Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Exp Cell Res ; 433(2): 113853, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944576

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causative of the ongoing coronavirus disease 2019 (COVID-19) pandemic. The SARS-CoV-2 Spike protein (S-protein) plays an important role in the early phase of SARS-CoV-2 infection through efficient interaction with ACE2. The S-protein is produced by RNA-based COVID-19 vaccines, that were fundamental for the reduction of the viral spread within the population and the clinical severity of COVID-19. However, the S-protein has been hypothesized to be responsible for damaging cells of several tissues and for some important side effects of RNA-based COVID-19 vaccines. Considering the impact of COVID-19 and SARS-CoV-2 infection on the hematopoietic system, the aim of this study was to verify the effect of the BNT162b2 vaccine on erythroid differentiation of the human K562 cell line, that has been in the past intensively studied as a model system mimicking some steps of erythropoiesis. In this context, we focused on hemoglobin production and induced expression of embryo-fetal globin genes, that are among the most important features of K562 erythroid differentiation. We found that the BNT162b2 vaccine suppresses mithramycin-induced erythroid differentiation of K562 cells. Reverse-transcription-qPCR and Western blotting assays demonstrated that suppression of erythroid differentiation was associated with sharp inhibition of the expression of α-globin and γ-globin mRNA accumulation. Inhibition of accumulation of ζ-globin and ε-globin mRNAs was also observed. In addition, we provide in silico studies suggesting a direct interaction between SARS-CoV-2 Spike protein and Hb Portland, that is the major hemoglobin produced by K562 cells. This study thus provides information suggesting the need of great attention on possible alteration of hematopoietic parameters following SARS-CoV-2 infection and/or COVID-19 vaccination.


Assuntos
COVID-19 , Leucemia Eritroblástica Aguda , Humanos , Células K562 , Plicamicina/farmacologia , Plicamicina/metabolismo , Vacinas contra COVID-19/metabolismo , Vacina BNT162 , Leucemia Eritroblástica Aguda/metabolismo , COVID-19/prevenção & controle , COVID-19/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Hemoglobinas/metabolismo , RNA Mensageiro/genética , Células Eritroides/metabolismo
2.
Am J Transl Res ; 15(7): 4687-4698, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560203

RESUMO

PURPOSE: Vasculogenic mimicry (VM) is present in a variety of malignant tumors, and is related to the degree of malignancy. Neuroblastoma (NB) can induce the expression of fetal hemoglobin (HB-F). The purpose of this study was to investigate the clinicopathological significance of the number of VMs and tumor cell expression of HB-F in children with peripheral neuroblastic tumors (pNTs). MATERIALS AND METHODS: We collected tissue samples and clinical data from 101 children with pNTs; prepared serial sections of tissue wax blocks for hematoxylin and eosin staining, CD31/periodic acid-Schiff double staining, and HB-F immunohistochemical staining; and analyzed the experimental results. RESULTS: There were significant differences in the number of VMs and HB-F expression in tumor cells according to the pathological classification of pNTs (P<0.001, collectively). Poorly differentiated NB had a median of 137 VMs and 25.5% HB-F expression. Differentiating NB had a median of 90.5 VMs and 8.5% HB-F expression. Ganglioneuroblastoma intermixed had a median of 6.0 VMs and 1.0% HB-F expression. Ganglioneuromas had no VM and a median of 0% HB-F expression. The number of VMs and the expression of HB-F were significantly higher in the poor prognosis group than the good prognosis group (P<0.001, collectively). There was a strong positive correlation between the number of VMs and HB-F expression in pNTs (r=0.891, P<0.001). CONCLUSION: We confirmed VM and HB-F expression in pNTs. The number of VMs and HB-F expression were higher in poorly differentiated tumors. The number of VMs and level of HB-F expression in pNTs might be related to the prognosis.

3.
Int Immunopharmacol ; 57: 112-120, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29477972

RESUMO

We have shown that an altered tissue redox environment in mice lacking either murine beta Hemoglobin major (HgbßmaKO) or minor (HgbßmiKO) regulates inflammation. The REDOX environment in marrow stem cell niches also control differentiation pathways. We investigated osteoclastogenesis (OC)/osteoblastogenesis (OB), in bone cultures derived from untreated or FSLE-treated WT, HgbßmaKO or HgbßmiKO mice. Marrow mesenchymal cells from 10d pre-cultures were incubated on an osteogenic matrix for 21d prior to analysis of inflammatory cytokine release into culture supernatants, and relative OC:OB using (TRAP:BSP, RANKL:OPG) mRNA expression ratios and TRAP or Von Kossa staining. Cells from WT and HgbßmaKO mice show decreased IL-1ß,TNFα and IL-6 production and enhanced osteoblastogenesis with altered mRNA expression ratios and increased bone nodules (Von Kossa staining) in vitro after in vivo stimulation of mRNA expression of fetal Hgb genes (Hgbε and Hgbßmi) by a fetal liver extract (FSLE). Marrow from HgbßmiKO showed enhanced cytokine release and preferential enhanced osteoclastogenesis relative to similar cells from WT or HgbßmaKO mice, with no increased osteoblastogenesis after mouse treatment with FSLE. Pre-treatment of WT or HgbßmaKO, but not HgbßmiKO mice, with other molecules (rapamycin; hydroxyurea) which increase expression of fetal Hgb genes also augmented osteoblastogenesis and decreased cytokine production in cells differentiating in vitro. Infusion of rabbit anti- Hgbε or anti- Hgbßmi, but not anti-Hgbα or anti- Hgbßma into WT mice from day 13 gestation for 3 weeks led to attenuated osteoblastogenesis in cultured cells. We conclude that increased fetal hemoglobin expression, or use of agents which improve fetal hemoglobin expression, increases osteoblast bone differentiation in association with decreased inflammatory cytokine release.


Assuntos
Osso e Ossos/metabolismo , Hemoglobina Fetal/metabolismo , Células-Tronco Mesenquimais/fisiologia , Osteoblastos/fisiologia , Osteoporose/genética , Animais , Diferenciação Celular , Células Cultivadas , Microambiente Celular , Feminino , Hemoglobina Fetal/genética , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteogênese , Osteoporose/metabolismo , Oxirredução
4.
Int Immunopharmacol ; 50: 69-76, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28641125

RESUMO

C5BL/6 female mice receiving dextran sodium sulfate in their drinking water develop an acute inflammatory colitis within 7d, with weight loss, histopathologic signs of inflammation, and colonic expression of inflammatory cytokines. In previous studies we have reported that increased inflammatory cytokine expression in aged mice can be attenuated by oral gavage of a crude fetal extract containing glutathione (GSH), MPLA and fetal hemoglobin, or more specifically by injection of a combination of these purified reagents. We speculated that this combination led to an altered tissue redox environment in which the immune response developed, thus regulating inflammation. Accordingly, we used wild-type (WT) C57BL/6 mice, or mice lacking either murine beta Hemoglobin major (HgbßmaKO) or minor (HgbßmiKO) as recipients of DSS in their drinking water, and followed development of colitis both clinically and by inflammatory cytokine production, before/after oral treatment of mice with a crude fetal liver extract. Mice lacking an intact fetal hemoglobin chain (HgbßmiKO) developed severe colitis, with enhanced colonic expression of inflammatory cytokines, which could not be rescued by extract, unlike WT and HgbßmaKO animals. Moreover, disease in both WT and HgbßmaKO animals could also be attenuated by exposure to 5-hydroxymethyl furfural (5HMF), hydroxyurea or rapamycin. The former has been used as an alternative means of stabilizing the conformation of adult hemoglobin in a manner which mimicks the oxygen-affinity of fetal hemoglobin, while we show that both hydroxyurea and rapamycin augment expression of murine fetal hemoglobin chains. Our data suggests there may be a clinical value in exploring agents which alter local REDOX environments as an adjunctive treatment for colitis and attenuating inflammatory cytokine production.


Assuntos
Colite/metabolismo , Proteínas Fetais/metabolismo , Furaldeído/análogos & derivados , Hemoglobinas/metabolismo , Hidroxiureia/uso terapêutico , Sirolimo/uso terapêutico , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Citocinas/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Feminino , Proteínas Fetais/genética , Furaldeído/uso terapêutico , Hemoglobinas/genética , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA