RESUMO
Simultaneous detection of the dynamic distribution of long-chain fatty acid ethyl esters (LCFAEEs) during Baijiu distillation is crucial for optimizing its flavor and health attributes. In this study, we synthesized a simple, cost-effective Fe3O4@NH2 adsorbent to simultaneously extract eight LCFAEEs from Baijiu. Through density functional theory and adsorption experiments, we elucidated 1,6-hexanediamine as a surface modifier, with the -NH2 groups providing adsorption sites for the LCFAEEs via hydrogen-bonding interactions and van der Waals forces. Additionally, we established the magnetic solid-phase extraction-GC-MS extraction technique combined with stable isotope dilution analysis to analyze LCFAEEs. This method revealed the dynamic distribution patterns of LCFAEEs during strong aroma-type Baijiu (SAB) distillation. We observed that the concentrations of the eight LCFAEEs gradually decreased with prolonged distillation and were significantly correlated with ethanol concentration. To ensure optimal flavor and clarity in SAB, it is recommended to select the heart-stage base Baijiu with an alcohol content of 58%-63%.
Assuntos
Destilação , Ésteres , Ácidos Graxos , Aromatizantes , Cromatografia Gasosa-Espectrometria de Massas , Odorantes , Ésteres/química , Destilação/métodos , Adsorção , Ácidos Graxos/química , Odorantes/análise , Aromatizantes/química , Extração em Fase Sólida/métodos , Extração em Fase Sólida/instrumentação , Nanopartículas de Magnetita/química , Bebidas Alcoólicas/análiseRESUMO
BACKGROUND: Chronic alcohol consumption/misuse is a significant risk factor for pneumonia and lung infection leading to the development of chronic pulmonary disorders such as chronic obstructive pulmonary disease (COPD) and lung fibrosis. In this study, we sought to delineate the mechanism of alcohol-associated lung disease. We did so by measuring in vitro mitochondrial, endoplasmic reticulum (ER) oxidative stress in human bronchial epithelial cells (hBECs) treated with ethanol and its oxidative (acetaldehyde) and nonoxidative (fatty acid ethyl esters or FAEEs) metabolites. METHODS: Primary hBECs from a normal subject were treated with relevant concentrations of ethanol and its metabolites and incubated at 37°C for 24 h. Viability and cytotoxicity were determined using cell viability and lactate dehydrogenase (LDH) assay kits, respectively. Oxidized glutathione (GSSG) and reduced glutathione (GSH) were measured by colorimetric reaction, and 4-hydroxynenonal (4HNE) by immunohistochemistry. Endoplasmic reticulum stress and dysregulated cellular bioenergetics were determined by western blot analysis. Mitochondrial stress and real-time ATP production rates were determined using a Seahorse Extracellular Flux analyzer. Amelioration of ethanol-induced oxidative/ER stress and mitochondrial energetics was determined using an AMPKα agonist. RESULTS: Human bronchial epithelial cells treated with ethanol, acetaldehyde, and FAEEs showed a concentration-dependent increase in the secretion of LDH, oxidative/ER stress, deactivation of AMPKα phosphorylation and mitochondrial stress (decreased spare respiratory capacity) with concomitant decreases in mitochondrial and glycolytic ATP production rates. FAEEs caused greater cytotoxicity, ER stress, and dysregulated cellular bioenergetics than those ethanol and its oxidative metabolite. AMPKα agonist-pretreated cells significantly ameliorated ethanol-induced oxidative/ER stress, deactivation of AMPKα, and dysregulated cellular bioenergetics. CONCLUSIONS: Findings of this study suggest that ethanol and its metabolites contribute to cytotoxicity, oxidative/ER stress, and dysregulation of cellular bioenergetics in hBECs. The attenuation of ethanol-induced ER/oxidative stress and mitochondrial respiration by an AMPKα agonist may reflect a potential for it to be developed as a therapeutic agent for chronic alcohol-associated lung disease.
RESUMO
The validity of omega 3 fatty acids (ω3 FAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), as dietary supplements has been widely proved. It's well known in fact, that they protect against cardiovascular diseases, reduce the levels of triacylglycerides (TAGs) and cholesteryl esters (CEs) in blood, and have anti-inflammatory activity. For these reasons, in the last few years the production of dietary supplement containing ω3 has increased significantly. In this context, the possibility to obtain ω3 and other high value molecules from alternative sources as fish waste, in accordance with the principles of circular economy, becomes an enormous attractive. In addition, the opportunity of creating new products, with greater health benefits, represents an interesting challenge. The current study was focused on the extraction of ω3 fatty acids and peptides from tuna waste industry, to realize a new dietary supplement. To this purpose, a supercritical fluid extraction (SFE) method was developed to separate, isolate, and enrich the different fractions subsequently used to produce an innovative formulate. The obtained supplement was characterized in terms of fatty acids esterified ester (FAEE) composition by gas chromatography (GC) coupled to both flame ionization detection (FID) and mass spectrometry (MS), and content of heavy metals by inductively coupled plasma-mass spectrometry (ICP-MS). The effects of ω3 supplementation on metabolism and circulating lipid profiles was tested on 12 volunteers and assessed by GC-FID analysis of whole blood collected on paper support (Dried Blood Spot, DBS) at the beginning of the study and after thirty days. The results of plasma fatty acids levels after 30 days showed a significant decrease in the ω6/ω3 ratio, as well as the saturated/polyunsaturated fatty acids (SFA/PUFA) ratio, compared to subjects who took the ω3 ethyl esters unformulated. The novel formulated supplements proved to be extremely interesting and promising products, due to a significant increase in bioavailability, that makes it highly competitive in the current panorama of the nutraceutical industry.
Assuntos
Ésteres , Ácidos Graxos Ômega-3 , Animais , Humanos , Cromatografia Gasosa-Espectrometria de Massas , Ácido Eicosapentaenoico , Ácidos Graxos , Suplementos NutricionaisRESUMO
BACKGROUND: Impaired arterial elasticity reflects increased risk of atherosclerotic cardiovascular disease in patients with familial hypercholesterolemia (FH). Treatment with omega-3 fatty acid ethyl esters (ω-3FAEEs) in FH patients has been shown to improve postprandial triglyceride-rich lipoprotein (TRL) metabolism, including TRL-apolipoprotein(a) [TRL-apo(a)]. Whether ω-3FAEE intervention also improves postprandial arterial elasticity in FH has not been demonstrated. METHODS: We carried out an 8-week open-label, randomized, crossover trial to test the effect of ω-3FAEEs (4 g/day) on postprandial arterial elasticity in 20 FH subjects following ingestion of an oral fat load. Fasting and postprandial large (C1) and small (C2) artery elasticity at 4 and 6 h were measured by pulse contour analysis of the radial artery. The area under-the-curves (AUCs) (0-6 h) for C1, C2, plasma triglycerides and TRL-apo(a) were determined using the trapezium rule. RESULTS: Compared with no treatment, ω-3FAEEs significantly increased fasting (+9%, P < 0.05) and postprandial C1 at 4 h (+13%, P < 0.05) and at 6 h (+10%, P < 0.05), with improvement in the postprandial C1 AUC (+10%, P < 0.01). ω-3FAEEs also decreased postprandial triglyceride and TRL-apo(a) AUCs (-17% and -19%, respectively, P < 0.05). ω-3FAEEs had no significant effect on fasting and postprandial C2. The change in C1 AUC was inversely associated with the changes in the AUC of triglycerides (r = -0.609, P < 0.01) and TRL-apo(a) (r = -0.490, P < 0.05). CONCLUSIONS: High-dose ω-3FAEEs improves postprandial large artery elasticity in adults with FH. Reduction in postprandial TRL-apo(a) with ω-3FAEEs may contribute to the improvement in large artery elasticity. However, our findings need to be confirmed in a larger population. CLINICAL TRIAL REGISTRATION: https://www. CLINICALTRIALS: com/NCT01577056.
Assuntos
Ácido Eicosapentaenoico , Hiperlipoproteinemia Tipo II , Adulto , Humanos , Triglicerídeos , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Jejum , ArtériasRESUMO
The fatty acid ethyl ester (FAEE) content of olive oil is an important indicator of its quality. At present, the international standard method used to detect FAEEs in olive oil is silica gel (Si) column chromatography-gas chromatography (GC); however, this technique presents a number of disadvantages, including complex operation, long analysis times, and high reagent consumption. In this study, a method based on Si solid phase extraction (SPE)-GC was established to determine four FAEEs in olive oil, namely, ethyl palmitate, ethyl linoleate, ethyl oleate, and ethyl stearate. First, the effects of the carrier gas were investigated, and He gas was ultimately selected as the carrier gas. Next, several internal standards were screened, and ethyl heptadecenoate (cis-10) was determined as the optimal internal standard. The SPE conditions were also optimized, and the effects of different brands of Si SPE columns on the recoveries of analytes were compared. Finally, a pretreatment method in which 0.05 g of olive oil was extracted with n-hexane and purified through a Si SPE column (1 g/6 mL) was developed. A sample could be processed within approximately 2 h using a total reagent volume of about 23 mL. Validation of the optimized method revealed that the four FAEEs have good linearities within the range of 0.1-5.0 mg/L (coefficients of determination (R2)>0.999). The limits of detection (LODs) of the method were within 0.78-1.11 mg/kg, and its limits of quantification (LOQs) were in the range of 2.35-3.33 mg/kg. The recoveries ranged from 93.8% to 104.0% at all spiked levels tested (4, 8, and 20 mg/kg), and the relative standard deviations were 2.2%-7.6%. Fifteen olive oil samples were tested using the established method, and the total FAEEs of three extra-virgin olive oil samples were found to exceed 35 mg/kg. Compared with the international standard method, the proposed method has the advantages of simpler pretreatment process, shorter operation time, lower reagent consumption and detection cost, high precision, and good accuracy. The findings provide an effective theoretical and practical reference for improving olive oil detection standards.
Assuntos
Ácidos Graxos , Extração em Fase Sólida , Azeite de Oliva , Cromatografia Gasosa , Ácidos Graxos/análise , Ésteres/análiseRESUMO
AIMS: Dysregulation of pancreatic fat and lipotoxic inflammation are common clinical findings in alcoholic chronic pancreatitis (ACP). In this study, we investigated a relationship between dysregulated pancreatic lipid metabolism and the development of injury in a chronic ethanol (EtOH) feeding model of hepatic alcohol dehydrogenase 1- deficient (ADH-) deer mice. METHODS: ADH- and hepatic ADH normal (ADH+) deer mice were fed a liquid diet containing 3 % EtOH for three months and received a single gavage of binge EtOH with/without fatty acid ethyl esters (FAEEs) one week before the euthanasia. Plasma and pancreatic tissue were analyzed for lipids including FAEEs, inflammatory markers and adipokines using GC-MS, bioassays/kits, and immunostaining, respectively. Pancreatic morphology and proteins involved in lipogenesis were determined by the H & E staining, electron microscopy and Western blot analysis. KEY FINDINGS: Chronic EtOH feeding in ADH- vs. ADH+ deer mice resulted in a significant increase in the levels of pancreatic lipids including FAEEs, adipokines (leptin and resistin), fat infiltration with inflammatory cells and lipid droplet deposition along with the proteins involved in lipogenesis. The changes exacerbated by an administration of binge EtOH with/without FAEEs in the pancreas of ADH- vs. ADH+ deer mice fed chronic EtOH suggest a metabolic basis for ACP. SIGNIFICANCE: These findings suggest that the liver-pancreatic axis plays a crucial role in etiopathogenesis of ACP, as the increased body burden of EtOH due to hepatic ADH deficiency exacerbates pancreatic injury.
Assuntos
Álcool Desidrogenase , Etanol , Animais , Etanol/toxicidade , Etanol/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Peromyscus/metabolismo , Fígado/metabolismo , Pâncreas/metabolismo , Ácidos Graxos/metabolismo , Inflamação/patologia , Hormônios Pancreáticos/metabolismo , Fenótipo , Ésteres , Adipocinas/metabolismoRESUMO
Sweet potato shochu oil is a by-product of shochu production and usually discarded although some physiological functions are considered. In this study, we investigated the effects of shochu oil on short-term memory using a murine model of spontaneous alternating behavior induced by the intracerebroventricular (ICV) administration of amyloid ß25-35 (Aß25-35). Mice were orally administered shochu oil for 15 days. Experiments with a Y-maze model revealed that the Aß25-35 caused a significant decrease in spontaneous alternation behavior, and supplementation with shochu oil significantly improved this behavior. DNA microarray analysis revealed that the administration of shochu oil downregulated the expression of S100a9 and Ptgs2, which reportedly exacerbate amyloid ß deposition in Alzheimer's disease. The administration of shochu oil upregulated the expression of Dnaja1 and PP2A, which is typically downregulated in Alzheimer's disease. These data suggest that shochu oil possible ameliorates on impaired short-term memory in mice after amyloid ß25-35 injection, as indicated by its effects on improving spontaneous alternation behavior and modulating the expressions of related genes.
Assuntos
Doença de Alzheimer , Ipomoea batatas , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Memória de Curto Prazo , Ipomoea batatas/metabolismo , Fragmentos de Peptídeos/metabolismo , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP40/metabolismoRESUMO
In this work a SPE/GC-FID method, incorporating the use of a 1-g silica cartridge, for the determination of FAEE in olive oils is presented. The procedure has been fully validated, initially 'in-house' and subsequently by an international validation study involving sixteen laboratories from Europe, the United States of America, and China. Key performance parameters of the method are: (1) Linearity in the 10-134â¯mg/kg range (R2â¯>â¯0.999), (2) LOD and LOQâ¯<â¯0.5â¯mg/kg, (3) RSDrâ¯<â¯10%, (4) RSDRâ¯<â¯20% (for 4 out of 5 test materials). In addition, the method has been demonstrated to provide equivalent results to the Official Method (Commission Regulation 2568/91) while providing advantages in terms of reductions in time and solvents and ease of automation. In fact, the proposed protocol requires 30â¯mL solvents and takes 1.5â¯h per determination instead of the 350â¯mL and 6â¯h needed in the UE Official Method.
Assuntos
Ésteres , Ácidos Graxos , China , Azeite de Oliva , SolventesRESUMO
Excessive alcohol consumption contributes to a broad clinical spectrum of liver diseases, from simple steatosis to end-stage hepatocellular carcinoma. The liver is the primary organ that metabolizes ingested alcohol and is exquisitely sensitive to alcohol intake. Alcohol metabolism is classified into two pathways: oxidative and non-oxidative alcohol metabolism. Both oxidative and non-oxidative alcohol metabolisms and their metabolites have toxic consequences for multiple organs, including the liver, adipose tissue, intestine, and pancreas. Although many studies have focused on the effects of oxidative alcohol metabolites on liver damage, the importance of non-oxidative alcohol metabolites in cellular damage has also been discovered. Furthermore, extrahepatic alcohol effects are crucial for providing additional information necessary for the progression of alcoholic liver disease. Therefore, studying the effects of alcohol-producing metabolites and interorgan crosstalk between the liver and peripheral organs that express ethanol-metabolizing enzymes will facilitate a comprehensive understanding of the pathogenesis of alcoholic liver disease. This review focuses on alcohol-metabolite-associated hepatotoxicity due to oxidative and non-oxidative alcohol metabolites and the role of interorgan crosstalk in alcoholic liver disease pathogenesis.
Assuntos
Fígado Gorduroso , Hepatopatias Alcoólicas , Consumo de Bebidas Alcoólicas , Etanol/toxicidade , Fígado Gorduroso/metabolismo , Humanos , Fígado/metabolismo , Hepatopatias Alcoólicas/etiologiaRESUMO
Fatty acid ethyl esters (FAEEs) have gained increasing attention as a replacement for traditional fossil fuels in the recent years. Here, we report the efficient upgrading of ethanol to FAEEs from Pseudomonas putida KT2440, using ethanol as the sole carbon source. First, the wax synthase (WS) encoded by the atfA gene from Acinetobacter baylyi ADP1 was expressed in P. putida KT2440. Second, the flux from ethanol towards acetyl-CoA was increased by expression of the acetaldehyde dehydrogenase (ada) from Dickeya zeae. By using dodecane overlay to capture FAEEs, 1.2 g/L of FAEEs with a yield of 152.09 mg FAEEs/g ethanol were produced. Culture optimization enhanced the FAEEs contents up to 1.6 g/L in shake flask and 4.3 g/L in a fed-batch fermenter. In summary, our study provides a basis for combining the bioethanol production process with the efficient upgrading of ethanol to biodiesel.
Assuntos
Engenharia Metabólica , Pseudomonas putida , Ésteres/metabolismo , Etanol/metabolismo , Ácidos Graxos/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismoRESUMO
Alcoholic chronic pancreatitis (ACP) is a fibroinflammatory disease of the pancreas. However, metabolic basis of ACP is not clearly understood. In this study, we evaluated differential pancreatic injury in hepatic alcohol dehydrogenase-deficient (ADH-) deer mice fed chronic ethanol (EtOH), chronic plus binge EtOH, and chronic plus binge EtOH and fatty acid ethyl esters (FAEEs, nonoxidative metabolites of EtOH) to understand the metabolic basis of ACP. Hepatic ADH- and ADH normal (ADH+) deer mice were fed Lieber-DeCarli liquid diet containing 3% (wt/vol) EtOH for 3 mo. One week before the euthanization, chronic EtOH-fed mice were further administered with an oral gavage of binge EtOH with/without FAEEs. Blood alcohol concentration (BAC), pancreatic injury, and inflammatory markers were measured. Pancreatic morphology, ultrastructural changes, and endoplasmic reticulum (ER)/oxidative stress were examined using H&E staining, electron microscopy, immunostaining, and/or Western blot, respectively. Overall, BAC was substantially increased in chronic EtOH-fed groups of ADH- versus ADH+ deer mice. A significant change in pancreatic acinar cell morphology, with mild to moderate fibrosis and ultrastructural changes evident by dilatations and disruption of ER cisternae, ER/oxidative stress along with increased levels of inflammatory markers were observed in the pancreas of chronic EtOH-fed groups of ADH- versus ADH+ deer mice. Furthermore, chronic plus binge EtOH and FAEEs exposure elevated BAC, enhanced ER/oxidative stress, and exacerbated chronic EtOH-induced pancreatic injury in ADH- deer mice suggesting a role of increased body burden of EtOH and its metabolism under reduced hepatic ADH in initiation and progression of ACP.NEW & NOTEWORTHY We established a chronic EtOH feeding model of hepatic alcohol dehydrogenase-deficient (ADH-) deer mice, which mimics several fibroinflammatory features of human alcoholic chronic pancreatitis (ACP). The fibroinflammatory and morphological features exacerbated by chronic plus binge EtOH and FAEEs exposure provide a strong case for metabolic basis of ACP. Most importantly, several pathological and molecular targets identified in this study provide a much broader understanding of the mechanism and avenues to develop therapeutics for ACP.
Assuntos
Álcool Desidrogenase , Pancreatite Alcoólica , Álcool Desidrogenase/metabolismo , Animais , Concentração Alcoólica no Sangue , Ésteres , Etanol , Ácidos Graxos/metabolismo , Peromyscus/metabolismoRESUMO
BACKGROUND: Production of biofuels and green chemicals by microbes is currently of great interest due to the increasingly limited reserves of fossil fuels. Biodiesel, especially fatty acid ethyl esters (FAEEs), is considered as an attractive alternative because of its similarity with petrodiesel and compatibility with existing infrastructures. Cost-efficient bio-production of FAEEs requires a highly lipogenic production host that is suitable for large-scale fermentation. As a non-model oleaginous yeast that can be cultured to an extremely high cell density and accumulate over 70% cell mass as lipids, Rhodotorula toruloides represents an attractive host for FAEEs production. RESULTS: We first constructed the FAEE biosynthetic pathways in R. toruloides by introducing various wax ester synthase genes from different sources, and the bifunctional wax ester synthase/acyl-CoA-diacyglycerol acyltransferase (WS/DGAT) gene from Acinetobacter baylyi was successfully expressed, leading to a production of 826 mg/L FAEEs through shake-flask cultivation. We then mutated this bifunctional enzyme to abolish the DGAT activity, and further improved the titer to 1.02 g/L. Finally, to elevate the performance of Δku70-AbWS* in a bioreactor, both batch and fed-batch cultivation strategies were performed. The FAEEs titer, productivity and yield were 4.03 g/L, 69.5 mg/L/h and 57.9 mg/g (mg FAEEs/g glucose) under batch cultivation, and 9.97 g/L, 90.6 mg/L/h, and 86.1 mg/g under fed-batch cultivation. It is worth mentioning that most of the produced FAEEs were secreted out of the cell, which should greatly reduce the cost of downstream processing. CONCLUSION: We achieved the highest FAEEs production in yeast with a final titer of 9.97 g/L and demonstrated that the engineered R. toruloides has the potential to serve as a platform strain for efficient production of fatty acid-derived molecules.
RESUMO
Alcohol consumption during pregnancy constitutes one of the leading preventable causes of birth defects and neurodevelopmental disorders in the exposed children. Fatty acid ethyl esters (FAEEs), ethyl glucuronide (EtG) and ethyl sulfate (EtS) have been studied as potential biomarkers of alcohol consumption. However, most analytical approaches proposed for their analysis in meconium samples consist of separated extraction procedures requiring the use of two meconium aliquots, which is costly in terms of both time and materials. Therefore, the aim of this study was to develop and validate a method for the simultaneous extraction of 9 FAEEs, EtG and EtS from one meconium aliquot. The sample was homogenized using methanol, and then FAEEs were extracted with hexane while EtG and EtS were isolated using acetonitrile. Then, extracts were applied to solid-phase extraction columns and analysed by gas chromatography mass spectrometry (FAEEs) and liquid chromatography tandem mass spectrometry (EtG and EtS). Calibration curves were linear with r values greater than 0.99. The LODs ranged from 0.8 to 7.5 ng/g for FAEEs and were 0.2 ng/g and 0.8 ng/g for EtS and EtG, respectively. LOQs ranged from 5 to 25 ng/g for FAEEs and were 1 ng/g and 2.5 ng/g for EtS and EtG, respectively. Accuracies and precisions were between 93.8 and 107% and between 3.5 and 9.7%, respectively. The recovery values ranged from 89.1 to 109%. The method proved to be sensitive, specific, simple and fast and allowed for the reduction of the amount of organic solvent used for extraction compared to other published data while higher recoveries were obtained. The method was used for analysis of meconium samples in two cases of mothers who were consuming alcohol during pregnancy.
Assuntos
Consumo de Bebidas Alcoólicas , Ácidos Graxos/análise , Glucuronatos/análise , Mecônio/química , Complicações na Gravidez , Ésteres do Ácido Sulfúrico/análise , Cromatografia Líquida/métodos , Ésteres/química , Ácidos Graxos/química , Ácidos Graxos/normas , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Recém-Nascido , Gravidez , Padrões de Referência , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodosRESUMO
BACKGROUND: Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disorder of the exocrine pancreatic gland. A previous study from this laboratory showed that ethanol (EtOH) causes cytotoxicity, dysregulates AMPKα and ER/oxidative stress signaling, and induces inflammatory responses in primary human pancreatic acinar cells (hPACs). Here we examined the differential cytotoxicity of EtOH and its oxidative (acetaldehyde) and nonoxidative (fatty acid ethyl esters; FAEEs) metabolites in hPACs was examined to understand the metabolic basis and mechanism of ACP. METHODS: We evaluated concentration-dependent cytotoxicity, AMPKα inactivation, ER/oxidative stress, and inflammatory responses in hPACs by incubating them for 6 h with EtOH, acetaldehyde, or FAEEs at clinically relevant concentrations reported in alcoholic subjects using conventional methods. Cellular bioenergetics (mitochondrial stress and a real-time ATP production rate) were determined using Seahorse XFp Extracellular Flux Analyzer in AR42J cells treated with acetaldehyde or FAEEs. RESULTS: We observed concentration-dependent increases in LDH release, inactivation of AMPKα along with upregulation of ACC1 and FAS (key lipogenic proteins), downregulation of p-LKB1 (an oxidative stress-sensitive upstream kinase regulating AMPKα) and CPT1A (involved in ß-oxidation of fatty acids) in hPACs treated with EtOH, acetaldehyde, or FAEEs. Concentration-dependent increases in oxidative stress and ER stress as measured by GRP78, unspliced XBP1, p-eIF2α, and CHOP along with activation of p-JNK1/2, p-ERK1/2, and p-P38MAPK were present in cells treated with EtOH, acetaldehyde, or FAEEs, respectively. Furthermore, a significant decrease was observed in the total ATP production rate with subsequent mitochondrial stress in AR42J cells treated with acetaldehyde and FAEEs. CONCLUSIONS: EtOH and its metabolites, acetaldehyde and FAEEs, caused cytotoxicity, ER/oxidative and mitochondrial stress, and dysregulated AMPKα signaling, suggesting a key role of EtOH metabolism in the etiopathogenesis of ACP. Because oxidative EtOH metabolism is negligible in the exocrine pancreas, the pathogenesis of ACP could be attributable to the formation of FAEEs and related pancreatic acinar cell injury.
Assuntos
Células Acinares/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Etanol/farmacologia , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/citologia , Quinases Proteína-Quinases Ativadas por AMP/efeitos dos fármacos , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Acetaldeído/farmacologia , Acetil-CoA Carboxilase/efeitos dos fármacos , Acetil-CoA Carboxilase/metabolismo , Células Acinares/metabolismo , Carnitina O-Palmitoiltransferase/efeitos dos fármacos , Carnitina O-Palmitoiltransferase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ésteres/farmacologia , Humanos , Mitocôndrias/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 9 Ativada por Mitógeno/metabolismoRESUMO
Sweet potato shochu oil is one of the by-products of sweet potato shochu production. We investigated the functionality and industrial use of shochu oil as a food-derived raw material. Because of the increased incidence of self-consciousness in people owing to thinning hair, in this study, we examined the hair growth-inducing effects of shochu oil. Minoxidil, the only topical medication approved for hair growth treatment in Japan, was used as a control for the evaluation of hair growth-promoting activity of shochu oil. Human follicle dermal papilla cells treated with shochu oil showed upregulated expression of vascular endothelial growth factor in a concentration-dependent manner, indicating that shochu oil induced the activation of the hair growth cycle. In vivo, epidermal treatment with shochu oil also promoted hair growth in C3H mice. More than 35 components were detected in shochu oil via gas chromatography-mass spectrometry. The main components, accounting for 98.5% of shochu oil, were as follows, in order of decreasing concentration: ethyl palmitate, ethyl linoleate, ethyl oleate, ethyl stearate, ethyl caprate, ethyl laurate, ethyl myristate, and ethyl α-linolenate. Among these, ethyl palmitate, ethyl linoleate, and ethyl α-linolenate promoted hair growth in C3H mice. These results indicate that shochu oil can be used as a hair restorer. To the best of our knowledge, this study is the first to demonstrate the hair growth-promoting activity of shochu oil.
Assuntos
Cabelo/efeitos dos fármacos , Cabelo/crescimento & desenvolvimento , Ipomoea batatas/química , Animais , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Ipomoea batatas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Pessoa de Meia-Idade , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Waste cooking oil (WCO) is a valuable feedstock for the synthesis of biodiesel but the product exhibits poor oxidative stability. Techniques available for assessing this parameter are generally expensive and time-consuming, hence the purpose of this study was to develop and validate a rapid and reliable predictive system based on signals from the sensors of a commercial hand-held e-nose instrument. Biodiesels were synthesized from soybean oil and six samples of WCO, and their physicochemical characteristics and oxidative stabilities determined before and after storage in different types of containers for 30 or 60 days at room temperature or 43 °C. Linear regression models were constructed based on principal component analysis of the signals generated by all 32 e-nose sensors and stochastic modeling of signal profiles from individual sensors. The regression model with principal components as predictors was unable to explain the oxidative stability of biodiesels, while the regression model with stochastic parameters (combining signals from 11 sensors) as predictors showed an excellent goodness of fit (R2 = 0.91) with a 45-sample training set and a good quality of prediction (R2 = 0.84) with a 18-sample validation set. The proposed e-nose system was shown to be accurate and efficient and could be used to advantage by producers/distributors of biodiesel in the assessment fuel quality.
RESUMO
To determine if meconium fatty acid ethyl esters (FAEE) in rat pups is a good biomarker of prenatal exposure and effect to alcohol, three groups of pregnant rats were studied: one control (pair fed) and two treatment groups given 25% alcohol at 2.2 or 5.5 g-1 kg-1 d-1. The pups were delivered on day 20 and, for each dam, were separated into a male and female group. The body, brain, intestines, and placenta of the pups were obtained, weighed, and stored at -20°C. The pups' intestines (as surrogate of meconium) from each group were pooled, and meconium was analyzed by gas chromatography/mass spectroscopy for FAEE. The meconium showed the following FAEE: ethyl palmitate, ethyl stearate, and ethyl linolenate and were only found in the alcohol-treated group and with high specificity but low sensitivity. Mean body weight of the pups was lower in the treatment groups compared to the control groups. Ethyl palmitate concentration correlated negatively to the pups' mean body and brain weights. Therefore, ethyl palmitate, stearate, and linolenate, in meconium of rat pups prenatally exposed to alcohol, are useful biomarkers of prenatal alcohol exposure, with ethyl palmitate a good biomarker of adverse effect on the pups' body and brain weight.
Assuntos
Ésteres/metabolismo , Ácidos Graxos/metabolismo , Transtornos do Espectro Alcoólico Fetal/metabolismo , Mecônio/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Biomarcadores/metabolismo , Peso Corporal , Encéfalo/metabolismo , Feminino , Masculino , Tamanho do Órgão , Placenta/metabolismo , Valor Preditivo dos Testes , Gravidez , Ratos Sprague-Dawley , Sensibilidade e EspecificidadeRESUMO
OBJECTIVE: To examine associations between amounts of fatty acid ethyl esters (FAEEs) in meconium and behavior in school aged children exposed to alcohol and drugs in utero. METHODS: A secondary analysis of a prospective cohort of cocaine, polydrug exposed children, primarily African-American, low socioeconomic status, recruited at birth into a longitudinal study. FAEEs were quantified with gas chromatography via a flame ionization detector. Meconium was analyzed for FAEEs for 216 newborns of whom 194 were assessed with the Child Behavior Checklist (CBCL) at ages 4, 6, 9, 10, 11, and 12. Generalized estimating equation analyses were used to assess the relationship of quantity of FAEEs to outcomes, controlling for maternal psychological distress. RESULTS: Higher concentrations of FAEEs (ethyl myristate, ethyl palmitate, ethyl oleate, ethyl linoleate, and ethyl linolenate) were associated with caregiver reported aggressive and/or delinquent behavior at ages 10 and 12. After control for caregiver psychological distress, and age, significant (p < 0.05) FAEE by age interactions were found for ethyl myristate for aggression and for ethyl oleate, ethyl linoleate and ethyl linolenate for delinquency. Thus, higher concentrations of FAEE were related to more caregiver reported aggressive and delinquent behaviors of clinical significance at ages 10 and 12. CONCLUSION: Higher concentrations of FAEEs in meconium are potential markers for children at risk for aggressive and delinquent behaviors related to the effects of prenatal alcohol exposure.
Assuntos
Comportamento Infantil/fisiologia , Ésteres/metabolismo , Mecônio/metabolismo , Consumo de Bebidas Alcoólicas , Biomarcadores/análise , Criança , Pré-Escolar , Estudos de Coortes , Ésteres/análise , Etanol/análise , Feminino , Humanos , Recém-Nascido , Ácidos Linolênicos , Estudos Longitudinais , Masculino , Mecônio/química , Ácidos Oleicos , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Estudos ProspectivosRESUMO
BACKGROUND & AIM: Fatty acid ethyl esters (FAEEs), are produced by non-oxidative alcohol metabolism and can cause acinar cell damage and subsequent acute pancreatitis in rodent models. Even though experimental studies have elucidated the FAEE mediated early intra-acinar events, these mechanisms have not been well studied in humans. In the present study, we evaluate the early intra-acinar events and inflammatory response in human pancreatic acinar tissues and cells in an ex-vivo model. METHODS: Experiments were conducted using normal human pancreatic tissues exposed to FAEE. Subcellular fractionation was performed on tissue homogenates and trypsin and cathepsin B activities were estimated in these fractions. Acinar cell injury was evaluated by histology and immunohistochemistry. Cytokine release from exposed acinar cells was evaluated by performing Immuno-fluorescence. Serum was collected from patients with AP within the first 72 h of symptom onset for cytokine estimation using FACS. RESULTS: We observed significant trypsin activation and acinar cell injury in FAEE treated tissue. Cathepsin B was redistributed from lysosomal to zymogen compartment at 30 min of FAEE exposure. IHC results indicated the presence of apoptosis in pancreatic tissue at 1 & 2hrs of FAEE exposure. We also observed a time dependent increase in secretion of cytokines IL-6, IL-8, TNF-α from FAEE treated acinar tissue. There was also a significant elevation in plasma cytokines in patents with alcohol associated AP within 72 h of symptom onset. CONCLUSION: Our data suggest that alcohol metabolites can cause acute acinar cell damage and subsequent cytokine release which could eventually culminant in SIRS.
Assuntos
Ésteres , Ácidos Graxos , Pancreatite , Células Acinares/metabolismo , Apoptose , Ésteres/metabolismo , Ácidos Graxos/metabolismo , Humanos , Pâncreas/metabolismo , Pancreatite/metabolismoRESUMO
Primary toxicity targets of alcohol and its metabolites in the pancreas are cellular energetics and endoplasmic reticulum (ER). Therefore, the role of AMP-Activated Protein Kinase (AMPKα) in amelioration of ethanol (EtOH)-induced pancreatic acinar cell injury including ER/oxidative stress, inflammatory responses, the formation of fatty acid ethyl esters (FAEEs) and mitochondrial bioenergetics were determined in human pancreatic acinar cells (hPACs) and AR42J cells incubated with/without AMPKα activator [5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)]. EtOH treated hPACs showed concentration and time-dependent increases for FAEEs and inactivation of AMPKα, along with the upregulation of ACC1 and FAS (key lipogenic proteins) and downregulation of CPT1A (involved ß-oxidation of fatty acids). These cells also showed significant ER stress as evidenced by the increased expression for GRP78, IRE1α, and PERK/CHOP arm of unfolded protein response promoting apoptosis and activating p-JNK1/2 and p-ERK1/2 with increased secretion of cytokines. AR42J cells treated with EtOH showed increased oxidative stress, impaired mitochondrial biogenesis, and decreased ATP production rate. However, AMPKα activation by AICAR attenuated EtOH-induced ER/oxidative stress, lipogenesis, and inflammatory responses as well as the formation of FAEEs and restored mitochondrial function in hPACs as well as AR42J cells. Therefore, it is likely that EtOH-induced inactivation of AMPKα plays a crucial role in acinar cell injury leading to pancreatitis. Findings from this study also suggest that EtOH-induced inactivation of AMPKα is closely related to ER/oxidative stress and synthesis of FAEEs, as activation of AMPKα by AICAR attenuates formation of FAEEs, ER/oxidative stress and lipogenesis, and improves inflammatory responses and mitochondrial bioenergetics.