Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34210081

RESUMO

It is now more than 20 years since the FRA16D common chromosomal fragile site was characterised and the WWOX gene spanning this site was identified. In this time, much information has been discovered about its contribution to disease; however, the normal biological role of WWOX is not yet clear. Experiments leading to the identification of the WWOX gene are recounted, revealing enigmatic relationships between the fragile site, its gene and the encoded protein. We also highlight research mainly using the genetically tractable model organism Drosophila melanogaster that has shed light on the integral role of WWOX in metabolism. In addition to this role, there are some particularly outstanding questions that remain regarding WWOX, its gene and its chromosomal location. This review, therefore, also aims to highlight two unanswered questions. Firstly, what is the biological relationship between the WWOX gene and the FRA16D common chromosomal fragile site that is located within one of its very large introns? Secondly, what is the actual substrate and product of the WWOX enzyme activity? It is likely that understanding the normal role of WWOX and its relationship to chromosomal fragility are necessary in order to understand how the perturbation of these normal roles results in disease.


Assuntos
Sítios Frágeis do Cromossomo/genética , Oxidorredutase com Domínios WW/genética , Animais , Predisposição Genética para Doença , Genoma , Humanos , Doenças Metabólicas/genética , Fatores de Risco
2.
Cell Rep ; 27(4): 1151-1164.e5, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018130

RESUMO

Common fragile sites (CFSs) are genomic regions that display gaps and breaks in human metaphase chromosomes under replication stress and are often deleted in cancer cells. We studied an ∼300-bp subregion (Flex1) of human CFS FRA16D in yeast and found that it recapitulates characteristics of CFS fragility in human cells. Flex1 fragility is dependent on the ability of a variable-length AT repeat to form a cruciform structure that stalls replication. Fragility at Flex1 is initiated by structure-specific endonuclease Mus81-Mms4 acting together with the Slx1-4/Rad1-10 complex, whereas Yen1 protects Flex1 against breakage. Sae2 is required for healing of Flex1 after breakage. Our study shows that breakage within a CFS can be initiated by nuclease cleavage at forks stalled at DNA structures. Furthermore, our results suggest that CFSs are not just prone to breakage but also are impaired in their ability to heal, and this deleterious combination accounts for their fragility.


Assuntos
Quebra Cromossômica , Sítios Frágeis do Cromossomo/genética , Cromossomos Humanos Par 16/genética , Replicação do DNA , Endonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Humanos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequências de Repetição em Tandem
3.
Genes Chromosomes Cancer ; 58(5): 324-338, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30350478

RESUMO

WWOX is one of the largest human genes spanning over 1.11 Mbp in length at chr16q23.1-q23.2 and containing FRA16D, the second most common chromosomal fragile site. FRA16D is a hot spot of genomic instability, prone to breakage and for causing germline and somatic copy number variations (CNVs). Consequentially WWOX is frequent target for deletions in cancer. Esophageal, stomach, colon, bladder, ovarian, and uterine cancers are those most commonly affected by WWOX deep focal deletions. WWOX deletions significantly correlate with various clinicopathological features in esophageal carcinoma. WWOX is also a common target for translocations in multiple myeloma. By mapping R-loop (RNA:DNA hybrid) forming sequences (RFLS) we observe this to be a consistent feature aligning with germline and somatic CNV break points at the edges and core of FRA16D spanning from introns 5 to 8 of WWOX. Germline CNV polymorphisms affecting WWOX are extremely common in humans across different ethnic groups. Importantly, structural variants datasets allowed us to identify a specific hot spot for germline duplications and deletions within intron 5 of WWOX coinciding with the 5' edge of the FRA16D core and various RFLS. Recently, multiple pathogenic CNVs spanning WWOX have been identified associated with neurological conditions such as autism spectrum disorder, infantile epileptic encephalopathies, and other developmental anomalies. Loss of WWOX function has recently been associated with DNA damage repair abnormalities, increased genomic instability, and resistance to chemoradiotherapy. The described observations place WWOX both as a target of and a contributor to genomic instability. Both of these aspects will be discussed in this review.


Assuntos
Sítios Frágeis do Cromossomo , Cromossomos Humanos Par 16/genética , Instabilidade Genômica , Neoplasias/genética , Animais , Variações do Número de Cópias de DNA , Mutação em Linhagem Germinativa , Humanos
4.
Oncotarget ; 8(50): 87431-87441, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29152092

RESUMO

Breakage of the fragile site FRA16D disrupts the WWOX (WW Domain Containing Oxidoreductase) tumor suppressor gene in osteosarcoma. However, the frequency of breakage is not sufficient to explain the rate of WWOX loss in pathogenesis. The involvement of non-coding RNA transcripts is proposed due to their accumulation at fragile sites, where they are advocated to influence specific chromosomal regions associated with malignancy. The long ncRNA PARTICLE (promoter of MAT2A antisense radiation-induced circulating long non-coding RNA) is transiently elevated in response to irradiation and influences epigenetic silencing modification within WWOX. It now emerges that elevated PARTICLE levels are significantly associated with FRA16D non-breakage in OS patients. Although not associated with overall survival, high PARTICLE levels were found to be significantly linked to metastasis free outcome. The transcription of both PARTICLE and WWOX are transiently responsive to exposure to low doses of radiation in osteosarcoma cell lines. Herein, a relationship between WWOX and PARTICLE transcription is suggested in human osteosarcoma cell lines representing alternative genetic backgrounds. PARTICLE over-expression ameliorated WWOX promoter activity in U2OS harboring FRA16D non-breakage. It can be concluded that the lncRNA PARTICLE influences the WWOX tumor suppressor and in the absence of WWOX FRA16D breakage, it is associated with OS metastasis-free survival.

5.
J Proteome Res ; 15(12): 4505-4517, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27794614

RESUMO

Replication stress (RS) fuels genomic instability and cancer development and may contribute to aging, raising the need to identify factors involved in cellular responses to such stress. Here, we present a strategy for identification of factors affecting the maintenance of common fragile sites (CFSs), which are genomic loci that are particularly sensitive to RS and suffer from increased breakage and rearrangements in tumors. A DNA probe designed to match the high flexibility island sequence typical for the commonly expressed CFS (FRA16D) was used as specific DNA affinity bait. Proteins significantly enriched at the FRA16D fragment under normal and replication stress conditions were identified using stable isotope labeling of amino acids in cell culture-based quantitative mass spectrometry. The identified proteins interacting with the FRA16D fragment included some known CFS stabilizers, thereby validating this screening approach. Among the hits from our screen so far not implicated in CFS maintenance, we chose Xeroderma pigmentosum protein group C (XPC) for further characterization. XPC is a key factor in the DNA repair pathway known as global genomic nucleotide excision repair (GG-NER), a mechanism whose several components were enriched at the FRA16D fragment in our screen. Functional experiments revealed defective checkpoint signaling and escape of DNA replication intermediates into mitosis and the next generation of XPC-depleted cells exposed to RS. Overall, our results provide insights into an unexpected biological role of XPC in response to replication stress and document the power of proteomics-based screening strategies to elucidate mechanisms of pathophysiological significance.


Assuntos
Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteômica/métodos , Pontos de Checagem do Ciclo Celular , Cromatografia de Afinidade , Sítios Frágeis do Cromossomo , Humanos , Xeroderma Pigmentoso
6.
Exp Biol Med (Maywood) ; 240(3): 338-44, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25595186

RESUMO

The WWOX gene spans the common chromosomal fragile site FRA16D that is located within a massive (780 kb) intron. The WWOX gene is very long, at 1.1 Mb, which may contribute to the very low abundance of the full-length 1.4 kb mRNA. Alternative splicing also accounts for a variety of aberrant transcripts, most of which are devoid of C-terminal sequences required for WWOX to act as an oxidoreductase. The mouse WWOX gene also spans a chromosomal fragile site implying some sort of functional relationship that confers a selective advantage. The encoded protein domains of WWOX are conserved through evolution (between humans and Drosophila melanogaster) and include WW domains, an NAD -binding site, short-chain dehydrogenase/reductase enzyme and nuclear compartmentalization signals. This homology has enabled functional analyses in D. melanogaster that demonstrate roles for WWOX in reactive oxygen species regulation and metabolism. Indeed the human WWOX gene is also responsive to altered metabolism. Cancer cells typically exhibit altered metabolism (Warburg effect). Many cancers exhibit FRA16D DNA instability that results in aberrant WWOX expression and is associated with poor prognosis for these cancers. It is therefore thought that aberrant WWOX expression contributes to the altered metabolism in cancer. In addition, others have found that a specific (low-expression) allele of WWOX genotype contributes to cancer predisposition.


Assuntos
Sítios Frágeis do Cromossomo/fisiologia , Proteínas de Drosophila/fisiologia , Neoplasias/metabolismo , Oxirredutases/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Alelos , Sequência de Aminoácidos , Animais , Sítios Frágeis do Cromossomo/genética , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Instabilidade Genômica/genética , Instabilidade Genômica/fisiologia , Genótipo , Humanos , Camundongos , Dados de Sequência Molecular , Neoplasias/fisiopatologia , Oxirredutases/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Supressoras de Tumor/genética , Oxidorredutase com Domínios WW
7.
Exp Biol Med (Maywood) ; 240(3): 296-304, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25538133

RESUMO

WWOX, the WW domain-containing oxidoreductase gene at chromosome region 16q23.3-q24.1, spanning chromosomal fragile site FRA16D, encodes the 46 kDa Wwox protein, a tumor suppressor that is lost or reduced in expression in a wide variety of cancers, including breast, prostate, ovarian, and lung. The function of Wwox as a tumor suppressor implies that it serves a function in the prevention of carcinogenesis. Indeed, in vitro studies show that Wwox protein interacts with many binding partners to regulate cellular apoptosis, proliferation, and/or maturation. It has been reported that newborn Wwox knockout mice exhibit nascent osteosarcomas while Wwox(+/-) mice exhibit increased incidence of spontaneous and induced tumors. Furthermore, absence or reduction of Wwox expression in mouse xenograft models results in increased tumorigenesis, which can be rescued by Wwox re-expression, though there is not universal agreement among investigators regarding the role of Wwox loss in these experimental models. Despite this proposed tumor suppressor function, the overlap of the human WWOX locus with FRA16D sensitizes the gene to protein-inactivating deletions caused by replication stress. The high frequency of deletions within the WWOX locus in cancers of various types, without the hallmark protein inactivation-associated mutations of "classical" tumor suppressors, has led to the proposal that WWOX deletions in cancers are passenger events that occur in early cancer progenitor cells due to fragility of the genetic locus, rather than driver events which provide the cancer cell a selective advantage. Recently, a proposed epigenetic cause of chromosomal fragility has suggested a novel mechanism for early fragile site instability and has implications regarding the involvement of tumor suppressor genes at chromosomal fragile sites in cancer. In this review, we provide an overview of the evidence for WWOX as a tumor suppressor gene and put this into the context of fragility associated with the FRA16D locus.


Assuntos
Sítios Frágeis do Cromossomo/fisiologia , Oxirredutases/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Carcinogênese/genética , Sítios Frágeis do Cromossomo/genética , Modelos Animais de Doenças , Humanos , Camundongos , Mutação/genética , Mutação/fisiologia , Oxirredutases/genética , Proteínas Supressoras de Tumor/genética , Oxidorredutase com Domínios WW
8.
Biochim Biophys Acta ; 1846(1): 188-200, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24932569

RESUMO

WWOX was cloned as a putative tumor suppressor gene mapping to chromosomal fragile site FRA16D. Deletions affecting WWOX accompanied by loss of expression are frequent in various epithelial cancers. Translocations and deletions affecting WWOX are also common in multiple myeloma and are associated with worse prognosis. Metanalysis of gene expression datasets demonstrates that low WWOX expression is significantly associated with shorter relapse-free survival in ovarian and breast cancer patients. Although somatic mutations affecting WWOX are not frequent, analysis of TCGA tumor datasets led to identifying 44 novel mutations in various tumor types. The highest frequencies of mutations were found in head and neck cancers and uterine and gastric adenocarcinomas. Mouse models of gene ablation led us to conclude that Wwox does not behave as a highly penetrant, classical tumor suppressor gene since its deletion is not tumorigenic in most models and its role is more likely to be of relevance in tumor progression rather than in initiation. Analysis of signaling pathways associated with WWOX expression confirmed previous in vivo and in vitro observations linking WWOX function with the TGFß/SMAD and WNT signaling pathways and with specific metabolic processes. Supporting these conclusions recently we demonstrated that indeed WWOX behaves as a modulator of TGFß/SMAD signaling by binding and sequestering SMAD3 in the cytoplasmic compartment. As a consequence progressive loss of WWOX expression in advanced breast cancer would contribute to the pro-metastatic effects resulting from TGFß/SMAD3 hyperactive signaling in breast cancer. Recently, GWAS and resequencing studies have linked the WWOX locus with familial dyslipidemias and metabolic syndrome related traits. Indeed, gene expression studies in liver conditional KO mice confirmed an association between WWOX expression and lipid metabolism. Finally, very recently the first human pedigrees with probands carrying homozygous germline loss of function WWOX mutations have been identified. These patients are characterized by severe CNS related pathology that includes epilepsy, ataxia and mental retardation. In summary, WWOX is a highly conserved and tightly regulated gene throughout evolution and when defective or deregulated the consequences are important and deleterious as demonstrated by its association not only with poor prognosis in cancer but also with other important human pathologies such as metabolic syndrome and CNS related pathologic conditions.


Assuntos
Doenças do Sistema Nervoso Central/genética , Síndrome Metabólica/genética , Neoplasias/genética , Oxirredutases/fisiologia , Locos de Características Quantitativas , Proteínas Supressoras de Tumor/fisiologia , Animais , Evolução Molecular , Humanos , Camundongos , Mutação , Oxidorredutase com Domínios WW
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA