Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anim Nutr ; 17: 283-296, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38800738

RESUMO

This study was conducted to evaluate the effects of Monascus purpureus M-32 fermented soybean meal (MFSM) on growth, immunity, intestinal morphology, intestinal microbiota, and intestinal metabolome of Pacific white shrimp (Litopenaeus vannamei). Four groups of diets were formulated, including control group (30% fish meal and 30% soybean meal [SBM] included in the basal diet) and three experimental groups which MFSM replaced 20% (MFSM20), 40% (MFSM40), and 60% (MFSM60) of SBM in control group, respectively. Results showed that the soluble proteins larger than 49 kDa in MFSM were almost completely degraded. Meanwhile, the crude protein, acid-soluble protein, and amino acid in MFSM were increased. The results of shrimp culture experiment showed that the replacement of SBM with MFSM decreased FCR (P < 0.001) and content of malondialdehyde (P = 0.007) in the experimental groups, and increased weight gain rate (P = 0.006), specific growth rate (P = 0.002), survival rate (P = 0.005), intestinal villus height (P < 0.001), myenteric thickness (P = 0.002), the activities of superoxide dismutase (P = 0.002), and lysozyme (P = 0.006) in experimental groups, as well as increased content of calcium (Ca2+) and phosphorus (PO43-) in blood and muscle, and enhanced resistance to Vibrio parahaemolyticus infection. The gut microbiota of MFSM groups was significantly different from that of the control group, and the abundance of Actinobacteria and Verrucomicrobia increased significantly in the MFSM60 group, whereas Proteobacteria and Firmicutes decreased. Compared with the control group, there were significant changes in the levels of several intestinal metabolites in the MFSM60 group, including leukotriene C5, prostaglandin A1, taurochenodeoxycholic acid, carnosine, and itaconic acid. The fermentation of SBM by the strain M. purpureus M-32 has the potential to enhance the nutritional quality of SBM, promote the growth of L. vannamei, boost immune response, improve intestinal morphology and microbiota composition, as well as influence intestinal metabolites.

2.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38622951

RESUMO

We determined apparent ileal digestibility (AID) and standardized ileal digestibility (SID) values of crude protein (CP) and amino acids (AA) in fermented soybean meal from five different sources (FSBM 1 to 5) in China when fed to mid and late-gestating sows. Twenty-four parity four sows (12 at 30 d in gestation and 12 at 80 d in gestation) were fitted with a T-cannula in the distal ileum and used in this experiment. Sows were randomly assigned to a replicated 6 × 3 Youden square design including six diets and three periods. Six diets were provided for sows in mid and late gestation, including a nitrogen-free diet and five test diets containing 26% FSBM from different sources. Results showed that there were differences in AID and SID of CP among the different FSBM samples, but no differences between sow physiological stages were observed. Specifically, when mid-gestating sows were fed FSBM 2, the AID of CP was the lowest, whereas FSBM 3 exhibited a greater AID of CP when compared to the other FSBM samples (P < 0.01). Furthermore, during late gestation, FSBM 3 consistently had greater SID of CP when compared to other FSBM samples (P < 0.01). The ileal digestibility of most AA varied with different FSBM samples. In both mid and late gestation, differences (P < 0.05) were observed for AID of lysine, tryptophan, histidine, and arginine across different FSBM samples. Similarly, the AID of dispensable AA (cysteine, glutamine, and serine) also exhibited differences (P < 0.05) across different FSBM samples in both mid and late-gestating sows. For mid-gestating sows, SID differences relating to lysine, phenylalanine, tryptophan, threonine, and arginine were observed among different diets (P < 0.05). In late-gestating sows, SID values for lysine, tryptophan, leucine, and arginine differed across diets (P < 0.05). Furthermore, the ileal digestibility of some dispensable AA was influenced by physiological stage, as evidenced by greater AID and SID values for glycine, glutamine, cysteine, and serine in late-gestating sows when compared to mid-gestating sows (P < 0.01). In summary, our study determined AA ileal digestibility of different FSBM fed to mid and late-gestating sows. We observed that the AA ileal digestibility differed among five FSBM samples, but the physiological stage of sows did not affect the ileal digestibility of CP and most AA. Additionally, when formulating diets for sows, it is crucial to consider the nutritional value differences of FSBM.


Fermented soybean meal (FSBM) is obtained from the microbial fermentation of soybean meal, which reduces anti-nutritional factor levels and enhances other nutrient content. Substituting soybean meal with FSBM in piglet and growing pig diets improves nutrient digestibility. However, its nutritional value for sows remains unclear. Therefore, five sources of FSBM were fed to sows in mid and late gestation to evaluate apparent ileal digestibility (AID) and standardized ileal digestibility (SID) values of amino acids (AA). We found that different FSBM samples impacted the SID value of AA when fed to gestating sows. Additionally, sow physiological stage influenced the SID of some dispensable AA. These findings provide valuable insights into the incorporation of FSBM into sow diets.


Assuntos
Aminoácidos , Alimentos Fermentados , Suínos , Animais , Feminino , Gravidez , Aminoácidos/metabolismo , Digestão/fisiologia , Glutamina/metabolismo , Triptofano/metabolismo , Cisteína/metabolismo , Lisina/metabolismo , Glycine max , Dieta/veterinária , Arginina/metabolismo , Serina , Ração Animal/análise , Íleo/metabolismo , Fenômenos Fisiológicos da Nutrição Animal
3.
Antioxidants (Basel) ; 12(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38136216

RESUMO

The application of fermented soybean meal (FSBM) is an effective strategy to alleviate the shortage of fish meal (FM) in aquaculture. However, an excessive substitution ratio often reduces fish growth and induces liver oxidative stress, while the mechanism remains poorly understood. Here, an 8-week feeding trial was conducted in largemouth bass (initial weight: 6.82 ± 0.09 g) to establish an oxidative stress model by replacing 50% of FM with FSBM (fermented by Bacillus subtilis). The results showed that FSBM substitution significantly reduced the growth performance of largemouth bass, including the weight gain rate and specific growth rate. Moreover, FSBM significantly reduced the contents of essential amino acids and total free amino acids in muscle, along with the mRNA expression of amino acids and small peptide transporters. Enzyme activity detection and liver sections showed that FSBM substitution caused liver oxidative stress, indicating the successful construction of an oxidative stress model. An integrated analysis of transcriptomic and metabolomic data revealed that FSBM substitution impaired glycine, serine and threonine metabolism, as well as glutathione metabolism. In addition, the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) was decreased in the FSBM group, which may explain the mechanism of oxidative stress caused by FSBM substitution. Considering that glycine is an important component of glutathione synthesis, key genes involved in glycine metabolism (glya, gnmt and agxt) and dietary glycine supplementation should be valued to improve the availability of FSBM. This study reveals for the first time the importance of non-essential amino acids in improving the utilization of plant-based protein sources and provides original insight for the optimization of aquatic feeds.

4.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37962419

RESUMO

The macromolecular proteins, anti-nutritional factors, and allergens contained in soybean meal (SBM) have a negative impact on the growth of weaned piglets. The objective of this study was to investigate the effects of heating, microbial fermentation, and enzymatically hydrolyzed SBM on the growth performance, nutrient digestibility, serum biochemistry, intestinal morphology, volatile fatty acids, and microbiota of weaned piglets. After the preparation of soaked SBM (SSBM), enzymatically hydrolyzed SBM (ESBM), and microbial fermented and enzymatically hydrolyzed SBM (MESBM), 72 weaned piglets were randomly allocated to three groups for a 21-d trial. In the three groups, 17% of conventional SBM in basal corn-soybean meal diet was replaced by an equivalent amount of SSBM (control group), ESBM, or MESBM. The results showed that the contents of glycinin, ß-conglycinin, trypsin inhibitor, and proteins above 20 kDa were significantly decreased in ESBM and MESBM, compared with SSBM, and the surface of ESBM and MESBM had more pores and fragmented structure. In the second week and throughout the entire experimental period, the diarrhea index was reduced (P < 0.01) in ESBM and MESBM in contrast with SSBM. Furthermore, the inclusion of ESBM and MESBM in the diet improved the apparent total tract digestibility of dry matter and crude protein (P < 0.05), and increased the abundances of the genera Lactobacillus and Clostridium_sensu_stricto_1, respectively. Metagenomic sequencing further identified that members of six species of Proteobacteria, four species of Clostridiales, and three species of Negativiautes were enriched in the colon of piglets fed MESBM, while two bacterial species, Lachnoclostridium and Lactobacillus_points, were enriched in the colon of piglets fed ESBM. In conclusion, replacing SSBM with ESBM or MESBM in the diet decreased the diarrhea index, which could be associated with improved nutrient digestibility and microbial composition.


With the development of pig industry, liquid feeding is becoming more widely used. Therefore, this study explores that liquid-state fermentation through enzymatic hydrolysis and microbial fermentation reduces the level of antigenic protein in soybean meal (SBM). In the present study, dietary supplementation with enzymatically hydrolyzed SBM (ESBM) or microbial fermented and enzymatically hydrolyzed SBM (MESBM) effectively decreased diarrhea index, enhanced nutrient digestibility, and improved the composition and stability of intestinal flora in weaning piglets. Our study not only contributes to the efficient utilization of SBM, but also provides new insights into its application in liquid feeding for livestock farming.


Assuntos
Microbioma Gastrointestinal , Animais , Suínos , Fermentação , Calefação , Farinha , Hidrólise , Digestão , Ração Animal/análise , Glycine max , Dieta/veterinária , Nutrientes , Diarreia/veterinária
5.
J Anim Sci Biotechnol ; 14(1): 89, 2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37393326

RESUMO

BACKGROUND: Soy protein supplements, with high crude protein and less antinutritional factors, are produced from soybean meal by different processes. This study evaluated the comparative effects of various soy protein supplements replacing animal protein supplements in feeds on the intestinal immune status, intestinal oxidative stress, mucosa-associated microbiota, and growth performance of nursery pigs. METHODS: Sixty nursery pigs (6.6 ± 0.5 kg BW) were allotted to five treatments in a randomized complete block design with initial BW and sex as blocks. Pigs were fed for 39 d in 3 phases (P1, P2, and P3). Treatments were: Control (CON), basal diet with fish meal 4%, 2%, and 1%, poultry meal 10%, 8%, and 4%, and blood plasma 4%, 2%, and 1% for P1, P2, and P3, respectively; basal diet with soy protein concentrate (SPC), enzyme-treated soybean meal (ESB), fermented soybean meal with Lactobacillus (FSBL), and fermented soybean meal with Bacillus (FSBB), replacing 1/3, 2/3, and 3/3 of animal protein supplements for P1, P2, and P3, respectively. Data were analyzed using the MIXED procedure in SAS 9.4. RESULTS: The SPC did not affect the BW, ADG, and G:F, whereas it tended to reduce (P = 0.094) the ADFI and tended to increase (P = 0.091) crypt cell proliferation. The ESM did not affect BW, ADG, ADFI, and G:F, whereas tended to decrease (P = 0.098) protein carbonyl in jejunal mucosa. The FSBL decreased (P < 0.05) BW and ADG, increased (P < 0.05) TNF-α, and Klebsiella and tended to increase MDA (P = 0.065) and IgG (P = 0.089) in jejunal mucosa. The FSBB tended to increase (P = 0.073) TNF-α, increased (P < 0.05) Clostridium and decreased (P < 0.05) Achromobacter and alpha diversity of microbiota in jejunal mucosa. CONCLUSIONS: Soy protein concentrate, enzyme-treated soybean meal, and fermented soybean meal with Bacillus could reduce the use of animal protein supplements up to 33% until 7 kg body weight, up to 67% from 7 to 11 kg body weight, and entirely from 11 kg body weight without affecting the intestinal health and the growth performance of nursery pigs. Fermented soybean meal with Lactobacillus, however, increased the immune reaction and oxidative stress in the intestine consequently reducing the growth performance.

6.
Front Physiol ; 14: 1194071, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469566

RESUMO

This study explored the role of replacing fish meal protein with fermented soybean meal (FSBM) protein on the growth performance and intestinal morphology, immunity, and microbiota of the pearl gentian grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂). Three isonitrogenous and isolipidic diets with increasing levels of FSBM (0%, 20% and 40%; referred to as FM, FSBM20 and FSBM40 diets, respectively) as a replacement for fish meal were selected for this study. The pearl gentian grouper were fed these diets for 10 weeks. The findings revealed that the growth of fish fed the FSBM diets (FSBM20 and FSBM40) were remarkably lower than the fish fed the FM diet. Pathological manifestations of intestinal inflammation, such as shortened intestinal mucosal folds and thickened lamina propria, were observed in the fish fed the FSBM diets. Moreover, the gene expression levels of IL1ß, IL12, IL17, and TNFα were remarkably upregulated in fish fed the FSBM40 diet, in contrast to the gene expression levels of IL4, IL5, IL10, and TGFß1, which were remarkably downregulated (p < 0.05). The FSBM diets significantly affected the stability of the fish gut microbiota. Photobacterium was the dominant phylum in all experimental groups, and the proportion of these bacteria gradually decreased with increasing FSBM substitution. The composition of intestinal flora at the genus level was not the same in the three experimental groups, with a richer composition of intestinal bacteria detected in the FSBM20 and FSBM40 groups (p < 0.05). The correlation between intestinal flora balance and immune gene expression revealed that only Photobacterium was negatively correlated with the above upregulated genes, while other bacteria were positively correlated with these pro-inflammatory factors (p < 0.05). Photobacterium was positively correlated with the above downregulated genes, while other bacteria were negatively correlated with these anti-inflammatory factors (p < 0.05). In conclusion, high levels of substitution of FSBM for fish meal causes intestinal inflammation in pearl gentian grouper. This is likely associated with changes to the intestinal flora. More attention should be paid to the negative role of dietary FSBM on intestinal flora.

7.
Animals (Basel) ; 13(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36899803

RESUMO

This study aims to investigate the effects of partial dietary replacement of fish meal with unfermented and/or fermented soybean meal (fermented by Bacillus cereus) supplemented on the growth performance, whole-body composition, antioxidant and immunity capacity, and their related gene expression of juvenile coho salmon (Oncorhynchus kisutch). Four groups of juveniles (initial weight 159.63 ± 9.54 g) at 6 months of age in triplicate were fed for 12 weeks on four different iso-nitrogen (about 41% dietary protein) and iso-lipid (about 15% dietary lipid) experimental diets. The main results were: Compared with the control diet, the diet with replaced 10% fish meal protein with fermented soybean meal protein supplementation can significantly (p < 0.05) influence the expression of superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, nuclear factor erythroid 2-related factor 2, tumor necrosis factor α and interleukin-6 genes, the growth performance, the serum biochemical indices, and the activity of antioxidant and immunity enzymes. However, there was no significant effect (p > 0.05) on the survival rate (SR) and whole-body composition in the juveniles among the experimental groups. In conclusion, the diet with replaced 10% fish meal protein with fermented soybean meal protein supplementation could significantly increase the growth performance, antioxidant and immunity capacity, and their related gene expression of juveniles.

8.
Animals (Basel) ; 13(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36978571

RESUMO

Inclusion of microbial fermented soybean meal in broiler feed has induced advantageous outcomes for their performance and gastrointestinal health via exhibiting probiotic effects. In this study, soybean meal (SBM) was subjected to double-stage microbial fermentation utilizing functional metabolites of fungi and bacteria. In broiler diet, DFSBM replaced SBM by 0, 25, 50 and 100%. DFSBM was reported to have higher protein content and total essential, nonessential and free amino acids (increased by 3.67%, 12.81%, 10.10% and 5.88-fold, respectively, compared to SBM). Notably, phytase activity and lactic acid bacteria increased, while fiber, lipid and trypsin inhibitor contents were decreased by 14.05%, 38.24% and 72.80%, respectively, in a diet containing 100% DFSBM, compared to SBM. Improved growth performance and apparent nutrient digestibility, including phosphorus and calcium, and pancreatic digestive enzyme activities were observed in groups fed higher DFSBM levels. In addition, higher inclusion levels of DFSBM increased blood immune response (IgG, IgM, nitric oxide and lysozyme levels) and liver antioxidant status. Jejunal amino acids- and peptide transporter-encoding genes (LAT1, CAT-1, CAT-2, PepT-1 and PepT-2) were upregulated with increasing levels of DFSBM in the ration. Breast muscle crude protein, calcium and phosphorus retention were increased, especially at higher inclusion levels of DFSBM. Coliform bacteria load was significantly reduced, while lactic acid bacteria count in broiler intestines was increased with higher dietary levels of DFSBM. In conclusion, replacement of SBM with DFSBM positively impacted broiler chicken feed utilization and boosted chickens' amino acid transportation, in addition to improving the nutritional value of their breast meat.

9.
Anim Biosci ; 36(2): 275-283, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36108691

RESUMO

OBJECTIVE: This study was to evaluate standardized ileal digestibility (SID) of amino acids (AA) in fermented soybean meal (FSBM) for nursery pigs using both direct procedure and difference procedure when FSBM was added at 20% in diets. METHODS: Forty-eight pigs at 9.2±0.9 kg body weight (BW) were individually housed and allotted to 4 treatments. Treatments included NFD (a semi-purified N free diet), FSD (a diet with 20% FSBM), CBD (corn basal diet), and CFD (corn basal diet:FSBM at 80:20). The FSD was used to measure AA digestibility in FSBM using the direct procedure, whereas CBD and CFD were used in the difference procedure. Pigs were fed for 10 days (0.09×BW0.75 kg per day) and euthanized to collect ileal digesta for TiO2 and AA. RESULTS: Total endogenous AA loss was 12.1 g/kg of dry matter intake. The apparent ileal digestibility (AID) Thr was greater (p<0.05) and AID His (p = 0.073) and Leu (p = 0.052) tended to be greater using the direct procedure compared with the difference procedure. The SID Thr were greater (p<0.05) in FSBM for nursery pigs calculated using a direct procedure compared with a difference procedure. In addition, SID Lys in FSBM was about 83% to 88% for nursery pigs higher than SID Lys described in National Research Council (2012). CONCLUSION: The SID of AA in FSBM when included at practical levels using the direct procedure were similar to those from the difference procedure. Considering the SID of AA obtained using both direct and difference procedures, FSBM is an effective protein supplement providing highly digestible AA to nursery pigs. The SID of AA from this study was considerably higher than those previous reported. This study also indicates the importance of including the test feedstuffs at practical levels when evaluating digestibility.

10.
Life (Basel) ; 12(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36430986

RESUMO

The study revealed the potential of fermented soybean meal (FSBM) as a fish meal (FM) replacement in African catfish (Clarias gariepinus) feed formulation. Five isonitrogenous diets (32% crude protein) were prepared with five different levels of FSBM as FM replacement, namely 0% FSBM (T1), 40% FSBM (T2), 50% FSBM (T3), 60% FSBM (T4), and 70% (T5). The experimental fish was given the formulated diet for eight consecutive weeks. At the end of the feeding trial, the fish were subjected to growth performance, blood parameters, blood chemical, liver histology, and gut microbiota assessment. The study findings demonstrated that the experimental fish that received the T2 diet exhibited significantly higher (p < 0.05) growth performance. Experimental fish that received diet T2 had significantly higher (p < 0.05) white blood cell (WBC) and significantly lower (p < 0.05) in terms of cholesterol (CHOL), albumin (ALB), globulin (GLOB), and total protein (TP). The replacement of FSBM to FM significantly affected liver morphology on the sinusoid, vacuole, nucleus, and erythrocytes. Gut microbiota composition analysis showed a significantly high abundance (p < 0.05) of Akkermansia muciniphila in the experimental fish that received the T2 diet. The gut microbiota indicates that the experimental fish is in a healthy condition. In conclusion, replacing 40% FSBM with FM in aquafeed could enhance C. gariepinus growth performance and health conditions.

11.
Front Microbiol ; 13: 911500, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814707

RESUMO

Suitable protein sources are essential requirements for piglet growth and health. Typically, intestinal microbiota co-develops with the host and impact its physiology, which make it more plastic to dietary protein sources at early stages. However, the effects of fermented soybean meal (FSB) and fish meal (FM) on foregut and hindgut microbiota, and their relationship with nutrient digestion and host health remain unclear. In this study, we identified interactions between ileac and colonic microbiota which were reshaped by FSB and FM, and assessed host digestibility and host health in a piglet model. Eighteen weaned piglets (mean weight = 8.58 ± 0.44 kg) were divided into three dietary treatments, with six replicates/treatment. The level of dietary protein was 16%, with FSB, FM, and a mixture of fermented soybean meal and fish meal (MFSM) applied as protein sources. During days 1-14 and 1-28, diets containing MFSM generated higher piglet body weight and average daily gain, but lower feed to weight gain ratios when compared with the FM diet (P < 0.05). Piglets in MFSM and FM groups had lower apparent total tract digestibility (ATTD) of crude protein (CP) compared with the FSB group (P < 0.05). Serum immunoglobulins (IgM and IgG) in MFSM and FM groups were significantly higher on day 28, but serum cytokines (interleukin-6 and tumor necrosis factor-α) were significantly lower than the FSB group on days 14 and 28 (P < 0.05). When compared with FSB and FM groups, dietary MFSM significantly increased colonic acetic acid and butyric acid levels (P < 0.05). Compared with the FM and MFSM groups, the FSB diet increased the relative abundance of ileac Lactobacillus and f_Lactobacillaceae, which were significant positively correlated with CP ATTD (P < 0.05). Compared with the FSB group, the relative abundance of f_Peptostreptococcaceae and Romboutsia in MFSM or FM groups were increased and were significant positively correlated with total carbohydrate (TC) ATTD (P < 0.05). Piglets fed FSB had higher α-diversity in colonic microbiota when compared with other groups (P < 0.05). The relative abundance of colonic unidentified_Clostridiales and Romboutsia in MFSM and FSB groups were significantly higher than in the FM group (P < 0.05). Dietary MFSM or FM increased the relative abundance of colonic Streptococcaceae and Streptococcus, but decreased the relative abundance of Christensenellaceae when compared with the FSB group (P < 0.05). These bacteria showed a significantly positive correlation with serum cytokine and immunoglobulin levels (P < 0.05). Therefore, dietary FSB improved CP digestibility by increasing the relative abundance of ileac f_Lactobacillaceae and Lactobacillus, while dietary MFSM benefited TC digestibility by increasing f_Peptostreptococcaceae and Romboutsia. Dietary MFSM and FM enhanced immunoglobulin secretion by increasing colonic f_Streptococcaceae and Streptococcus prevalence, while dietary FSB promoted cytokine production by increasing microbiota diversity and Romboutsia and Christensenellaceae. Our data provide a theoretical dietary basis for young animals using plant and animal protein sources.

12.
Front Vet Sci ; 9: 812373, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35647087

RESUMO

This experiment was performed to reveal the metabolic responses of dairy cows to the replacement of soybean meal (SBM) with fermented soybean meal (FSBM). Twenty-four lactating Chinese Holstein dairy cattle were assigned to either the SBM group [the basal total mixed ration (TMR) diet containing 5.77% SBM] or the FSBM group (the experimental TMR diet containing 5.55% FSBM), in a completely randomized design. The entire period of this trial consisted of 14 days for the adjustment and 40 days for data and sample collection, and sampling for rumen liquid, blood, milk, and urine was conducted on the 34th and 54th day, respectively. When SBM was completely replaced by FSBM, the levels of several medium-chain FA in milk (i.e., C13:0, C14:1, and C16:0) rose significantly (p < 0.05), while the concentrations of a few milk long-chain FA (i.e., C17:0, C18:0, C18:1n9c, and C20:0) declined significantly (p < 0.05). Besides, the densities of urea nitrogen and lactic acid were significantly (p < 0.05) higher, while the glucose concentration was significantly (p < 0.05) lower in the blood of the FSBM-fed cows than in the SBM-fed cows. Based on the metabolomics analysis simultaneously targeting the rumen liquid, plasma, milk, and urine, it was noticed that substituting FSBM for SBM altered the metabolic profiles of all the four biofluids. According to the identified significantly different metabolites, 3 and 2 amino acid-relevant metabolic pathways were identified as the significantly different pathways between the two treatments in the rumen fluid and urine, respectively. Furthermore, glycine, serine, and threonine metabolism, valine, leucine, and isoleucine biosynthesis, and cysteine and methionine metabolism were the three key integrated different pathways identified in this study. Results mainly implied that the FSBM replacement could enhance nitrogen utilization and possibly influence the inflammatory reactions and antioxidative functions of dairy cattle. The differential metabolites and relevant pathways discovered in this experiment could serve as biomarkers for the alterations in protein feed and nitrogen utilization efficiency of dairy cows, and further investigations are needed to elucidate the definite roles and correlations of the differential metabolites and pathways.

13.
Anim Biosci ; 35(12): 1892-1903, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35507864

RESUMO

OBJECTIVE: A series of experiment were conducted to evaluate the effects of replacing a part of soybean meal (SBM) at 6% of broiler diets with fermented soybean meal (FSBM) obtained by single or two-stage fermentation by measuring growth performance, antioxidant activity in the jejunum and distal intestinal microflora. METHODS: Soybean meal samples were prepared by single-stage fermentation using Bacillus velezensis (Bv) (FSBMB), or Lactobacillus spp. (as commercial control) (FSBML). Additional SBM sample was prepared by two-stage fermentation using Bv and subsequently using Lactobacillus brevis ATCC 367 (Lb) (FSBMB+L). Enzyme activity, chemical composition, trichloroethanoic acid-nitrogen solubility index (TCA-NSI) and antioxidant activity were measured. Then, in an in vivo study, 320 Ross308 broilers were divided into four groups with ad libitum supply of feed and water. Four groups were fed either a corn-soybean meal diet (SBM), or one of fermented SBM diets (FSBMB+L, FSBMB, and FSBML). Growth, serum characteristics, microflora, and the mRNA expression of selected genes were measured. RESULTS: Compared to SBM, FSBMB+L contained lower galacto-oligosaccharide, allergic protein, and trypsin inhibitor, and higher TCA-NSI by about three times (p<0.05). Reducing power and 1,1-diphenyl-2-picrylhydrazyl free radical scavenging ability correlated positively with the TCA-NSI content in FSBM. Growth performances were not significantly different among four groups. In jejunum of 35-day-old broilers, partial replacement of SBM by FSBMB+L increased the activity of superoxide dismutase and catalase (CAT), and the FSBMB group had the highest catalase activity (p<0.05). Partial replacement of SBM by FSBM increased relative mRNA expressions of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and peptide transporter 1 (PepT1) (p<0.05); however, FSBMB+L increased CAT mRNA level to 5 times of the control (p<0.05). CONCLUSION: Using Bv- and Lb-processed SBM through two-stage fermentation to partially replace 6% of diets will improve the gut's antioxidant activity under commercial breeding in broilers.

14.
Metabolites ; 12(5)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35629946

RESUMO

The hypoglycemic and antioxidant activities of Lactobacillus plantarum FPS 2520 and/or Bacillus subtilis N1 fermented soybean meal (SBM) in rats fed a high-fat diet (HFD) were investigated by assessing plasma glucose levels, insulin resistance, and oxidative stress-induced organ damage. Supplementation with FPS 2520- and/or N1-fermented SBM (500 and 1000 mg/kg of body weight per day) to HFD-induced obese rats for 6 weeks significantly down-regulated the concentration of plasma glucose during the oral glucose tolerance test (OGTT), as well as the concentration of fasting plasma glucose, insulin, and the value of the homeostasis model assessment of insulin resistance (HOMA-IR). In addition, plasma and hepatic levels of malondialdehyde (MDA) were alleviated in rats fed fermented SBM, especially SBM fermented by mixed strains. Moreover, fermented SBM treatment reduced HFD-exacerbated increases in plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, and uric acid levels. Based on these results, we clearly demonstrate the effect of fermented SBM on improving insulin resistance and oxidation-induced organ damage. Therefore, it is suggested that fermented SBM has the potential to be developed as functional foods for the management of obesity-induced hyperglycemia and organ damage.

15.
Foods ; 11(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35327218

RESUMO

This study evaluated the effects of Lactiplantibacillus plantarum subsp. plantarum ZA3, Artemisia argyi and their combination, on the fermentation characteristics, microbial community, mycotoxins and crude flavonoids content of fermented soybean meal during fermentation (under anaerobic conditions) and aerobic exposure (under aerobic conditions). The results showed that ZA3, Artemisia argyi and ZA3+ Artemisia argyi groups had lower pH values and higher lactic acid concentrations compared with controls, and additives increased the abundance of Lactiplantibacillus and decreased those of Acetobacter and Enterobacter; in particular, Artemisia argyi and ZA3+ Artemisia argyi reduced the abundance of fungi, such as Aspergillus, Pichia, Fusarium, Cladosporium and Xeromyces. Meanwhile, the contents of mycotoxins were lower in treated groups, and even mycotoxins in the control were significantly reduced after 30 d (p < 0.05). Crude flavonoids that were correlated positively with Lactococcus and negatively with Bacillus, Aspergillus, Enterobacter and Kazachstania were significantly higher in the Artemisia argyi and ZA3+ Artemisia argyi groups (p < 0.05).

16.
Front Physiol ; 12: 646853, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967821

RESUMO

Soy meals can cause intestinal inflammation and even injury in animals, especially infants and juvenile individuals. This study investigated the effects of fermented soybean meal (FSBM) on the growth and intestinal homeostasis of juvenile pearl gentian grouper and examined the mechanisms by which FSBM and soybean meal (SBM) induced enteritis in fish, using "3+2" full-length transcriptome sequencing. We randomly assigned 720 female juvenile groupers into three treatment groups: FM control group, 20% FSBM group (FSBM20), and FSBM40 group (n = 4). Three iso-nitrogenous (50% protein) and iso-lipidic (10% lipid) diets were prepared and fed to fish for 10 weeks. The water volume in each barrel was about 1 m3, using natural light and temperature. Results showed that dietary FSBM, at experimental level, significantly affected fish growth and intestinal structure negatively and significantly increased enteritis indices. The degree of intestinal injury and inflammation was determined by the enzyme activities of trypsin and lysozyme, and the contents of IgM, C3, C4, and malondialdehyde, and the expressions of pro-inflammatory genes (IL1ß, IL8, IL17, and TNFα) and anti-inflammatory genes (IL4, IL10, and TGFß1). Full-length transcriptome analysis identified 2,305 and 3,462 differentially expressed genes (DEGs) in SBM40 and FSBM40 groups, respectively. However, only 18.98% (920/5,445) of DEGs had similar expression patterns, indicating that high levels of SBM40 and FSBM40 have different metabolic strategies. KEGG enrichment analysis indicated that among the significant pathways, ~45% were related to immune diseases/systems, infectious diseases, and signal transduction in both SBM and FSBM groups. Based on PacBio SMRT sequencing, nine toll-like receptor (TLR) members, including TLR1, TLR2, TLR3, TLR5, TLR8, TLR9, TLR13, TLR21, and TLR22, were detected in intestinal tissues of pearl gentian grouper. TLR-MyD88-NF-κB signaling pathway played an important role in the development of FSBM- and SBM-induced enteritis in pearl gentian grouper; however, TLR receptors used in SBM and FSBM groups were different. TLR1, TLR8, TLR13, and TLR22 were the main receptors used in FSBM group, while TLR5, TLR8, TLR9, TLR21, and TLR22 were the main receptors used in SBM group. Present study provides valuable theoretical references for further research on soy protein-induced enteritis in fish.

17.
Front Microbiol ; 12: 625857, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584627

RESUMO

This study was conducted to examine the influences of replacing soybean meal (SBM) with fermented soybean meal (FSBM) in the diet of lactating Holstein cattle on rumen fermentation and ruminal bacterial microbiome. Twenty-four lactating Chinese Holstein dairy cattle were assigned to each of the two treatments in a completely randomized design: the SBM group [the basal total mixed ration (TMR) diet containing 5.77% SBM] and the FSBM group (the experimental TMR diet containing 5.55% FSBM). This trial lasted for 54 days (14 days for adjustment and 40 days for data and sample collection), and samples of rumen liquid were collected on 34 d and 54 d, respectively. The results showed that replacing SBM with FSBM significantly increased the molar percentages of propionate (P < 0.01) and valerate (P < 0.05), but reduced the total volatile fatty acid (TVFA) concentration (P < 0.05), butyrate molar proportion (P < 0.05), and the acetate to propionate ratio (P < 0.01). The copy numbers of total bacteria (P < 0.05), Fibrobacter succinogenes (P < 0.01), Selenomonas ruminantium (P < 0.01), and Prevotella spp. (P < 0.05) in the FSBM group were greater, while the density of Prevotella ruminicola (P < 0.05) was lower than those in the SBM treatment. Additionally, Succiniclasticum ruminis and Saccharofermentans acetigenes were significantly enriched (P < 0.05) in the rumen fluid of FSBM-fed cows, despite the fact that there was no remarkable difference in the Alpha diversity indexes, structure and KEGG pathway abundances of the bacterial community across the two treatments. It could hence be concluded that the substitution of FSBM for SBM modulated rumen fermentation and rumen bacterial microbiota in lactating Holstein dairy cows. Further research is required to elucidate the relevant mechanisms of FSBM, and provide more insights into the application of FSBM in dairy cattle.

18.
J Anim Sci ; 98(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33164051

RESUMO

Three experiments were conducted to test the hypothesis that the standardized ileal digestibility (SID) of amino acids (AA), concentrations of digestible energy (DE) and metabolizable energy (ME), and the standardized total tract digestibility (STTD) of P in a new source of fermented soybean meal (Fermex 200) are greater than in conventional soybean meal (SBM-CV). In experiment 1, 9 barrows (initial body weight: 9.17 ± 1.03 kg) were surgically fitted with a T-cannula in the distal ileum and allotted to a triplicated 3 × 3 Latin square design. A nitrogen-free diet and 2 diets that contained cornstarch and SBM-CV or Fermex 200 as the sole source of crude protein (CP), and AA were formulated. Results indicated that there were no difference between SBM-CV and Fermex 200 for SID of CP and AA. In experiment 2, 24 growing pigs (initial body weight: 14.19 ± 1.18 kg) were housed individually in metabolism crates. Pigs were allotted to a corn-based diet or 2 diets that contained corn and SBM-CV or corn and Fermex 200. Feces and urine samples were collected using the marker-to-marker approach with 5-d adaptation and 4-d collection periods. Results indicated that the concentration of DE and ME in Fermex 200 were not different from DE and ME in SBM-CV. In experiment 3, 40 barrows (initial body weight: 11.01 ± 1.38 kg) were allotted to 1 of 4 diets with 10 replicate pigs per diet. Four diets were formulated to contain Fermex 200 or SBM-CV and either 0 or 1,000 units/kg of microbial phytase. Pigs were housed individually in metabolism crates. Fecal samples were collected as explained for experiment 2. Results indicated that the STTD of P in Fermex 200 was greater (P < 0.01) than in SBM-CV, but the addition of microbial phytase to the diets increased the ATTD and STTD of P in SBM-CV, but not in Fermex 200 (interaction; P < 0.01). In conclusion, the SID of AA and concentrations of DE and ME in Fermex 200 were not different from values determined for SBM-CV, but the STTD of P was greater in Fermex 200 than in SBM-CV if microbial phytase was not added to the diet.


Assuntos
Alimentos Fermentados , Glycine max , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Digestão , Metabolismo Energético , Valor Nutritivo , Suínos , Zea mays
19.
Animals (Basel) ; 10(10)2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33050635

RESUMO

This study's objective was to evaluate the effect of the fermented soybean meal (FSBM) on Salmonella typhimurium (ST) to turkey poults using two models of infection. In the prophylactic model, one-day-old turkeys were randomly allocated to one of four different groups (n = 30 turkeys/group): (1) Control group, (2) FSBM group, (3) Control group challenged with ST (Control + ST), and (4) FSBM group challenged with ST (FSBM + ST). On day 9 of age, all poults were orally challenged with 106 colony forming units (CFU) ST and 24 h post-inoculation, intestinal samples were collected to determine ST recovery and morphometric analysis. Blood samples were collected to evaluate serum fluorescein isothiocyanate-dextran (FITC-d). In the therapeutic model, a similar experimental design was used, but turkeys were orally gavaged 104 CFU ST on day 1, and samples were collected at day 7. FSBM improved performance and reduced leaky gut in both experimental infective models. In the prophylactic model, FSBB induced morphology changes in the mucosa. Although the strains (Lactobacillus salivarius and Bacillus licheniformis) used for the fermentation process showed in vitro activity against ST, no significant effect was observed in vivo. The fermentation with different beneficial bacteria and different inclusion rates of FSBM requires further investigation.

20.
BMC Vet Res ; 16(1): 245, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32664940

RESUMO

BACKGROUND: Impaired gut microbiota leads to pathogenic bacteria infection, pro-inflammatory response and post-weaning diarrhea. Enterotoxigenic Escherichia coli (ETEC) K88 is a major cause of post-weaning diarrhea in weaned piglets. Fermented soybean meal (FSBM) could relieve diarrhea, alleviate inflammatory response, and modulate gut microbiota of weaned piglets. We used ETEC K88-challenged weaned piglet model to investigate the effects of FSBM on the growth performance, inflammatory response and cecal microbiota. Twenty-four crossbred piglets (6.8 ± 0.5 kg; 21 ± 2 days of age) were allotted into 2 treatment fed the diets with or without FSBM (6% at the expense of soybean meal). Six weaned piglets in each diet treatment were challenged by ETEC K88 (1 × 109 CFU/piglets) on day 15. The experimental period lasted for 20 days. RESULTS: The ETEC K88 challenge decreased (p < 0.05) fecal consistency and plasma interleukin-10 (IL-10) concentration, while increased (p < 0.05) average daily feed intake (ADFI) and plasma tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and interleukin 6 (IL-6) concentrations. After ETEC K88 challenge, dietary FSBM replacement increased (p < 0.05) final body weight (BW), average daily gain (ADG), ADFI, and fecal consistency, but decreased feed conversion ratio (FCR). The plasma IL-10 concentration of weaned piglets fed FSBM was higher (p < 0.05), while IL-1ß, IL-6 and TNF-α concentrations were lower (p < 0.05). Dietary FSBM replacement attenuated the increase of plasma TNF-α concentration and the decrease of ADG induced by ETEC K88 challenge (p < 0.05). High-throughput sequencing of 16S rRNA gene V4 region of cecal microbiota revealed that ETEC K88 challenge increased (p < 0.05) Campylobacter relative abundance on genus level. Dietary FSBM replacement resulted in higher (p < 0.05) relative abundances of Bacteroidetes and Prevotellaceae_NK3B31_group, and lower (p < 0.05) relative abundances of Proteobacteria and Actinobacillus. Furthermore, dietary FSBM replacement relieved the increase of Escherichia-Shigella relative abundance in weaned piglets challenged by ETEC K88 (p < 0.05). CONCLUSIONS: Dietary FSBM replacement improved growth performance and alleviated the diarrhea of weaned piglets challenged with ETEC K88, which could be due to modulation of cecal microbiota composition and down-regulation of inflammatory cytokines production.


Assuntos
Ração Animal/análise , Infecções por Escherichia coli/veterinária , Glycine max , Doenças dos Suínos/dietoterapia , Animais , Bactérias/classificação , Ceco/microbiologia , Citocinas/sangue , Diarreia/dietoterapia , Diarreia/microbiologia , Diarreia/veterinária , Dieta/veterinária , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli/dietoterapia , Infecções por Escherichia coli/microbiologia , Feminino , Fermentação , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Sus scrofa , Suínos , Doenças dos Suínos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA