Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 468
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 275(Pt 2): 133562, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38955299

RESUMO

Polymeric materials such as fabric and foam have high flammability which limits their application in the field of fire protection. To this end, an organic-inorganic polymer colloid constructed from carboxymethyl chitosan and ammonium polyphosphate was used to improve the flame retardancy of flax fabric (FF) and rigid polyurethane foam (RPUF) based on a "one for two" strategy. The modification processes of FF and RPUF relied on pad-dry-cure method and UV-curing technology, respectively, and the modified FF and RPUF were severally designated as CMC/APP-FF and RFR-RPUF. Flame retardancy studies showed that CMC/APP-FF and RFR-RPUF exhibited limiting oxygen index values as high as 39.4 % and 42.6 %, respectively, and both achieved self-extinguishing behavior when external ignition source was removed. Thermogravimetric analysis and cone calorimetry test confirmed that CMC/APP-FF and RFR-RPUF had good charring ability and demonstrated reduced peak heat release rate values of 90.1 % and 10.8 %, respectively, distinct from before they were modified. In addition, condensed phase analysis showed that after burning, CMC/APP-FF became an integration char structure, whereas RFR-RPUF turned into a sandwiched char structure. In summary, the "one for two" strategy reported in this work provides a new insight into the economical fabrication of flame-retardant polymeric materials.

2.
Chempluschem ; : e202400341, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975963

RESUMO

Dynamic covalent chemistry is a promising strategy for developing recyclable thermosets and their carbon fiber reinforced composites, in line with the goal of green and sustainable development. However, a significant challenge lies in balancing the dynamic reversibility and the desired service performances, such as thermal, mechanical properties, and flame retardancy. It has hindered the broader application of dynamic materials beyond the initial proof of concept. This concept provides an overview of the current state of research on phosphorus-containing covalent adaptable networks (CANs), highlighting key designing and regulating principles for tailoring comprehensive properties including flame retardancy, mechanical and thermal properties, as well as dynamic behaviours such as malleability, reprocessability and degradability. Finally, new frontiers and opportunities in developing high-performance sustainable CANs-based thermosets and their carbon fiber composites for structural engineering applications are prospected.

3.
Molecules ; 29(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999018

RESUMO

After the period of halogenated compounds, the period of nano-structured systems, and that of phosphorus (and nitrogen)-based additives (still in progress), following the increasingly demanding circular economy concept, about ten years ago the textile flame retardant world started experiencing the design and exploitation of bio-sourced products. Indeed, since the demonstration of the potential of such bio(macro)molecules as whey proteins, milk proteins (i.e., caseins), and nucleic acids as effective flame retardants, both natural and synthetic fibers and fabrics can take advantage of the availability of several low-environmental impact/"green" compounds, often recovered from wastes or by-products, which contain all the elements that typically compose standard flame-retardant recipes. The so-treated textiles often exhibit flame-retardant features that are similar to those provided by conventional fireproof treatments. Further, the possibility of using the same deposition techniques already available in the textile industry makes these products very appealing, considering that the application methods usually do not require hazardous or toxic chemicals. This review aims to present an overview of the development of bio-sourced flame retardants, focusing attention on the latest research outcomes, and finally discussing some current challenging issues related to their efficient application, paving the way toward further future implementations.

4.
Molecules ; 29(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38999060

RESUMO

Incorporating outstanding flame retardancy and electromagnetic interference shielding effectiveness (EMI SE) into polymers is a pressing requirement for practical utilization. In this study, we first employed the principles of microencapsulation and electrostatic interaction-driven self-assembly to encapsulate polyethyleneimine (PEI) molecules and Ti3C2Tx nanosheets on the surface of ammonium polyphosphate (APP), forming a double-layer-encapsulated structure of ammonium polyphosphate (APP@PEI@Ti3C2Tx). Subsequently, flame-retardant thermoplastic polyurethane (TPU) composites were fabricated by melting the flame-retardant agent with TPU. Afterwards, by using air-assisted thermocompression technology, we combined a reduced graphene oxide (rGO) film with flame-retardant TPU composites to fabricate hierarchical TPU/APP@PEI@Ti3C2Tx/rGO composites. We systematically studied the combustion behavior, flame retardancy, and smoke-suppression performance of these composite materials, as well as the flame-retardant mechanism of the expansion system. The results indicated a significant improvement in the interface interaction between APP@PEI@Ti3C2Tx and the TPU matrix. Compared to pure TPU, the TPU/10APP@PEI@1TC composite exhibited reductions of 84.1%, 43.2%, 62.4%, and 85.2% in peak heat release rate, total heat release, total smoke release, and total carbon dioxide yield, respectively. The averaged EMI SE of hierarchical TPU/5APP@PEI@1TC/rGO also reached 15.53 dB in the X-band.

5.
Materials (Basel) ; 17(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38998265

RESUMO

The phenomenon of high-temperature oxidation in magnesium alloys constitutes a significant obstacle to their application in the aerospace field. However, the incorporation of active elements such as alloys and rare earth elements into magnesium alloys alters the organization and properties of the oxide film, resulting in an enhancement of their antioxidation capabilities. This paper comprehensively reviews the impact of alloying elements, solubility, intermetallic compounds (second phase), and multiple rare earth elements on the antioxidation and flame-retardant effects of magnesium alloys. The research progress of flame-retardant magnesium alloys containing multiple rare earth elements is summarized from two aspects: the oxide film and the matrix structure. Additionally, the existing flame-retardancy models for magnesium alloys and the flame-retardant mechanisms of various flame-retardant elements are discussed. The results indicate that the oxidation of rare earth magnesium alloys is a complex process determined by internal properties such as the structure and properties of the oxide film, the type and amount of rare earth elements added, the proportion of multiple rare earth elements, synergistic element effects, as well as external properties like heat treatment, oxygen concentration, and partial pressure. Finally, some issues in the development of multi-rare earth magnesium alloys are raised and the potential directions for the future development of rare earth flame-retardant magnesium alloys are discussed. This paper aims to promote an understanding of the oxidation behavior of flame-retardant magnesium alloys and provide references for the development of rare earth flame-retardant magnesium alloys with excellent comprehensive performance.

6.
Materials (Basel) ; 17(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38998289

RESUMO

Polycarbonate (PC) as a widely used engineering plastic that shows disadvantages of flammability and large smoke production during combustion. Although many flame-retardant PCs have been developed, most of them show enhanced flame retardancy but poor smoke suppression or worsened mechanical performance. In this work, a novel nitrogen-phosphorus-sulfur synergistic flame retardant (Pc-FR) was synthesized and incorporated into PC with polytetrafluoroethylene (PTFE). The extremely low content of PC-FR (0.1-0.5 wt%) contributes significantly to the flame retardancy, smoke suppression and mechanical performance of PC. PC/0.3 wt% Pc-FR/0.3 wt% PTFE (PC-P0.3) shows the UL-94 V-0 and LOI of 33.5%. The PHRR, THR, PSPR, PCO and TCO of PC-P0.3 decreased by 39.44%, 14.38%, 17.45%, 54.75% and 30.61%, respectively. The impact strength and storage modulus of PC-P0.1 increased by 7.7 kJ/m2 and 26 MPa, respectively. The pyrolysis mechanism of PC-P0.3 is also revealed. The pyrolysis mechanism of PC-P0.3 is stochastic nucleation and subsequent growth and satisfies the Aevrami-Erofeev equation. The reaction order of PC-P0.3 is 1/2. The activation energy of PC-P0.3 is larger than PC-0, which proves that the Pc-FR can suppress the pyrolysis of the PC. This work offers a direction on how to design high-performance PC.

7.
Materials (Basel) ; 17(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38998379

RESUMO

Warm mix flame retardant asphalt mixture can reduce the energy dissipation and harmful gas emissions during asphalt pavement construction, as well as mitigate the adverse effects of road fires. For this, this paper studies the design and performance of a mixture modified with a combination of warm mix agent and flame retardant, and the pavement performance and flame retardancy of the modified mixture are evaluated. Additionally, a flame retardancy prediction model based on the radial basis function (RBF) neural network model is established. On this basis, the principal components analysis (PCA) model is used to analyze the most significant evaluation indicators affecting flame retardancy, and finally, a three-dimensional finite element model is developed to analyze the effects of loading on the pavement structure. The results show that compared to virgin asphalt mixture, the modified mixture shows a reduction in mixing and compaction temperatures by approximately 12 °C. The high-temperature performance of the mixture is improved, while the low-temperature performance and moisture stability slightly decrease, but its flame retardancy is significantly enhanced. The RBF neural network model revealed that the established flame retardancy prediction model has a high accuracy, allowing for precise evaluation of the flame retardancy. Finally, the PCA model identified that the combustion time has a significant effect on the flame retardancy of the asphalt mixture, and the finite element model revealed that the displacements of the warm mix fire retardant asphalt mixture were lower than virgin asphalt mixture in all directions under the loading.

8.
Carbohydr Polym ; 339: 122247, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823915

RESUMO

The escalating demand for environmentally sustainable and cost-effective adhesives in the wood processing and manufacturing sector has prompted exploration into innovative solutions. This study introduces a novel gel adhesive composed of chemically unmodified high-amylose starch (G70, with 68 % amylose content) with a minimal proportion of urea-formaldehyde (UF) (UF/starch = 1:10, w/w). This G70/UF gel demonstrates remarkable adhesive capabilities for wooden boards under both dry conditions (with a shear stress of 4.13 ± 0.12 MPa) and wet conditions (with a shear strength of 0.93 ± 0.07 MPa after 2 h of water soaking). The study unveils that the elevated amylose content in the starch, coupled with a meticulously controlled isothermal process during bonding, is crucial for these enhancements. Specifically, the robust cohesion of amylose chains expedites phase separation between starch and UF, while the isothermal process facilitates the migration and enrichment of UF molecules at the gel-board and gel-air interfaces. Lacking these mechanisms, conventional amylopectin-rich starch/UF gels (27 % amylose content) show minimal improvement. Moreover, the G70/UF gel showcases exceptional fire retardancy. In all, the G70/UF gel presents a promising alternative for plywood production, reducing reliance on unhealthy UF resin while offering satisfactory bonding resistance in diverse conditions and superior flame retardancy.

9.
Small ; : e2401940, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38845488

RESUMO

Porous polymer membranes as separator plays important roles in separating cathode and anode, storing electrolytes, and transporting ions in energy storage devices. Here, an effective strategy is reported to prepare an electrolyte superwetting membrane, which shows good Li+ transport rate and uniformity, as well as electrode-friendly properties to afford the reduction and oxidation of electrodes. It thereby improves the cycle stability and safety of Li metal batteries. With the arrayed capillaries technique, a thin layer of polyvinylidene fluoride (PVDF) and polyacrylonitrile (PAN) composite is uniformly coated on the surface and pores of polypropylene (PP) membrane with a total thickness of 30 µm. After treating it with n-butyllithium and LiNO3 in turn, a chemically inert membrane with efficient and uniform ion transport is prepared, and the cycle stability of Li||Li symmetric cells is up to 1500 h, 4 times higher than that of PP membrane. Moreover, the Li||LiFePO4 with as-prepared membranes achieve a higher capacity retention rate of 92% after 190 cycles at a current density of 3.6 mA cm-2 and a capacity of 3.6 mAh cm-2, and the Li||NCM721 batteries achieve a capacity retention rate of 71% after 600 cycles at a current density of 1.8 mA cm-2.

10.
Small ; : e2403079, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829022

RESUMO

Phosphate-based electrolyte propels the advanced battery system with high safety. Unfortunately, restricted by poor electrochemical stability, it is difficult to be compatible with advanced lithium metal anodes and Ni-rich cathodes. To alleviate these issues, the study has developed a phosphate-based localized high-concentration electrolyte with a nitrate-driven solvation structure, and the nitrate-derived N-rich inorganic interface shows excellent performance in stabilizing the LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode interface and modulating the lithium deposition morphology on the anode. The results show that the Li|| NCM811 cell has exceptional long-cycle stability of >80% capacity retention after 800 cycles at 4.3 V, 1 C. A more prominent capacity retention rate of 93.3% after 200 cycles can be reached with the high voltage of 4.5 V. While being compatible with the phosphate-based electrolyte with good flame retardancy and the good electrochemical stability of Ni-rich lithium metal battery (LMBs) systems, the present work expands the construction of anion-rich solvation structures, which is expected to promote the development of the high-performance LMBs with safety.

11.
Int J Biol Macromol ; 274(Pt 1): 133365, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914410

RESUMO

PLA is widely known as biodegradable plastics whose further application in fields such as automotive and architectural is still constrained by its flammability and unsatisfactory crystallization properties. To address the aforementioned concerns, a novel biomass phosphonamide PDPA was synthesized with chemical structure confirmed by FTIR, NMR and elemental analysis tests. Immediately thereafter, PLA/PDPA composites were prepared by melting blending, with a focus on flame retardancy, crystallization properties and flame-retardant mechanism. As expected, PDPA efficiently enhanced both the flame retardancy and crystallization properties of PLA. Specifically, the PLA/4.0PDPA obtained UL-94 V-0 grade and the LOI value increased to 28.6 % with only 4 wt% PDPA added, which comes down to the superior free radical capture and dilution effect of PDPA in the vapor phase and the melting droplet effect. More appealingly, the crystallinity of PLA/4.0PDPA was significantly enhanced to 43.4 % from 2.5 % of PLA, and the shortest t1/2 was 4 mins in the isothermal crystallization process due to the excellent heterogeneous nucleation of PDPA. Moreover, PLA/PDPA composites maintain almost the same mechanical performance as pure PLA. In brief, this work provides a green strategy for the preparation of PLA composites with excellent comprehensive performance and shows great potential in engineering materials.

12.
Int J Biol Macromol ; 273(Pt 1): 133042, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866277

RESUMO

Developing biobased flame retardant adhesives using a green and simple strategy has recently gained significant attention. Therefore, in this study, we have orange peel waste (OPW) and Acacia gum (AG) phosphorylated at 140 °C to synthesize biomass-derived flame retardant adhesive. OPW is a biomass material readily available in large quantities, which. Has been utilized to produce an eco-friendly, efficient adhesive. Functionalized polysaccharides were used as a binder rather than volatile, poisonous, and unsustainable petroleum-based aldehydes. The P@OPW/AG green adhesive exhibited a higher tensile strength of 11.25 MPa when applied to cotton cloth and demonstrated versatility across various substrates such as glass, cardboard, plastic, wood, and textiles. Additionally, this bio-based robust adhesive displayed remarkable flame-retardant properties. To optimize its flame retardancy, three tests were employed: the spirit lamp flame test, the vertical flammability test (VFT), and the limiting oxygen index (LOI) test. The P@OPW/AG-coated cotton fabric achieved an impressive LOI result of 42 %, while the VFT yielded a char length of only 4 cm. Additionally, during the flame test, P@OPW/AG coated cloth endured more than 845 s of continuous flame illumination. This work offers a sustainable and fire-safe method for creating environmentally friendly high-performance composites using a recyclable bio-based flame-retardant OPW/AG glue.


Assuntos
Adesivos , Retardadores de Chama , Retardadores de Chama/análise , Adesivos/química , Resistência à Tração , Goma Arábica/química , Têxteis , Biomassa , Citrus sinensis/química , Madeira/química
13.
J Colloid Interface Sci ; 672: 465-476, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38852349

RESUMO

Enhancing the flame retardancy of epoxy (EP) resins typically entailed a trade-off with other physical properties. Herein, hyperbranched poly(amidoamine) (HPAA) and phytic acid (PA) were used to functionalize graphene oxide (GO) via electrostatic self-assembly in water to prepare a phosphorus-nitrogen functionalized graphene oxide nanosheet (PN-GOs), which could be utilized as high efficient flame-retardant additive of epoxy resin without sacrificing other properties. The PN-GOs demonstrated improved dispersion and compatibility within the EP matrix, which resulted in significant concurrent enhancements in both the mechanical performance and flame-retardant properties of the PN-GOs/EP nanocomposites over virgin EP. Notably, the incorporation of just 1.0 wt% PN-GOs yielded a 20.4, 6.4 and 42.7 % increases in flexural strength, flexural modulus and impact strength for the PN-GOs/EP nanocomposites, respectively. Furthermore, simultaneous reductions were achieved in the peak heat release rate (pHRR) by 60.0 %, total smoke production (TSP) by 43.0 %, peak CO production rate (pCOP) by 57.9 %, and peak CO2 production rate (pCO2P) by 63.9 %. This study presented a facile method for the design of GO-based nano flame retardants, expanding their application potential in polymer-matrix composites.

14.
J Colloid Interface Sci ; 672: 618-630, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38861849

RESUMO

The construction of supramolecular aerogels still faces great challenges. Herein, we present a novel bio-based supramolecular aerogel derived from G-Quadruplex self-assembly of guanosine (G), boric acid (B) and sodium alginate (SA) and the obtained GBS aerogels exhibit superior flame-retardant and thermal insulating properties. The entire process involves environmentally friendly aqueous solvents and freeze-drying. Benefiting from the supramolecular self-assembly and interpenetrating dual network structures, GBS aerogels exhibit unique structures and sufficient self-supporting capabilities. The resulting GBS aerogels exhibit overall low densities (36.5-52.4 mg/cm3), and high porosities (>95 %). Moreover, GBS aerogels also illustrate excellent flame retardant and thermal insulating properties. With an oxygen index of 47.0-51.1 %, it can easily achieve a V-0 rating and low heat, smoke release during combustion. This work demonstrates the preparation of intrinsic flame-retardant aerogels derived from supramolecular self-assembly and dual cross-linking strategies, and is expected to provide an idea for the realization and application of novel supramolecular aerogel materials.

15.
Int J Biol Macromol ; 273(Pt 2): 132775, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823732

RESUMO

A novel flame retardant containing Si, N, and S elements, ((2-(triethoxysilyl)ethyl)thio)ethan-1-amine hydrochloride (TETEA), was synthesized via a click reaction and characterized using nuclear magnetic resonance spectroscopy (NMR) and fourier transform infrared spectroscopy (FTIR). Subsequently, the flame-retardant cotton fabric was fabricated by sol-gel method. The results indicated that TETEA was successfully loaded on cotton fabric and formed a uniform protective layer on the surface of cotton fabric, exhibiting excellent flame retardancy. The flame-retardant cotton fabric achieved limiting oxygen index (LOI) of 28.3 % and passed vertical combustion test without after-flame or afterglow time at TETEA concentration of 500 g/L. Thermogravimetric analysis revealed that the residual carbon content of the flame-retardant cotton fabric was much higher than that of the control under air and N2 conditions. Besides, the flame-retardant cotton fabric was not ignited in cone calorimeter test with an external heat flux of 35 kW/m2. The peak heat release rate and the total heat release decreased from 133.4 kW/m2 to 25.8 kW/m2 and from 26.46 MJ/m2 to 17.96 MJ/m2, respectively. This phosphorus-free flame retardant offers a simplified synthesis process without adverse environmental impacts, opening up a new avenue for the development environmentally friendly flame retardants compared to traditional alternatives.


Assuntos
Celulose , Fibra de Algodão , Retardadores de Chama , Retardadores de Chama/síntese química , Retardadores de Chama/análise , Fibra de Algodão/análise , Celulose/química , Celulose/análogos & derivados , Nitrogênio/química , Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Substâncias Macromoleculares/química , Substâncias Macromoleculares/síntese química
16.
Int J Biol Macromol ; 273(Pt 2): 132643, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823751

RESUMO

In the field of building energy conservation, the development of biodegradable biomass aerogels with excellent mechanical performance, flame retardancy and thermal insulation properties is of particular importance. Here, a directional freeze-drying method was used for fabricating composite sodium alginate (SA) aerogels containing functionalized ammonium polyphosphate (APP) flame retardant. In particular, APP was coated with melamine (MEL) and phytic acid (PA) by a supramolecular assembly process. Through optimizing the flame retardant addition, the SA-20 AMP sample exhibited excellent flame retardant and thermal insulation properties, with the limiting oxygen index of 38.2 % and the UL-94 rating of V-0. Such aerogels with anisotropic morphology demonstrated a low thermal conductivity of 0.0288 (W/m·K) in the radial direction (perpendicular to the lamellar structure). In addition, as-obtained aerogels displayed remarkable water stability and mechanical properties, indicating significant potential for practical applications.


Assuntos
Alginatos , Retardadores de Chama , Géis , Alginatos/química , Géis/química , Triazinas/química , Condutividade Térmica , Ácido Fítico/química , Polifosfatos/química , Fósforo/química , Nitrogênio/química
17.
Polymers (Basel) ; 16(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891418

RESUMO

Magnesium hydroxide, as a green inorganic flame-retardancy additive, has been widely used in polymer flame retardancy. However, magnesium hydroxide is difficult to disperse with epoxy resin (EP), and its flame-retardancy performance is poor, so it is difficult to use in flame-retardant epoxy resin. In this study, an efficient magnesium hydroxide-based flame retardant (MH@PPAC) was prepared by surface modification of 2-(diphenyl phosphine) benzoic acid (PPAC) using a simple method. The effect of MH@PPAC on the flame-retardancy properties for epoxy resins was investigated, and the flame-retardancy mechanism was studied. The results show that 5 wt% MH@PPAC can increase the limiting oxygen index for EP from 24.1% to 38.9%, achieving a V-0 rating. At the same time, compared to EP, the peak heat release rate, peak smoke production rate, total smoke production rate, and peak CO generation rate for EP/5 wt% MH@PPAC composite material decreased by 53%, 45%, 51.85%, and 53.13% respectively. The cooperative effect for PPAC and MH promotes the formation of a continuous and dense char layer during the combustion process for the EP-blend material, significantly reducing the exchange for heat and combustible gases, and effectively hindering the combustion process. Additionally, the surface modification of PPAC enhances the dispersion of MH in the EP matrix, endowing EP with superior mechanical properties that meet practical application requirements, thereby expanding the application scope for flame-retardant EP-blend materials.

18.
Polymers (Basel) ; 16(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38891530

RESUMO

Over the past few decades, polymer composites have received significant interest and become protagonists due to their enhanced properties and wide range of applications. Herein, we examined the impact of filler and flame retardants in hemp seed oil-based rigid polyurethane foam (RPUF) composites' performance. Firstly, the hemp seed oil (HSO) was converted to a corresponding epoxy analog, followed by a ring-opening reaction to synthesize hemp bio-polyols. The hemp polyol was then reacted with diisocyanate in the presence of commercial polyols and other foaming components to produce RPUF in a single step. In addition, different fillers like microcrystalline cellulose, alkaline lignin, titanium dioxide, and melamine (as a flame retardant) were used in different wt.% ratios to fabricate composite foam. The mechanical characteristics, thermal degradation behavior, cellular morphology, apparent density, flammability, and closed-cell contents of the generated composite foams were examined. An initial screening of different fillers revealed that microcrystalline cellulose significantly improves the mechanical strength up to 318 kPa. The effect of melamine as a flame retardant in composite foam was also examined, which shows the highest compression strength of 447 kPa. Significantly better anti-flaming qualities than those of neat foam based on HSO have been reflected using 22.15 wt.% of melamine, with the lowest burning time of 4.1 s and weight loss of 1.88 wt.%. All the composite foams showed about 90% closed-cell content. The present work illustrates the assembly of a filler-based polyurethane foam composite with anti-flaming properties from bio-based feedstocks with high-performance applications.

19.
Int J Biol Macromol ; 273(Pt 1): 132777, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834113

RESUMO

In this work, a bio-based material (CGP) is obtained by combing chitosan, gelatin and polyvinyl alcohol through a simple solution mixing to simultaneously address polylactic acid film (PLA)' flammability and poor barrier, toughness and antibacterial properties by soaking. The results of open fire testing show that modified PLA films can effectively prolong the combustion time, improve the thermal stability and reduce the release of heat in the cone calorimeter test. For the PLA sample after soaking for 5 times (PLA-5) in particular, it can reduce the peak heat release rate (pHRR) and total heat release (THR) values to 85.8 kW/m2 and 1.3 MJ/m2 from the values of 129.5 kW/m2 and 1.8 MJ/m2 for PLA, respectively. Structural analysis suggests that CGP primarily operates in the condensed phase by forming physical barriers. Meanwhile, the modified PLA films can exhibit superior barrier effects, which indicate the oxygen transmission rate value of PLA-5 decreases to 0.9 cm3/(m2·day) from the 392.5 cm3/(m2·day) of raw PLA film. Moreover, the PLA-5 also have excellent toughness (the value increased to 200.5 % from 31.0 %) and persistent antibacterial effects (it still has 100 % sterilization after 500 days).


Assuntos
Antibacterianos , Poliésteres , Poliésteres/química , Antibacterianos/farmacologia , Antibacterianos/química , Quitosana/química , Retardadores de Chama , Fenômenos Mecânicos , Gelatina/química , Álcool de Polivinil/química , Staphylococcus aureus/efeitos dos fármacos
20.
Materials (Basel) ; 17(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38893902

RESUMO

In this study, a top-down approach was employed for the fabrication of flame-retardant wood aerogels. The process involved the removal of lignin and the removal of hemicellulose utilizing NaOH concomitantly with the incorporation of ZnO and urea. Subsequently, an in situ reaction with boric acid was conducted to prepare flame-retardant wood aerogels. The morphology, chemical composition, thermal stability, and flame retardancy of the samples were studied. The results show that the NaOH treatment transformed the wood into a layered structure, and flame-retardant particles were uniformly distributed on the surface of the aerogel. The peak heat release rate (PHRR) and total heat release (THR) of the flame-retardant aerogel were significantly reduced compared with the control samples. Meanwhile, its vertical burning test (UL-94) rating reached the V-0 level, and the Limiting Oxygen Index (LOI) could exceed 90%. The flame-retardant wood aerogel exhibited excellent flame retardancy and self-extinguishing properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA