FA) pathway, to sites of induced DNA damage was severely impeded in cells expressing the p.L605F isoform. This isoform was expressed at a reduced level, destabilized by DNA damaging agent treatment in both HeLa and OC cell lines, and exhibited sensitivity to cisplatin but not to a poly (ADP-ribose) polymerase inhibitor. By tissue microarray analyses, FANCI protein was consistently expressed in fallopian tube epithelial cells and only expressed at low-to-moderate levels in 88% (83/94) of OC samples. CONCLUSIONS: This is the first study to describe candidate OC variants in FANCI, a member of the ID2 complex of the FA DNA repair pathway. Our data suggest that pathogenic FANCI variants may modify OC risk in cancer families.


Assuntos
Neoplasias da Mama , Proteínas de Grupos de Complementação da Anemia de Fanconi , Neoplasias Ovarianas , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/etnologia , Neoplasias da Mama/genética , Canadá , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Neoplasias Ovarianas/etnologia , Neoplasias Ovarianas/genética
13.
Ann Transl Med ; 9(16): 1298, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34532435

RESUMO

BACKGROUND: In this study, tumor microarray analysis was used to screen the key messenger RNAs (mRNAs) and microRNAs related to the progression of lung adenocarcinoma (LUAD), in order to provide a theoretical basis for early diagnosis, therapeutic targets, and prognosis evaluation of patients with LUAD. METHODS: The mRNA and miRNA expression datasets came from the Gene Expression Omnibus (GEO) project database. Differentially expressed genes (DEGs) and microRNAs (DEMs) between LUAD tissues and adjacent lung tissue were obtained using GEO2R. The Search Tool for the Retrieval of Interacting Genes website was also employed to construct and visualize the interactions of overlapped DEGs. The overall survival of DEMs was investigated using the Kaplan-Meier plotter. The TargetScan website (http://www.targetscan.org/) was used to verify the relationship between FA Complementation Group I (FANCI) and the expression of miRNA-218 (miR-218). The expression of FANCI was verified using the GEO and Human Protein Atlas databases, as well as Real Time Quantitative PCR using our own samples. Next, we analyzed the relationship between the expression of FANCI and the clinicopathological characteristics as well as the prognosis of patients with LUAD. We also explored whether the FANCI was related to immune cell infiltration in LUAD. RESULTS: FANCI was identified as a hub gene and associated with poor OS. We found that miR-218 negatively regulates FANCI mRNA expression. At the mRNA expression and protein level, FANCI was more highly expressed in LUAD tissues. The expression of FANCI in LUAD was related to tumor size (χ2=13.96, P<0.001), lymphatic metastasis (χ2=3.88, P<0.05), distant metastasis (χ2=45.39, P<0.001), and stage (χ2=11.03, P<0.05). In addition, the Cox regression model found that FANCI mRNA expression was an independent predictive factor of patient survival (P<0.05). FANCI expression was both weakly related to B cells and neutrophil infiltration in LUAD. CONCLUSIONS: miR-218 may negatively regulate FANCI, and FANCI could promote metastasis via extracellular matrix (ECM) receptor interaction, leading to poor prognosis of LUAD. FANCI may be a key gene to the determine metastasis and poor prognosis in patients with LUAD. Changes in the immune microenvironment may be the mechanism through which FANCI leads to poor prognosis of LUAD.

14.
Hum Mutat ; 42(12): 1648-1665, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34585473

RESUMO

Fanconi anemia (FA) is a rare autosomal or X-linked genetic disorder characterized by chromosomal breakages, congenital abnormalities, bone marrow failure (BMF), and cancer. There has been a discovery of 22 FANC genes known to be involved in the FA pathway. This wide number of pathway components makes molecular diagnosis challenging for FA. We present here the most comprehensive molecular diagnosis of FA subjects from India. We observed a high frequency (4.42 ± 1.5 breaks/metaphase) of chromosomal breakages in 181 FA subjects. The major clinical abnormalities observed were skin pigmentation (70.2%), short stature (46.4%), and skeletal abnormalities (43.1%), along with a few minor clinical abnormalities. The combination of Sanger sequencing and Next Generation Sequencing could molecularly characterize 164 (90.6%) FA patients and identified 12 different complementation groups [FANCA (56.10%), FANCG (16.46%), FANCL (12.80%), FANCD2 (4.88%), FANCJ (2.44%), FANCE (1.22%), FANCF (1.22%), FANCI (1.22%), FANCN (1.22%), FANCC (1.22%), FANCD1 (0.61%) and FANCB (0.61%)]. A total of 56 novel variants were identified in our cohort, including a hotspot variant: a deletion of exon 27 in the FANCA gene and a nonsense variant at c.787 C>T in the FANCG gene. Our comprehensive molecular findings can aid in the stratification of molecular investigation in the diagnosis and management of FA patients.


Assuntos
Anemia de Fanconi , DNA Helicases , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Humanos , Índia
15.
Dev Cell ; 56(15): 2207-2222.e7, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34256011

RESUMO

Cells counter DNA damage through repair or apoptosis, yet a direct mechanism for this choice has remained elusive. When facing interstrand crosslinks (ICLs), the ICL-repair protein FANCI heterodimerizes with FANCD2 to initiate ICL excision. We found that FANCI alternatively interacts with a pro-apoptotic factor, PIDD1, to enable PIDDosome (PIDD1-RAIDD-caspase-2) formation and apoptotic death. FANCI switches from FANCD2/repair to PIDD1/apoptosis signaling in the event of ICL-repair failure. Specifically, removing key endonucleases downstream of FANCI/FANCD2, increasing ICL levels, or allowing damaged cells into mitosis (when repair is suppressed) all suffice for switching. Reciprocally, apoptosis-committed FANCI reverts from PIDD1 to FANCD2 after a failed attempt to assemble the PIDDosome. Monoubiquitination and deubiquitination at FANCI K523 impact interactor selection. These data unveil a repair-or-apoptosis switch in eukaryotes. Beyond ensuring the removal of unrepaired genomes, the switch's bidirectionality reveals that damaged cells can offset apoptotic defects via de novo attempts at lesion repair.


Assuntos
Apoptose/fisiologia , Reparo do DNA/fisiologia , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Animais , Proteína Adaptadora de Sinalização CRADD/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , DNA/metabolismo , Dano ao DNA/fisiologia , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/fisiologia , Proteínas de Grupos de Complementação da Anemia de Fanconi/fisiologia , Células HeLa , Humanos , Ubiquitinação , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
16.
Prog Biophys Mol Biol ; 163: 5-13, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33058944

RESUMO

The Fanconi Anemia (FA) pathway maintains genome stability by preventing DNA damage from occurring when replication is blocked. Central to the FA pathway is the monoubiquitination of FANCI-FANCD2 mediated by a ubiquitin RING-E3 ligase complex called the FA core complex. Genetic mutation in any component of the FA core complex results in defective FANCI-FANCD2 monoubiquitination and phenotypes of DNA damage sensitivity, birth defects, early-onset bone marrow failure and cancer. Here, we discuss the mechanisms of the FA core complex and FANCI-FANCD2 monoubiquitination at sites of blocked replication and review our current understanding of the biological functions of these proteins in replication fork protection.


Assuntos
Anemia de Fanconi , Dano ao DNA , Reparo do DNA , Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Humanos , Ubiquitinação
17.
Cell Rep ; 32(1): 107850, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32640220

RESUMO

The Fanconi anemia (FA) pathway repairs DNA interstrand crosslinks (ICLs). Many FA proteins are recruited to ICLs in a timely fashion so that coordinated repair can occur. However, the mechanism of this process is poorly understood. Here, we report the purification of a FANCD2-containing protein complex with multiple subunits, including WRNIP1. Using live-cell imaging, we show that WRNIP1 is recruited to ICLs quickly after their appearance, promoting repair. The observed recruitment facilitates subsequent recruitment of the FANCD2/FANCI complex. Depletion of WRNIP1 sensitizes cells to ICL-forming drugs. We find that ubiquitination of WRNIP1 and the activity of its UBZ domain are required to facilitate recruitment of FANCD2/FANCI and promote repair. Altogether, we describe a mechanism by which WRNIP1 is recruited rapidly to ICLs, resulting in chromatin loading of the FANCD2/FANCI complex in an unusual process entailing ubiquitination of WRNIP1 and the activity of its integral UBZ domain.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Reagentes de Ligações Cruzadas/química , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , ATPases Associadas a Diversas Atividades Celulares/química , Sequência de Aminoácidos , Sobrevivência Celular , Cromatina/metabolismo , Proteínas de Ligação a DNA/química , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Domínios Proteicos , Subunidades Proteicas/metabolismo , Ubiquitinação
18.
Front Cell Dev Biol ; 8: 2, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117957

RESUMO

DNA interstrand crosslinks (ICLs) are a physical barrier to replication and therefore toxic to cell viability. An important mechanism for the removal of ICLs is the Fanconi Anemia DNA repair pathway, which is initiated by mono-ubiquitination of FANCD2 and its partner protein FANCI. Here, we show that maintenance of FANCD2 and FANCI proteins in a monoubiquitinated form is regulated by the ATR-kinase. Using recombinant proteins in biochemical reconstitution experiments we show that ATR directly phosphorylates FANCI on serine 556, 559, and 565 to stabilize its association with DNA and FANCD2. This increased association with DNA stimulates the conjugation of ubiquitin to both FANCI and FANCD2, but also inhibits ubiquitin deconjugation. Using phosphomimetic and phosphodead mutants of FANCI we show that S559 and S565 are particularly important for protecting the complex from the activity of the deubiquitinating enzyme USP1:UAF1. Our results reveal a major mechanism by which ATR kinase maintains the activation of the FA pathway, by promoting the accumulation of FANCD2 in the ubiquitinated form active in DNA repair.

19.
Onco Targets Ther ; 13: 451-463, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021289

RESUMO

PURPOSE: Fanconi anemia complementation group I (FANCI) is a key protein in ribosome biogenesis and DNA repair. Here, we aimed to determine the clinical significance, prognostic value and biology functions of FANCI in lung adenocarcinoma (LUAD). METHODS: The expression of FANCI in LUAD tissue and its relationship with patient outcomes were assessed using bioinformatics analysis, as well as quantitative reverse-transcription PCR (qRT-PCR) and Western blot analysis of LUAD tissue and adjacent normal lung tissue. The chi-squared test and Cox regression analysis were used to analyze the clinical significance of FANCI expression. The biological effects of FANCI knockdown in human LUAD cell lines were investigated by analysis of proliferation, colony formation, cell cycle distribution, migration, and invasion in vitro, and monitoring of tumor xenograft growth in vivo. FANCI interactions with IMPDH2 and involvement in MEK/ERK/MMPs signaling were analyzed using co-immunoprecipitation assays, immunofluorescence microscopy, and Western blotting. RESULTS: FANCI was identified as a hub gene for LUAD. FANCI expression was upregulated in LUAD tissues compared with normal lung tissues and was positively associated with lymphatic metastasis, distant metastasis, and poor outcome. FANCI was also an independent prognostic factor in LUAD patients. Knockdown of FANCI in LUAD cell lines decreased their proliferation, migration, invasion, and cell cycle progression in vitro, and decreased the growth of xenografts in mice. Direct binding of FANCI to IMPDH2 decreased IMPDH2 degradation, regulated activation of MEK/ERK/MMPs signaling. Overexpression of IMPDH2 reversed the inhibitory effects of FANCI knockdown. CONCLUSION: FANCI may act as an oncogene in LUAD by cooperating with IMPDH2 to promote cell proliferation via the MEK/ERK/MMPs pathway. These results identify FANCI as a potential prognostic biomarker and therapeutic target for LUAD.

20.
Genes Cells ; 25(3): 175-186, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31955481

RESUMO

O6 -Methylguanines (O6 -meG), which are produced in DNA by the action of alkylating agents, are mutagenic and cytotoxic, and induce apoptosis in a mismatch repair (MMR) protein-dependent manner. To understand the molecular mechanism of O6 -meG-induced apoptosis, we performed functional analyses of FANCD2 and FANCI-associated nuclease 1 (FAN1), which was identified as an interacting partner of MLH1. Immunoprecipitation analyses showed that FAN1 interacted with both MLH1 and MSH2 after treatment with N-methyl-N-nitrosourea (MNU), indicating the formation of a FAN1-MMR complex. In comparison with control cells, FAN1-knockdown cells were more resistant to MNU, and the appearances of a sub-G1 population and caspase-9 activation were suppressed. FAN1 formed nuclear foci in an MLH1-dependent manner after MNU treatment, and some were colocalized with both MLH1 foci and single-stranded DNA (ssDNA) created at damaged sites. Under the same condition, FANCD2 also formed nuclear foci, although it was dispensable for the formation of FAN1 foci and ssDNA. MNU-induced formation of ssDNA was dramatically suppressed in FAN1-knockdown cells. We therefore propose that FAN1 is loaded on chromatin through the interaction with MLH1 and produces ssDNA by its exonuclease activity, which contributes to the activation of the DNA damage response followed by the induction of apoptosis triggered by O6 -meG.


Assuntos
Apoptose/efeitos dos fármacos , Cromatina/metabolismo , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Guanina/análogos & derivados , Enzimas Multifuncionais/metabolismo , Proteína 1 Homóloga a MutL/metabolismo , Dano ao DNA , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Guanina/farmacologia , Células HeLa , Humanos , Enzimas Multifuncionais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA