Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.089
Filtrar
1.
Carbohydr Polym ; 345: 122580, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39227124

RESUMO

Water-in-water (W/W) emulsions provide bio-compatible all-aqueous compartments for artificial patterning and assembly of living cells. Successful entrapment of cells within a W/W emulsion via the formation of semipermeable capsules is a prerequisite for regulating on the size, shape, and architecture of cell aggregates. However, the high permeability and instability of the W/W interface, restricting the assembly of stable capsules, pose a fundamental challenge for cell entrapment. The current study addresses this problem by synthesizing multi-armed protein fibrils and controlling their assembly at the W/W interface. The multi-armed protein fibrils, also known as 'fibril clusters', were prepared by cross-linking lysozyme fibrils with multi-arm polyethylene glycol (PEG) via click chemistry. Compared to linear-structured fibrils, fibril clusters are strongly adsorbed at the W/W interface, forming an interconnected meshwork that better stabilizes the W/W emulsion. Moreover, when fibril clusters are complexed with alginate, the hybrid microcapsules demonstrate excellent mechanical robustness, semi-permeability, cytocompatibility and biodegradability. These advantages enable the encapsulation, entrapment and long-term culture of tumor spheroids, with great promise for applications for anti-cancer drug screening, tumor disease modeling, and tissue repair engineering.


Assuntos
Alginatos , Cápsulas , Muramidase , Esferoides Celulares , Alginatos/química , Cápsulas/química , Humanos , Muramidase/química , Muramidase/metabolismo , Polietilenoglicóis/química , Água/química , Emulsões/química , Animais , Linhagem Celular Tumoral
2.
Biochem Biophys Rep ; 39: 101810, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39224226

RESUMO

Alpha-synuclein (α-syn) aggregation plays a critical role in the pathogenicity of Parkinson's Disease (PD). This study aims to evaluate the aggregation propensity of α-syn fragment peptides designed using the variability found in humans and animals. Thioflavin T (ThT) and transmission electron microscopy (TEM) were used to validate the formation of fibrils to identify important amino acid residues. Human α-syn fragments 51-75, 37-61, 62-86, 76-100, and 116-140 demonstrate a significantly higher tendency to aggregate compared to fragments 1-25, 26-50, and 91-115. All species analyzed of the α-syn 37-61 and 62-86 regions were shown to form fibrils on both ThT and TEM. The α-syn 37-61 and 62-86 fragment regions exhibited a high susceptibility to aggregation, with fibril formation observed in all species. The A53T mutation in several α-syn 37-61 fragments may enhance their propensity for aggregation, suggesting a correlation between this mutation and the capacity for fibril formation. Furthermore, the presence of the non-amyloid-ß component (NAC) region, specifically in α-syn 62-86, was consistently observed in several fragments that displayed fibril formation, indicating a potential correlation between the NAC region and the process of fibril formation in α-syn. Finally, the combination of a high quantity of valine and a low quantity of acidic amino acids in these fragments may serve as indicators of α-syn fibril formation.

3.
Front Aging Neurosci ; 16: 1369733, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104707

RESUMO

Cognitive impairments are a common feature of synucleinopathies such as Parkinson's Disease Dementia and Dementia with Lewy Bodies. These pathologies are characterized by accumulation of Lewy bodies and Lewy neurites as well as neuronal cell death. Alpha-synuclein is the main proteinaceous component of Lewy bodies and Lewy neurites. To model these pathologies in vivo, toxins that selectively target certain neuronal populations or different means of inducing alpha-synuclein aggregation can be used. Alpha-synuclein accumulation can be induced by genetic manipulation, viral vector overexpression or the use of preformed fibrils of alpha-synuclein. In this review, we summarize the cognitive impairments associated with different models of synucleinopathies and relevance to observations in human diseases.

4.
FEBS J ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39116032

RESUMO

Protein liquid-liquid phase separation (LLPS) is a rapidly emerging field of study on biomolecular condensate formation. In recent years, this phenomenon has been implicated in the process of amyloid fibril formation, serving as an intermediate step between the native protein transition into their aggregated state. The formation of fibrils via LLPS has been demonstrated for a number of proteins related to neurodegenerative disorders, as well as other amyloidoses. Despite the surge in amyloid-related LLPS studies, the influence of protein condensate formation on the end-point fibril characteristics is still far from fully understood. In this work, we compare alpha-synuclein aggregation under different conditions, which promote or negate its LLPS and examine the differences between the formed aggregates. We show that alpha-synuclein phase separation generates a wide variety of assemblies with distinct secondary structures and morphologies. The LLPS-induced structures also possess higher levels of toxicity to cells, indicating that biomolecular condensate formation may be a critical step in the appearance of disease-related fibril variants.

5.
ChemMedChem ; : e202400310, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090029

RESUMO

Studies of the structure and dynamics of oligomeric aggregates of amyloidogenic peptides pose challenges due to their transient nature. This concept article provides a brief overview of various nucleation mechanisms with reference to the classical nucleation theory and illustrates the advantages of incubating amyloidogenic peptides in reverse micelles (RMs). The use of RMs not only facilitates size regulation of oligomeric aggregates but also provides an avenue to explore protein-protein interactions among the oligomeric aggregates of various amyloidogenic peptides. Additionally, we envision the feasibility of preparing brain tissue-derived oligomeric aggregates using RMs, potentially advancing the development of monoclonal antibodies with enhanced potency against these pathological species in vivo.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39169473

RESUMO

Amyloid fibril formation is associated with various amyloidoses, including neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Despite the numerous studies on the inhibition of amyloid formation, the prevention and treatment of a majority of amyloid-related disorders are still challenging. In this study, we investigated the effects of various plant extracts on amyloid formation of α-synuclein. We found that the extracts from Eucalyptus gunnii are able to inhibit amyloid formation, and to disaggregate preformed fibrils, in vitro. The extract itself did not lead cell damage. In the extract, miquelianin, which is a glycosylated form of quercetin and has been detected in the plasma and the brain, was identified and assessed to have a moderate inhibitory activity, compared to the effects of ellagic acid and quercetin, which are strong inhibitors for amyloid formation. The properties of miquelianin provide insights into the mechanisms controlling the assembly of α-synuclein in the brain.

7.
ACS Nano ; 18(34): 23537-23552, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39133543

RESUMO

Numerous small biomolecules exist in the human body and play roles in various biological and pathological processes. Small molecules are believed not to induce intrafibrillar mineralization alone. They are required to work in synergy with noncollagenous proteins (NCPs) and their analogs, e.g. polyelectrolytes, for inducing intrafibrillar mineralization, as the polymer-induced liquid-like precursor (PILP) process has been well-documented. In this study, we demonstrate that small charged molecules alone, such as sodium tripolyphosphate, sodium citrate, and (3-aminopropyl) triethoxysilane, could directly mediate fibrillar mineralization. We propose that small charged molecules might be immobilized in collagen fibrils to form the polyelectrolyte-like collagen complex (PLCC) via hydrogen bonds. The PLCC could attract CaP precursors along with calcium and phosphate ions for inducing mineralization without any polyelectrolyte additives. The small charged molecule-mediated mineralization process was evidenced by Cryo-TEM, AFM, SEM, FTIR, ICP-OES, etc., as the PLCC exhibited both characteristic features of collagen fibrils and polyelectrolyte with increased charges, hydrophilicity, and density. This might hint at one mechanism of pathological biomineralization, especially for understanding the ectopic calcification process.


Assuntos
Citrato de Sódio , Citrato de Sódio/química , Citrato de Sódio/metabolismo , Animais , Humanos , Citratos/química , Colágeno/química , Colágeno/metabolismo , Calcinose/metabolismo , Calcinose/patologia , Propilaminas/química
8.
Carbohydr Polym ; 343: 122409, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39174076

RESUMO

The study focuses on developing a bioactive shape memory sponge to address the urgent demand for short-term rapid hemostasis and long-term wound healing in noncompressible hemorrhage cases. A composite sponge was created by spontaneously generating pores and double cross-linking under mild conditions using biomimetic collagen fibril (BCF) and oxidized alginate (OA) as natural backbone, combined with an inert calcium source (Ca) from CaCO3-GDL slow gelation mechanism. The optimized BCF/OACa (5/5) sponge efficiently absorbed blood after compression and recovered to its original state within 11.2 ± 1.3 s, achieving physical hemostatic mechanism. The composite sponge accelerated physiological coagulation by promoting platelet adhesion and activation through BCF, as well as enhancing endogenous and exogenous hemostatic pathways by Ca2+. Compared to commercial PVA expanding hemostatic sponge, the composite sponge reduced bleeding volume and shortened hemostasis time in rat liver injury pick and perforation wound models. Additionally, it stimulated fibroblast migration and differentiation, thus promoting wound healing. It is biodegradable with low inflammatory response and promotes granulation tissue regeneration. In conclusion, this biocomposite sponge provides multiple hemostatic pathways and biochemical support for wound healing, is biologically safe and easy to fabricate, process and use, with significant potential for clinical translation and application.


Assuntos
Alginatos , Materiais Biomiméticos , Colágeno , Hemorragia , Hemostáticos , Cicatrização , Alginatos/química , Alginatos/farmacologia , Animais , Cicatrização/efeitos dos fármacos , Colágeno/química , Ratos , Hemorragia/tratamento farmacológico , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Hemostáticos/farmacologia , Hemostáticos/química , Masculino , Ratos Sprague-Dawley , Hemostasia/efeitos dos fármacos , Oxirredução , Adesividade Plaquetária/efeitos dos fármacos
9.
J Neurochem ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133499

RESUMO

The amyloid ß (Aß) peptide has a central role in Alzheimer's disease (AD) pathology. The peptide length can vary between 37 and 49 amino acids, with Aß1-42 being considered the most disease-related length. However, Aß1-40 is also found in Aß plaques and has shown to form intertwined fibrils with Aß1-42. The peptides have previously also shown to form different fibril conformations, proposed to be related to disease phenotype. To conduct more representative in vitro experiments, it is vital to uncover the impact of different fibril conformations on neurons. Hence, we fibrillized different Aß1-40:42 ratios in concentrations of 100:0, 90:10, 75:25, 50:50, 25:75, 10:90 and 0:100 for either 24 h (early fibrils) or 7 days (aged fibrils). These were then characterized based on fibril width, LCO-staining and antibody-staining. We further challenged differentiated neuronal-like SH-SY5Y human cells with the different fibrils and measured Aß content, cytotoxicity and autophagy function at three different time-points: 3, 24, and 72 h. Our results revealed that both Aß1-40:42 ratio and fibril maturation affect conformation of fibrils. We further show the impact of these conformation changes on the affinity to commonly used Aß antibodies, primarily affecting Aß1-40 rich aggregates. In addition, we demonstrate uptake of the aggregates by neuronally differentiated human cells, where aggregates with higher Aß1-42 ratios generally caused higher cellular levels of Aß. These differences in Aß abundance did not cause changes in cytotoxicity nor in autophagy activation. Our results show the importance to consider conformational differences of Aß fibrils, as this can have fundamental impact on Aß antibody detection. Overall, these insights underline the need for further exploration of the impact of conformationally different fibrils and the need to reliably produce disease relevant Aß aggregates.

10.
ACS Chem Neurosci ; 15(17): 3136-3151, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39158263

RESUMO

The inhibition of amyloid-ß (Aß) fibrillation and clearance of Aß aggregates have emerged as a potential pharmacological strategy to alleviate Aß aggregate-induced neurotoxicity in Alzheimer's disease (AD). Maity et al. shortlisted ADH-353 from a small library of positively charged N-substituted oligopyrrolamides for its notable ability to inhibit Aß fibrillation, disintegrate intracellular cytotoxic Aß oligomers, and alleviate Aß-induced cytotoxicity in the SH-SY5Y and N2a cells. However, the molecular mechanism through which ADH-353 interacts with the Aß42 fibrils, leading to their disruption and subsequent clearance, remains unclear. Thus, a detailed molecular mechanism underlying the disruption of neurotoxic Aß42 fibrils (PDB ID 2NAO) by ADH-353 has been illuminated in this work using molecular dynamics simulations. Interestingly, conformational snapshots during simulation depicted the shortening and disappearance of ß-strands and the emergence of a helix conformation, indicating a loss of the well-organized ß-sheet-rich structure of the disease-relevant Aß42 fibril on the incorporation of ADH-353. ADH-353 binds strongly to the Aß42 fibril (ΔGbinding= -142.91 ± 1.61 kcal/mol) with a notable contribution from the electrostatic interactions between positively charged N-propylamine side chains of ADH-353 with the glutamic (Glu3, Glu11, and Glu22) and aspartic (Asp7 and Asp23) acid residues of the Aß42 fibril. This aligns well with heteronuclear single quantum coherence NMR studies, which depict that the binding of ADH-353 with the Aß peptide is driven by electrostatic and hydrophobic contacts. Furthermore, a noteworthy decrease in the binding affinity of Aß42 fibril chains on the incorporation of ADH-353 indicates the weakening of interchain interactions leading to the disruption of the double-horseshoe conformation of the Aß42 fibril. The illumination of key interactions responsible for the destabilization of the Aß42 fibril by ADH-353 in this work will greatly aid in designing new chemical scaffolds with enhanced efficacy for the clearance of Aß aggregates in AD.


Assuntos
Peptídeos beta-Amiloides , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/química , Humanos , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/química , Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico
11.
Food Res Int ; 192: 114779, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147467

RESUMO

Rice bran protein fibril (RBPF)-high internal phase Pickering emulsions (HIPPEs) loaded with ß-carotene (CE) were constructed to enhance stability and bioavailability of CE. Rice bran (RB) protein with varying oxidation degrees was extracted from RB with varying storage period (0-10 days) to prepare RBPF by acid-heating (90 °C, 2-12 h) to stabilize HIPPEs. The influence of protein oxidation on the encapsulation properties of RBPF-HIPPEs was studied. The results showed that CE-HIPPEs could be stably stored for 56 days at 25 °C. When RB storage time was the same, the average particle size, lipid hydroperoxide content, and malondialdehyde content of CE-HIPPEs and the CE degradation rate initially fell, and then grew as the acid-heating time prolonged, while the ζ-potential value, viscosity, viscoelasticity, free fatty acid (FFA) release rate, and bioaccessibility first rose, and subsequently fell. When acid-heating time of RBPF was the same, the average particle size, lipid hydroperoxide content, and malondialdehyde content of CE-HIPPEs initially fell, and subsequently increased with RB storage time extended, while the ζ-potential value, viscosity, viscoelasticity, FFA release rate, and bioaccessibility initially increased, and then decreased. Overall, Moderate oxidation and moderate acid-heating enhanced the stability as well as rheological properties of CE-HIPPEs, thus improving the stability and bioaccessibility of CE. This study offered a new insight into the delivery of bioactive substances by protein fibril aggregates-based HIPPEs.


Assuntos
Emulsões , Oryza , Oxirredução , Tamanho da Partícula , beta Caroteno , beta Caroteno/química , Oryza/química , Disponibilidade Biológica , Proteínas de Plantas/química , Viscosidade , Malondialdeído
12.
Proc Natl Acad Sci U S A ; 121(33): e2406775121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39116134

RESUMO

Biofilm-protected pathogenic Staphylococcus aureus causes chronic infections that are difficult to treat. An essential building block of these biofilms are functional amyloid fibrils that assemble from phenol-soluble modulins (PSMs). PSMα1 cross-seeds other PSMs into cross-ß amyloid folds and is therefore a key element in initiating biofilm formation. However, the paucity of high-resolution structures hinders efforts to prevent amyloid assembly and biofilm formation. Here, we present a 3.5 Å resolution density map of the major PSMα1 fibril form revealing a left-handed cross-ß fibril composed of two C2-symmetric U-shaped protofilaments whose subunits are unusually tilted out-of-plane. Monomeric α-helical PSMα1 is extremely cytotoxic to cells, despite the moderate toxicity of the cross-ß fibril. We suggest mechanistic insights into the PSM functional amyloid formation and conformation transformation on the path from monomer-to-fibril formation. Details of PSMα1 assembly and fibril polymorphism suggest how S. aureus utilizes functional amyloids to form biofilms and establish a framework for developing therapeutics against infection and antimicrobial resistance.


Assuntos
Amiloide , Biofilmes , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Staphylococcus aureus/fisiologia , Biofilmes/crescimento & desenvolvimento , Amiloide/metabolismo , Amiloide/química , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/química , Conformação Proteica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Modelos Moleculares
13.
Int J Mol Sci ; 25(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39201616

RESUMO

Amyloid ß peptide (Aß) aggregation and deposition are considered the main causes of Alzheimer's disease. In a previous study, we demonstrated that anionic Zn-phthalocyanine (ZnPc) can interact with the Aß peptide and inhibit the fibril-formation process. However, due to the inability of anionic ZnPc to cross the intact blood-brain barrier, we decided to explore the interaction of cationic methylated Zn-phthalocyanine (cZnPc) with the peptide. Using a ThT fluorescence assay, we observed that cZnPc dose-dependently and time-dependently inhibited Aß1-42 fibril levels under in vitro fibril-formation conditions. Electron microscopy revealed that it caused Aß1-42 peptides to form small aggregates. Western blotting and dot immunoblot oligomer experiments demonstrated that cZnPc increased rather than decreased the levels of oligomers from the very early stages of incubation. A binding assay confirmed that cZnPc could bind with the peptide. Docking simulations indicated that the oligomer species of Aß1-42 had a higher ability to interact with cZnPc. ANS fluorescence assay results indicated that cZnPc did not affect the hydrophobicity of the peptide. However, cZnPc significantly increased intrinsic tyrosine fluorescence of the peptide after 8 h of incubation in fibril-formation conditions. Importantly, cell culture experiments demonstrated that cZnPc did not exhibit any toxicity up to a concentration of 10 µM. Instead, it protected a neuronal cell line from Aß1-42-induced toxicity. Thus, our results suggest that cZnPc can affect the aggregation process of Aß1-42, rendering it non-toxic, which could be crucial for the therapy of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Indóis , Isoindóis , Compostos Organometálicos , Fragmentos de Peptídeos , Compostos de Zinco , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Indóis/química , Indóis/farmacologia , Humanos , Compostos de Zinco/química , Compostos de Zinco/farmacologia , Compostos Organometálicos/farmacologia , Compostos Organometálicos/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/farmacologia , Agregados Proteicos/efeitos dos fármacos , Animais , Simulação de Acoplamento Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
14.
Proc Natl Acad Sci U S A ; 121(35): e2321633121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39172784

RESUMO

α-synuclein (α-syn) assembles into structurally distinct fibril polymorphs seen in different synucleinopathies, such as Parkinson's disease and multiple system atrophy. Targeting these unique fibril structures using chemical ligands holds diagnostic significance for different disease subtypes. However, the molecular mechanisms governing small molecules interacting with different fibril polymorphs remain unclear. Here, we investigated the interactions of small molecules belonging to four distinct scaffolds, with different α-syn fibril polymorphs. Using cryo-electron microscopy, we determined the structures of these molecules when bound to the fibrils formed by E46K mutant α-syn and compared them to those bound with wild-type α-syn fibrils. Notably, we observed that these ligands exhibit remarkable binding adaptability, as they engage distinct binding sites across different fibril polymorphs. While the molecular scaffold primarily steered the binding locations and geometries on specific sites, the conjugated functional groups further refined this adaptable binding by fine-tuning the geometries and binding sites. Overall, our finding elucidates the adaptability of small molecules binding to different fibril structures, which sheds light on the diagnostic tracer and drug developments tailored to specific pathological fibril polymorphs.


Assuntos
Amiloide , Microscopia Crioeletrônica , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , Amiloide/metabolismo , Amiloide/química , Ligantes , Humanos , Sítios de Ligação , Ligação Proteica , Doença de Parkinson/metabolismo , Mutação
15.
J Oral Rehabil ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152540

RESUMO

OBJECTIVE: Anterior disc displacement (ADD) has been used to establish temporomandibular joint disorder (TMD) models. Based on whether preserve of the retrodiscal attachment, the modelling methodologies include ADD with dissecting the retrodiscal attachment (ADDwd) and ADD without dissecting the retrodiscal attachment (ADDwod). This article aims to determine which model better matches the micromechanical and microstructural progression of TMD. METHODS: Through meticulous microscopic observations, the microstructure and micromechanical deformation of the TMJ discs in ADDwd and ADDwod rabbit models were compared at 2 and 20 weeks. RESULT: Scanning electron microscopy and transmission electron microscopy showed that collagen fibres became slenderized and straightened, collagen fibrils lost diameter and arrangement in the ADDwd group at 2 weeks. Meanwhile, nanoindentation and atomic electron microscopy showed that the micro- and nano- mechanical properties decreased dramatically. However, the ADDwod group exhibited no significant microstructure and micromechanical deformations at 2 weeks. Dissection of the retrodiscal attachment contribute in the acceleration of disease progression at the early stage, the devastating discal phenotype remained fundamentally the same within the two models at 20 weeks. CONCLUSION: ADDwod models, induced stable and persistent disc deformation, therefore, can better match the progression of TMD. While ADDwd models can be considered for experiments which aim to obtain advanced phenotype in a short time.

16.
Int J Biol Macromol ; 279(Pt 1): 135137, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39208885

RESUMO

Aberrant aggregation of amyloid-ß (Aß) and islet amyloid polypeptide (IAPP) into amyloid fibrils underlies the pathogenesis of Alzheimer's disease (AD) and type 2 diabetes (T2D), respectively. T2D significantly increases AD risk, with evidence suggesting that IAPP and Aß co-aggregation and cross-seeding might contribute to the cross-talk between two diseases. Experimentally, preformed IAPP fibril seeds can accelerate Aß aggregation, though the cross-seeding mechanism remains elusive. Here, we computationally demonstrated that Aß monomer preferred to bind to the elongation ends of preformed IAPP fibrils. However, due to sequence mismatch, the Aß monomer could not directly grow onto IAPP fibrils by forming multiple stable ß-sheets with the exposed IAPP peptides. Conversely, in our control simulations of self-seeding, the Aß monomer could axially grow on the Aß fibril, forming parallel in-register ß-sheets. Additionally, we showed that the IAPP fibril could catalyze Aß fibril nucleation by promoting the formation of parallel in-register ß-sheets in the C-terminus between bound Aß peptides. This study enhances our understanding of the molecular interplay between Aß and IAPP, shedding light on the cross-seeding mechanisms potentially linking T2D and AD. Our findings also underscore the importance of clearing IAPP deposits in T2D patients to mitigate AD risk.

17.
Nano Lett ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39213611

RESUMO

Natural cells can achieve specific cell-cell interactions by enriching nonspecific binding molecules on demand at intercellular contact faces, a pathway currently beyond synthetic capabilities. We are inspired to construct responsive peptide fibrils on cell surfaces, which elongate upon encountering target cells while maintaining a short length when contacting competing cells, as directed by a strand-displacement reaction arranged on target cell surfaces. With the display of ligands that bind to both target and competing cells, the contact-induced, region-selective fibril elongation selectively promotes host-target cell interactions via the accumulation of nonspecific ligands between matched cells. This approach is effective in guiding natural killer cells, the broad-spectrum effector lymphocytes, to eliminate specific cancer cells. In contrast to conventional methods relying on target cell-specific binding molecules for the desired cellular interactions, this dynamic scaffold-based approach would broaden the scope of cell combinations for manipulation and enhance the adjustability of cell behaviors for future applications.

18.
Food Chem ; 462: 140996, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39213962

RESUMO

The mechanisms of trypsin hydrolysis time on the structure of soy protein hydrolysate fibril aggregates (SPHFAs) and the stability of SPHFAs-high internal phase Pickering emulsions (HIPPEs) were investigated. SPHFAs were prepared using soy protein hydrolysate (SPH) with different trypsin hydrolysis time (0 min-120 min) to stabilize SPHFAs-HIPPEs. The results showed that moderate trypsin hydrolysis (30 min, hydrolysis degree of 2.31 %) induced SPH unfolding and increased the surface hydrophobicity of SPH, thereby promoting the formation of flexible SPHFAs with maximal thioflavin T intensity and ζ-potential. Moreover, moderate trypsin hydrolysis improved the viscoelasticity of SPHFAs-HIPPEs, and SPHFAs-HIPPEs remained stable after storage at 25 °C for 80 d and heating at 100 °C for 1 h. Excessive trypsin hydrolysis (> 30 min) decreased the stability of SPHFAs-HIPPEs. In conclusion, moderate trypsin hydrolysis promoted the formation of flexible SPHFAs with high surface charge by inducing SPH unfolding, thereby promoting the stability of SPHFAs-HIPPEs.

19.
J Texture Stud ; 55(4): e12855, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38992897

RESUMO

The effects of oil type, emulsifier type, and emulsion particle size on the texture, gel strength, and rheological properties of SPI emulsion-filled gel (SPI-FG) and TFSP emulsion-filled gel (TFSP-FG) were investigated. Using soybean protein isolate or sodium caseinate as emulsifiers, emulsions with cocoa butter replacer (CBR), palm oil (PO), virgin coconut oil (VCO), and canola oil (CO) as oil phases were prepared. These emulsions were filled into SPI and TFSP gel substrates to prepare emulsion-filled gels. Results that the hardness and gel strength of both gels increased with increasing emulsion content when CBR was used as the emulsion oil phase. However, when the other three liquid oils were used as the oil phase, the hardness and gel strength of TFSP-FG decreased with the increasing of emulsion content, but those of SPI-FG increased when SPI was used as emulsifier. Additionally, the hardness and gel strength of both TFSP-FG and SPI-FG increased with the decreasing of mean particle size of emulsions. Rheological measurements were consistent with textural measurements and found that compared with SC, TFSP-FG, and SPI-FG showed higher G' values when SPI was used as emulsifier. Confocal laser scanning microscopy (CLSM) observation showed that the distribution and stability of emulsion droplets in TFSP-FG and SPI-FG were influenced by the oil type, emulsifier type and emulsion particle size. SPI-stabilized emulsion behaved as active fillers in SPI-FG reinforcing the gel matrix; however, the gel matrix of TFSP-FG still had many void pores when SPI-stabilized emulsion was involved. In conclusion, compared to SPI-FG, the emulsion filler effect that could reinforce gel networks became weaker in TFSP-FG.


Assuntos
Emulsificantes , Emulsões , Géis , Tamanho da Partícula , Reologia , Proteínas de Soja , Proteínas de Soja/química , Emulsões/química , Emulsificantes/química , Géis/química , Óleos de Plantas/química , Óleo de Palmeira/química , Óleo de Brassica napus/química , Óleo de Coco/química , Dureza , Caseínas/química , Gorduras na Dieta
20.
J Struct Biol ; : 108109, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964522

RESUMO

Parkinson's disease (PD) is a category of neurodegenerative disorders (ND) that currently lack comprehensive and definitive treatment strategies. The etiology of PD can be attributed to the presence and aggregation of a protein known as α-synuclein. Researchers have observed that the application of an external electrostatic field holds the potential to induce the separation of the fibrous structures into peptides. To comprehend this phenomenon, our investigation involved simulations conducted on the α-synuclein peptides through the application of Molecular Dynamics (MD) simulation techniques under the influence of a 0.1 V/nm electric field. The results obtained from the MD simulations revealed that in the presence of external electric field, the monomer and oligomeric forms of α-synuclein are experienced significant conformational changes which could prevent them from further aggregation. However, as the number of peptide units in the model system increases, forming trimers and tetramers, the stability against the electric field also increases. This enhanced stability in larger aggregates indicates a critical threshold in α-synuclein assembly where the electric field's effectiveness in disrupting the aggregation diminishes. Therefore, our findings suggest that early diagnosis and intervention could be crucial in preventing PD progression. When α-synuclein predominantly exists in its monomeric or dimeric form, applying even a lower electric field could effectively disrupt the initial aggregation process. Inhibition of α-synuclein fibril formation at early stages might serve as a viable solution to combat PD by halting the formation of more stable and pathogenic α-synuclein fibrils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA