RESUMO
The picture of bacterial biofilms as a colloidal gel composed of rigid bacterial cells protected by extracellular crosslinked polymer matrix has been pivotal in understanding their ability to adapt their microstructure and viscoelasticity to environmental assaults. This work explores if an analogous perspective exists in fungal biofilms with long filamentous cells. To this end, we consider biofilms of the fungus Neurospora discreta formed on the air-liquid interface, which has shown an ability to remove excess nitrogen and phosphorous from wastewater effectively. We investigated the changes to the viscoelasticity and the microstructure of these biofilms when the biofilms uptake varying concentrations of nitrogen and phosphorous, using large amplitude oscillatory shear flow rheology (LAOS) and field-emission scanning electron microscopy (FESEM), respectively. A distinctive peak in the loss modulus (Gâ³) at 30-50 % shear strain is observed, indicating the transition from an elastic to plastic deformation state. Though a peak in Gâ³ has been observed in several soft materials, including bacterial biofilms, it has eluded interpretation in terms of quantifiable microstructural features. The central finding of this work is that the intensity of the Gâ³ peak, signifying resistance to large deformations, correlates directly with the protein and polysaccharide concentrations per unit biomass in the extracellular matrix and inversely with the shear-induced changes in filament orientation in the hyphal network. These correlations have implications for the rational design of fungal biofilms with tuneable mechanical properties.
RESUMO
Moisture absorption into hygroscopic/hydrophilic materials used in fused deposition modeling (FDM) can diminish desired mechanical properties. Sensitivity to moisture is dependent on material properties and environmental factors and needs characterization. In this article, moisture sensitivity of four grades of polylactic acid (PLA) filaments and four different ratios of PLA/polybutylene succinate (PBS) blended filaments were characterized through FDM printed American society for testing and materials (ASTM-D638) test samples after conditioning the filaments at different relative humidity levels. The tensile testing and scanning electron microscopy (SEM) of the samples' fracture surfaces revealed that PLA 4043D was the most moisture-sensitive among the chosen grades of PLA filaments. Through filament tension test and melt flow index (MFI) testing it was observed that moisture had a significant detrimental effect (20% reduction in tensile strength and 50% increase in MFI) on PLA 4043D filaments. Samples from moisture-conditioned PLA/PBS 75/25 blended filaments displayed a significant reduction (10%) in tensile strength. Moreover, the MFI of 75/25 filaments was increased with subsequent increases in moisture level. Investigation of tensile properties of ASTM samples made from four grades of PLA filaments exposed to room temperature and humidity conditions for 3 months showed an even more significant decrease in strength (ranging from 24% to 36%).
RESUMO
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) known for their exceptional electrical and optical properties have emerged as promising channel materials for next-generation electronics. However, as strong Fermi-level pinning (FLP) between the metal and the 2D TMDC material at the source/drain (S/D) contact decides the Schottky barrier height (SBH), the transistor polarity is fixed to a certain type, which remains a challenge for the 2D TMDC field-effect transistors (FETs). Here, a S/D contact structure with a quasi-zero-dimensional (quasi-0D) contact interface, in which the dimensionality reduction effect alleviates FLP, was developed to gain controllability over the polarity of the 2D TMDC FET. As a result, conventional metal contacts on the WSe2 FET showed n-type characteristics due to strong FLP (pinning factor of 0.06) near the conduction band, and the proposed quasi-0D contact enabled by the Ag conductive filament on the WSe2 FET exhibited p-type characteristics with a SBH very close to the Schottky-Mott rule (pinning factor of 0.95). Furthermore, modeling of Schottky barriers of conventional contacts, one-dimensional (1D) contacts, and quasi-0D contacts revealed that the SBH of the quasi-0D contact is relatively less subject to interface dipoles that induce FLP, owing to more rapid decaying of dipole energy. The proposed contact in this study provided a method that progressed beyond the alleviation of FLP to achieve controllable polarity. Moreover, reducing the contact dimensionality to quasi-0D will enable high compatibility with the further scaled-down nanoscale device contact structure.
RESUMO
Lithium-ion batteries (LIBs) are essential in modern electronics, particularly in portable devices and electric vehicles. However, the limited design flexibility of current battery shapes constrains the development of custom-sized power sources for advanced applications like wearable electronics and medical devices. Additive manufacturing (AM), specifically Fused Filament Fabrication (FFF), presents a promising solution by enabling the creation of batteries with customized shapes. This study explores the use of novel poly(acrylonitrile-co-polyethylene glycol methyl ether acrylate) (poly(AN-co-PEGMEA)) copolymers as solid polymer electrolytes for lithium-ion batteries, optimized for 3D printing using FFF. The copolymers were synthesized with varying AN:PEGMEA ratios, and their physical, thermal, and electrochemical properties were systematically characterized. The study found that a poly(AN-co-PEGMEA) 6:1 copolymer ratio offers an optimal balance between printability and ionic conductivity. The successful extrusion of filaments and subsequent 3D printing of complex shapes demonstrate the potential of these materials for next-generation battery designs. The addition of succinonitrile (SCN) as a plasticizer significantly improved ionic conductivity and lithium cation transference numbers, making these copolymers viable for practical applications. This work highlights the potential of combining polymer chemistry with additive manufacturing to provide new opportunities in lithium-ion battery design and function.
RESUMO
Hybrid manufacturing processes integrate multiple manufacturing techniques to leverage their respective advantages and mitigate their limitations. This study combines additive manufacturing and injection molding, aiming to efficiently produce components with extensive design flexibility and functional integration. The research explores the interfacial fusion bonding of hybrid additively manufactured components under torsional loading. Specifically, it examines the impact of various surface treatments on injection molded parts and the influence of different build chamber temperatures during additive manufacturing on torsional strength. Polycarbonate components, neat, with glass or carbon fiber-reinforcement, are produced and assessed for dimensional accuracy, torsional strength, and fracture behavior. The findings emphasize the critical role of surface treatment for the injection molded components before additive manufacturing. Additionally, the study identifies the influence of chamber temperatures on both dimensional accuracy and torsional strength. Among all investigated materials, plasma-treated neat samples exhibited the best torsional strength. The torsional strength was increased by up to 87% by actively heating the build chamber to 186 °C for neat polycarbonate. These insights aim to advance the quality and performance of hybrid additively manufactured components, broadening their application potential across diverse fields.
RESUMO
The use of Fused Filament Fabrication (FFF) of high-performance polymers is becoming increasingly prevalent, leading to the exploration of new applications. The use of such materials in critical cases for aerospace applications necessitates the verification of industry standards, particularly with regard to the requirements for part porosity. The authors investigate the effect of nozzle diameter and cooling temperature printing parameters on the porosity of the part by using existing modelling methods based on the sintering of cylinders and spheres and comparing the results to microscope snapshots of sections of parts. The models are able to be used as limits for predicting the longitudinal neck growth of the part. The authors show through experiments that the value of the cooling temperature of the deposited filament has a minimal effect on the outcome, while nozzle diameter has a strong impact on the resulting porosity. The modelling results show that there is a significant impact of both the nozzle diameter and cooling temperature on the porosity of the part. This implies that further refinement of the models is needed for the resulting parts to be applied in critical structures.
RESUMO
Fused filament fabrication (FFF) is one of the most popular additive manufacturing (AM) processes due to its simplicity and low initial and maintenance costs. However, good printing results such as high dimensionality, avoidance of cooling cracks, and warping are directly related to heat control in the process and require precise settings of printing parameters. Therefore, accurate prediction and understanding of temperature peaks and cooling behavior in a local area and in a larger part are important in FFF, as in other AM processes. To analyze the temperature peaks and cooling behavior, we simulated the heat distribution, including convective heat transfer, in a cuboid sample. The model uses the finite difference method (FDM), which is advantageous for parallel computing on graphics processing units and makes temperature simulations also of larger parts feasible. After the verification process, we validate the simulation with an in situ measurement during FFF printing. We conclude the process simulation with a parameter study in which we vary the function of the heat transfer coefficient and part size. For smaller parts, we found that the print bed temperature is crucial for the temperature gradient. The approximations of the heat transfer process play only a secondary role. For larger components, the opposite effect can be observed. The description of heat transfer plays a decisive role for the heat distribution in the component, whereas the bed temperature determines the temperature distribution only in the immediate vicinity of the bed. The developed FFF process model thus provides a good basis for further investigations and can be easily extended by additional effects or transferred to other AM processes.
RESUMO
Fused filament fabrication (FFF) has opened new opportunities for the effortless fabrication of complex structures at low cost. The additively manufactured lattice structures have been widely used in different sectors. However, the parts fabricated through FFF suffered from poor surface and dimensional characteristics. These disadvantages have been overcome by using different post-processing techniques. The present investigation has been focused on the post-processing of flexible lattice structures through chemical treatment methods. The flexible lattice structures have been fabricated by using thermoplastic polyurethane material. Body-centered cubic lattice structures have been chosen for the present study. The fabricated lattice structures have been post-processed using dimethyl sulfoxide solvent through the chemical immersion method. The response characteristics chosen for the present study were surface roughness, compressive strength, and dimensional accuracy. The measurement has been taken before and after the chemical treatment method for comparison purpose. The results of experimental studies depicted that the proposed methodology significantly enhanced the surface quality and dimensional accuracy, whereas compressive strength has been observed to be slightly reduced after the post-processing method.
RESUMO
BACKGROUND: Recent advances in blood-based biomarker discovery are paving the way for simpler, more accessible diagnostic tools that can detect early signs of Alzheimer's disease (AD). Recent successes in the development of amyloid-targeting immunotherapy approaches mark an important advancement in providing new options for the treatment of AD. We have developed a set of high-affinity monoclonal antibodies (mAbs) to tau protein that have the potential as tools for diagnosis and treatment of AD. METHODS: Sheep were immunised with either full-length tau (1-441) or truncated paired helical filament (PHF)-core tau (297-391). A stringent bio-panning and epitope selection strategy, with a particular focus directed to epitopes within the disease-relevant PHF-core tau, was used to identify single-chain antibodies (scAbs). These scAbs were ranked by affinity for each epitope class, with leads converted to high-affinity mAbs. These antibodies and their potential utility were assessed by their performance in tau immunoassays, as well as their ability to prevent tau aggregation and propagation. Further characterisation of these antibodies was performed by immunohistochemical staining of brain sections and immuno-gold electronmicroscopy of isolated PHFs. RESULTS: Our work resulted in a set of high-affinity antibodies reacting with multiple epitopes spanning the entire tau protein molecule. The tau antibodies directed against the core tau unit of the PHF inhibited pathological aggregation and seeding using several biochemical and cell assay systems. Through staining of brain sections and PHFs, the panel of antibodies revealed which tau epitopes were available, truncated, or occluded. In addition, highly sensitive immunoassays were developed with the ability to distinguish between and quantify various tau fragments. CONCLUSION: This article introduces an alternative immunodiagnostic approach based on the concept of a "tauosome" - the diverse set of tau fragments present within biological fluids. The development of an antibody panel that can distinguish a range of different tau fragments provides the basis for a novel approach to potential diagnosis and monitoring of disease progression. Our results further support the notion that tau immunotherapy targeting the PHF-core needs to combine appropriate selection of both the target epitope and antibody affinity to optimise therapeutic potential.
Assuntos
Doença de Alzheimer , Anticorpos Monoclonais , Proteínas tau , Proteínas tau/imunologia , Proteínas tau/metabolismo , Doença de Alzheimer/imunologia , Doença de Alzheimer/terapia , Doença de Alzheimer/diagnóstico , Animais , Ovinos , Anticorpos Monoclonais/imunologia , Humanos , Encéfalo/metabolismo , Encéfalo/imunologia , Encéfalo/patologia , Epitopos/imunologiaRESUMO
In this work, a novel tool for small-scale filament production is presented. Unlike traditional methods such as hot melt extrusion (HME), the device (i) allows filament manufacturing from small material amounts as low as three grams, (ii) ensures high diameter stability almost independent of the viscoelastic behavior of the polymer melt, and (iii) enables processing of materials with rheological profiles specifically tailored toward fused filament fabrication (FFF). Hence, novel materials, previously difficult to process due to HME limitations, become easily accessible for FFF for the first time. Here, we showcase the production of highly flexible drug-free, and drug-loaded filaments based on ethylene-vinyl acetate polymers with a vinyl acetate content of 28 w% (EVA28) and unprecedented high melt flow rates of up to 400 g/10 min. Owing to their low viscosity, FFF with low print nozzle sizes of 250 µm was achieved for the first time for EVA28. These small nozzle diameters facilitate 3D-printing of high-resolution structures in small-dimensional dosage forms such as subcutaneous implantable drug delivery systems, which can later be used for personalization. Consequently, the material portfolio for FFF is tremendously broadened, allowing material and formulation optimization toward FFF, independent of a preliminary extrusion process.
Assuntos
Polivinil , Impressão Tridimensional , Polivinil/química , Viscosidade , Sistemas de Liberação de Medicamentos , Reologia , Próteses e Implantes , Elasticidade , Medicina de Precisão , HumanosRESUMO
Spinal movement in both upright and recumbent positions generates changes in physicochemical stresses including hydrostatic pressure (HP), deviatoric stress, and confinement within the intradiscal compartment. The nucleus pulposus (NP) of the intervertebral disc is composed of highly negatively charged extracellular matrix (ECM), which increases osmotic pressure (OP) and generates tissue swelling. In pursuing regenerative therapies for intervertebral disc degeneration, the effects of HP on the cellular responses of NP cells and the ECM environment remain incompletely understood. We hypothesized that anabolic turnover of ECM in NP tissue is maintained under HP and confinement. We first clarified the effects of the relationships among HP, OP, and confinement on swelling NP explants isolated from bovine caudal intervertebral discs over 12 hours. We found that the application of confinement and constant HP significantly inhibits the free swelling of NP (p < 0.01) and helps retain the sulfated glycosaminoglycan. Since confinement and HP inhibited swelling, we incubated confined NPs under HP in high-osmolality medium mimicking ECM-associated OP for 7 days and demonstrated the effects of HP on metabolic turnover of ECM molecules in NP cells. The aggrecan core protein gene was significantly upregulated under confinement and constant HP compared to confinement and no HP (p < 0.01). We also found that confinement and constant HP helped to significantly retain smaller cell area (p < 0.01) and significantly prevent the severing of actin filaments compared to no confinement and HP (p < 0.01). Thus, we suggest that NP's metabolic turnover and cellular responses are regulated by the configuration of intracellular actin and fibrillar ECMs under HP.
RESUMO
Neuromorphic engineering is rapidly developing as an approach to mimicking processes in brains using artificial memristors, devices that change conductivity in response to the electrical field (resistive switching effect). Memristor-based neuromorphic systems can overcome the existing problems of slow and energy-inefficient computing that conventional processors face. In the Introduction, the basic principles of memristor operation and its applications are given. The history of switching in sandwich structures and granular metals is reviewed in the Historical Overview. Particular attention is paid to the fundamental articles from the pre-memristor era (the 1960s-70s), which demonstrated the first evidence of resistive switching and predicted the filamentary mechanism of switching. Multi-dimensionality in neuromorphic systems: Despite the powerful computational abilities of traditional memristor arrays, they cannot repeat many organizational characteristics of biological neural networks, i.e., their multi-dimensionality. This part reviews the unconventional nanowire- and nanoparticle-based neuromorphic systems that demonstrate incredible potential for use in reservoir computing due to the unique spiking change in conductance similar to firing in neurons. Liquid-based neuromorphic devices: The transition of neuromorphic systems from solid to liquid state broadens the possibilities for mimicking biological processes. In this section, ionic current memristors are reviewed and, the working principles of which bring us closer to the mechanisms of information transmittance in real synapses. Nanofluids: A novel direction in neuromorphic engineering linked to the application of nanofluids for the formation of reconfigurable nanoparticle networks with memristive properties is given in this section. The Conclusion t summarizes the bullet points of the Review and provides an outlook on the future of liquid-state neuromorphic systems.
RESUMO
Different forms of close-packed yarns can be produced by varying the number of monofilaments in the core region, ranging from one to five. Numerous efforts have been made to model or simulate the mechanical response of close-packed yarns; however, previous studies have predominantly focused on one or two monofilaments in the core. In this study, we propose an analytical approach that combines a geometrical model with an artificial neural network (ANN) to predict the tensile behavior of close-packed yarns containing 2 to 5 monofilaments in the core region. The novelty of this hybrid model lies not only in accounting for more than two monofilaments in the core but also in extending the prediction range from elastic to viscoelastic-plastic behavior. Validation of the proposed method showed excellent agreement between experimental and theoretical results. Numerical simulations further confirmed that the results align with theoretical predictions, demonstrating the model's accuracy in predicting the tensile behavior of close-packed yarns. This modeling approach has the potential to significantly improve the understanding and modeling of textile structures.
RESUMO
Cancer chemotherapy induces cell stress in rapidly dividing cancer cells to trigger their growth arrest and apoptosis. However, adverse effects related to cardiotoxicity underpinned by a limited regenerative potential of the heart limits clinical application: In particular, chemotherapy with doxorubicin (DOXO) causes acute heart injury that can transition to persisting cardiomyopathy (DOXO-CM). Here, we tested if MuRF1 inhibition ("MuRFi") was able to attenuate DOXO-CM. To mimic DOXO chemotherapy, we treated mice over four weeks with five DOXO injections, resulting in a cumulative dosage of 25 mg/kg. At day 28, mice had lower body and heart weights, reduced cardiac cross-sectional myofibrillar areas (CSAs), and disturbed functional ejection fractions (EFs) and fractional shortenings (FS) as indicated by echocardiography (ECHO). In contrast, mice with a 1 g/kg Myomed#205 spiked diet, a previously described experimental MuRFi therapy, showed lower DOXO-CM at day 28, and also reduced acute DOXO cardiac injury at day 7 (single DOXO dose; 15 mg/kg). Underlying molecular signatures using Western blot (WB) assays showed at day 28 reduced phospho-AKT (AKTp) and phospo-4EBP1 (4 EBP1p) levels following DOXO that were normalized following MuRFi treatment. Taken together, our data suggest that MuRFi treatment is suitable to attenuate DOXO-CM by preserving AKTp and 4 EBP1p levels in DOXO stressed cardiomyocytes, thereby supporting de novo protein translation and cardiomyocyte survival under translational arrest stress.
RESUMO
This article explores the fatigue characteristics of acrylonitrile butadiene styrene (ABS) components fabricated using fused filament fabrication (FFF) additive manufacturing technology. ABS is frequently used as a polymeric thermoplastic material in open-source FFF machines for a variety of engineering applications. However, a comprehensive understanding of the mechanical properties and execution of FFF-processed ABS components is necessary. Currently, there is limited knowledge regarding the fatigue behavior of ABS components manufactured using FFF AM technology. The primary target of this study is to evaluate the results of part-build directions and build orientation angles on the tensile fatigue behavior exhibited by ABS material. To obtain this target, an empirical investigation was carried out to assess the influence of building angles and orientation on the fatigue characteristics of ABS components produced using FFF. The test samples were printed in three distinct directions, including Upright, On Edge, and Flat, and with varying orientation angles ([0°, 90°], [15°, 75°], [30°, 60°], [45°]), using a 50% filling density. The empirical data suggest that, at each printing angle, the On-Edge building orientation sample exhibited the most prolonged vibrational duration before fracturing. In this investigation, we found that the On-Edge printing direction significantly outperformed the other orientations in fatigue life under cyclic loading with 1592 loading cycles when printed with an orientation angle of 15°-75°. The number of loading cycles was 290 and 39 when printed with the same orientation angle for the Flat and Upright printing directions, respectively. This result underscores the importance of orientation in the mechanical performance of FFF-manufactured ABS materials. These findings enhance our comprehension of the influence exerted by building orientation and building angles on the fatigue properties of FFF-produced test samples. Moreover, the research outcomes supply informative perspectives on the selection of building direction and building orientation angles for the design of 3D-printed thermoplastic components intended for fatigue cyclic-loading applications.
RESUMO
Bacteria power rotation of an extracellular flagellar filament for swimming motility. Thousands of flagellin subunits compose the flagellar filament, which extends several microns from the bacterial surface. It is unclear whether bacteria actively control filament length. Many polarly flagellated bacteria produce shorter flagellar filaments than peritrichous bacteria, and FlaG has been reported to limit flagellar filament length in polar flagellates. However, a mechanism for how FlaG may function is unknown. We observed that deletion of flaG in the polarly flagellated pathogens Vibrio cholerae, Pseudomonas aeruginosa, and Campylobacter jejuni caused extension of flagellar filaments to lengths comparable to peritrichous bacteria. Using C. jejuni as a model to understand how FlaG controls flagellar filament length, we found that FlaG and FliS chaperone-flagellin complexes antagonize each other for interactions with FlhA in the flagellar type III secretion system (fT3SS) export gate. FlaG interacted with an understudied region of FlhA, and this interaction appeared to be enhanced in ΔfliS and FlhA FliS-binding mutants. Our data support that FlaG evolved in polarly flagellated bacteria as an antagonist to interfere with the ability of FliS to interact with and deliver flagellins to FlhA in the fT3SS export gate to control flagellar filament length so that these bacteria produce relatively shorter flagella than peritrichous counterparts. This mechanism is similar to how some gatekeepers in injectisome T3SSs prevent chaperones from delivering effector proteins until completion of the T3SS and host contact occurs. Thus, flagellar and injectisome T3SSs have convergently evolved protein antagonists to negatively impact respective T3SSs to secrete their major terminal substrates.
Assuntos
Proteínas de Bactérias , Campylobacter jejuni , Flagelos , Flagelina , Sistemas de Secreção Tipo III , Campylobacter jejuni/metabolismo , Campylobacter jejuni/genética , Flagelos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Flagelina/metabolismo , Flagelina/genética , Sistemas de Secreção Tipo III/metabolismo , Sistemas de Secreção Tipo III/genética , Vibrio cholerae/metabolismo , Vibrio cholerae/genética , Proteínas de MembranaRESUMO
The silkworm Nocardia infection model has been established as a useful animal model for screening the pathogenicity of Nocardia and evaluating the therapeutic effects of antimicrobial agents against Nocardia infection. No histopathological analysis of silkworms infected with Nocardia farcinica has yet been performed. In this study, we performed histological analyses on organs of silkworms infected with N. farcinica. One day after infection with N. farcinica, the organism developed a branching filamentous form from coccid cells in the hemolymph. In addition, we evaluated effective doses (ED50) values by treating infected silkworms with amikacin 30 seconds and 24 hours after infection and found that the ED50 values treated within 30 seconds and 24 hours after infection were 4.1 µg/larva and 5.6 µg/larva, respectively. Evaluation of treatment with amikacin against the infected silkworms was unaffected by the growth process form of Nocardia. These results suggest that the silkworm Nocardia infection model is a useful tool for evaluating the antimicrobial therapy in the growth process of the N. farcinica.
RESUMO
Intermediate filaments are one of the three components of the cytoskeletons, along with actin and microtubules. The intermediate filaments consist of extensive variations of structurally related proteins with specific expression patterns in cell types. The expression pattern alteration of intermediate filaments is frequently correlated with cancer progression, specifically with the epithelial-to-mesenchymal transition process closely related to increasing cellular migration and invasion. This review will discuss the involvement of cytoplasmic intermediate filaments, specifically vimentin, nestin, and cytokeratin (CK5/CK6, CK7, CK8/CK18, CK17, CK19, CK20, CSK1), in breast cancer progression and as prognostic or diagnostic biomarkers. The potential for drug development targeting intermediate filaments in cancer will be reviewed.
RESUMO
Additive manufacturing (AM) of components using material extrusion (MEX) offers the potential for the integration of functions through the use of multi-material design, such as sensors, actuators, energy storage, and electrical connections. However, there is a significant gap in the availability of electrical composite properties, which is essential for informed design of electrical functional structures in the product development process. This study addresses this gap by systematically evaluating the resistivity (DC, direct current) of 14 commercially available filaments as unprocessed filament feedstock, extruded fibers, and fabricated MEX-structures. The analysis of the MEX-structures considers the influence of anisotropic electrical properties induced by the selective material deposition inherent to MEX. The results demonstrate that composites containing fillers with a high aspect ratio, such as carbon nanotubes (CNT) and graphene, significantly enhance conductivity and improve the reproducibility of MEX structures. Notably, the extrusion of filaments into MEX structures generally leads to an increase in resistivity; however, composites with CNT or graphene exhibit less reduction in conductivity and lower variability compared to those containing only carbon black (CB) or graphite. These findings underscore the importance of filler selection and composition in optimizing the electrical performance of MEX structures.
RESUMO
A novel approach, i.e., Continuous Material Deposition on Filaments (CMDF), for the incorporation of active materials within 3D-printed structures is presented. It is based on passing a filament through a solution in which the active material is dissolved together with the polymer from which the filament is made. This enables the fabrication of a variety of functional 3D-printed objects by fused deposition modeling (FDM) using commercial filaments without post-treatment processes. This generic approach has been demonstrated in objects using three different types of materials, Rhodamine B, ZnO nanoparticles (NPs), and Ciprofloxacin (Cip). The functionality of these objects is demonstrated through strong antibacterial activity in ZnO NPs and the controlled release of the antibiotic Cip. CMDF does not alter the mechanical properties of FDM-printed structures, can be applied with any type of FDM printer, and is, therefore, expected to have applications in a wide variety of fields.