RESUMO
The extraction of double stranded (ds) RNA is a common enrichment method for the study, characterization, and detection of RNA viruses. In addition to RNA viruses, viroids, and some DNA viruses, can also be detected from dsRNA enriched extracts which makes it an attractive method for detecting a wide range of viruses when coupled with HTS. Several dsRNA enrichment strategies have been developed. The oldest utilizes the selective binding properties of dsRNA to cellulose. More recent methods are based on the application of anti-dsRNA antibodies and viral proteins with a specific affinity for dsRNA. All three methods have been used together with HTS for plant virus detection and study. To our knowledge, this is the first comparative study of three alternative dsRNA enrichment methods for virus and viroid detection through HTS using virus-infected, and healthy grapevine test plants. Extracts were performed in triplicate using methods based on, the anti-dsRNA antibody mAb rJ2 (Millipore Sigma Canada Ltd, Oakville, ON, Canada), the B2 dsRNA binding protein, and ReliaPrep™ Resin (Promega Corporation, Madison, WI, USA). The results show that the workflows for all three methods are effectively comparable, apart from purification steps related to antibody and binding protein construct. Both the cellulose resin and dsRNA binding protein construct methods provide highly enriched dsRNA extracts suitable for HTS with the B2 method providing a 36× and the ReliaPrep™ Resin a 163× increase in dsRNA enrichment compared to the mAb rJ2 antibody. The overall consistency and cost effectiveness of the ReliaPrep™ cellulose resin-based method and the potentially simpler adaptation to robotics made it the method of choice for future transfer to a semi-automated workflow.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Doenças das Plantas , RNA de Cadeia Dupla , RNA Viral , Vitis , RNA de Cadeia Dupla/genética , Vitis/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Viral/genética , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus de Plantas/isolamento & purificação , Vírus de RNA/genética , Vírus de RNA/isolamento & purificaçãoRESUMO
In this protocol, we outline how to produce a chimeric viral vaccine in a biosafety level 1 (BSL1) environment. An animal viral vector RNA encapsidated with tobacco mosaic virus (TMV) coat protein can be fully assembled in planta. Agrobacterium cultures containing each component are inoculated together into tobacco leaves and the self-assembled hybrid chimeric viral vaccine is harvested 4 days later and purified with a simple PEG precipitation. The viral RNA delivery vector is derived from the BSL1 insect virus, Flock House virus (FHV), and replicates in human and animal cells but does not spread systemically. A polyethylene glycol purification protocol is also provided to collect and purify these vaccines for immunological tests. In this update, we also provide a protocol for in trans co-inoculation of a modified FHV protein A, which significantly increased the yield of in planta chimeric viral vaccine.
Assuntos
Nicotiana , Replicon , Vírus do Mosaico do Tabaco , Vacinas Virais , Nicotiana/genética , Vacinas Virais/imunologia , Vacinas Virais/genética , Animais , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/imunologia , Replicon/genética , RNA Viral/genética , Vetores Genéticos/genética , Nodaviridae/genética , Nodaviridae/imunologia , Plantas Geneticamente Modificadas/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Agrobacterium/genética , HumanosRESUMO
Multi-segmented viruses often multimerize their genomic segments to ensure efficient and stoichiometric packaging of the correct genetic cargo. In the bipartite Nodaviridae family, genome heterodimerization is also observed and conserved among different species. However, the nucleotide composition and biological function for this heterodimer remain unclear. Using Flock House virus as a model system, we developed a next-generation sequencing approach ("XL-ClickSeq") to probe heterodimer site sequences. We identified an intermolecular base-pairing site which contributed to heterodimerization in both wild-type and defective virus particles. Mutagenic disruption of this heterodimer site exhibited significant deficiencies in genome packaging and encapsidation specificity to viral genomic RNAs. Furthermore, the disruption of this intermolecular interaction directly impacts the thermostability of the mature virions. These results demonstrate that the intermolecular RNA-RNA interactions within the encapsidated genome of an RNA virus have an important role on virus particle integrity and thus may impact its transmission to a new host.IMPORTANCEFlock House virus is a member of Nodaviridae family of viruses, which provides a well-studied model virus for non-enveloped RNA virus assembly, cell entry, and replication. The Flock House virus genome consists of two separate RNA molecules, which can form a heterodimer upon heating of virus particles. Although similar RNA dimerization is utilized by other viruses (such as retroviruses) as a packaging mechanism and is conserved among Nodaviruses, the role of heterodimerization in the Nodavirus replication cycle is unclear. In this research, we identified the RNA sequences contributing to Flock House virus genome heterodimerization and discovered that such RNA-RNA interaction plays an essential role in virus packaging efficiency and particle integrity. This provides significant insight into how the interaction of packaged viral RNA may have a broader impact on the structural and functional properties of virus particles.
Assuntos
Dimerização , Genoma Viral , Nodaviridae , RNA Viral , Termodinâmica , Empacotamento do Genoma Viral , Vírion , Animais , Pareamento de Bases/genética , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Nodaviridae/química , Nodaviridae/genética , Nodaviridae/crescimento & desenvolvimento , Infecções por Vírus de RNA/transmissão , Infecções por Vírus de RNA/veterinária , Infecções por Vírus de RNA/virologia , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Empacotamento do Genoma Viral/genética , Vírion/química , Vírion/genética , Vírion/metabolismoRESUMO
Flock House virus (FHV) is an animal virus and considered a model system for non-enveloped viruses. It has a small, icosahedral capsid (T=3) and a bipartite positive-sense RNA genome. We present an extensive study of the FHV capsid dynamics from all-atom molecular dynamics simulations of the complete capsid. The simulations explore different biologically relevant conditions (neutral/low pH, with/without RNA in the capsid) using the CHARMM force field. The results show that low pH destabilizes the capsid, causing radial expansion, and RNA stabilizes the capsid. The finding of low pH destabilization is biologically relevant because the capsid is exposed to low pH in the endosome, where conformational changes occur leading to genome release. We also observe structural changes at the fivefold and twofold symmetry axes that likely relate to the externalization of membrane active γ peptides through the fivefold vertex and extrusion of RNA at the twofold axis. Simulations using the Amber force field at neutral pH are also performed and display similar characteristics to the CHARMM simulations.
Assuntos
Capsídeo , Nodaviridae , Animais , Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/análise , Nodaviridae/química , Nodaviridae/genética , RNARESUMO
Insect antiviral immunity primarily relies on RNAi mechanisms. While a key role of small interfering (si)RNAs and AGO proteins has been well established in this regard, the situation for PIWI proteins and PIWI-interacting (pi)RNAs is not as clear. In the present study, we investigate whether PIWI proteins and viral piRNAs are involved in the immunity against single-stranded RNA viruses in lepidopteran cells, where two PIWIs are identified (Siwi and Ago3). Via loss- and gain-of-function studies in Bombyx mori BmN4 cells and in Trichoplusia ni High Five cells, we demonstrated an antiviral role of Siwi and Ago3. However, small RNA analysis suggests that viral piRNAs can be absent in these lepidopteran cells. Together with the current literature, our results support a functional diversification of PIWI proteins in insects.
Assuntos
Antivirais , Bombyx , Animais , Antivirais/metabolismo , Proteínas Argonautas/genética , Linhagem Celular , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismoRESUMO
Flock House virus (FHV), an insect RNA virus, has a bipartite genome. FHV RNA1 can be packaged in turnip yellow mosaic virus (TYMV) as long as the FHV RNA has a TYMV sequence at the 3'-end. The encapsidated FHV RNA1 has four additional nucleotides at the 5'- end. We investigated whether the recombinant FHV RNA1 could replicate in mammalian cells. To address this issue, we prepared in vitro transcribed FHV RNAs that mimicked the recombinant FHV RNA1, and introduced them into baby hamster kidney (BHK) cells. The result showed that the recombinant FHV RNA1 was capable of replication. An eGFP gene inserted into the frame with B2 gene of the FHV RNA1 was also successfully expressed. We also observed that eGFP expression at the protein level was strong at 28°C but weak at 30°C. Sequence analysis showed that the 3'-ends of the RNA1 and RNA3 replication products were identical to those of the authentic FHV RNAs. This indicates that FHV replicase correctly recognized an internally-located replication signal. In contrast, the 5'-ends of recombinant FHV RNA1 frequently had deletions, indicating random initiation of (+)-strand synthesis.
Assuntos
Fibroblastos/virologia , Genes Reporter/genética , Nodaviridae/fisiologia , RNA Viral/metabolismo , Animais , Linhagem Celular , Cricetinae , Expressão Gênica , Genoma Viral/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Nodaviridae/genética , RNA Viral/genética , Tymovirus/genética , Replicação ViralRESUMO
The stability of icosahedral viruses is crucial for protecting the viral genome during transit; however, successful infection requires eventual disassembly of the capsid. A comprehensive understanding of how stable, uniform icosahedrons disassemble remains elusive, mainly due to the complexities involved in isolating transient intermediates. We utilized incremental heating to systematically characterize the disassembly pathway of a model nonenveloped virus and identified an intriguing link between virus maturation and disassembly. Further, we isolated and characterized two intermediates by cryo-electron microscopy and three-dimensional reconstruction, without imposing icosahedral symmetry. The first intermediate displayed a series of major, asymmetric alterations, whereas the second showed that the act of genome release, through the 2-fold axis, is actually confined to a small section on the capsid. Our study thus presents a comprehensive structural analysis of nonenveloped virus disassembly and emphasizes the asymmetric nature of programmed conformational changes.IMPORTANCE Disassembly or uncoating of an icosahedral capsid is a crucial step during infection by nonenveloped viruses. However, the dynamic and transient nature of the disassembly process makes it challenging to isolate intermediates in a temporal, stepwise manner for structural characterization. Using controlled, incremental heating, we isolated two disassembly intermediates: "eluted particles" and "puffed particles" of an insect nodavirus, Flock House virus (FHV). Cryo-electron microscopy and three-dimensional reconstruction of the FHV disassembly intermediates indicated that disassembly-related conformational alterations are minimally global and largely local, leading to asymmetry in the particle and eventual genome release without complete disintegration of the icosahedron.
Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Nodaviridae/metabolismo , Animais , Linhagem Celular , Microscopia Crioeletrônica/métodos , Vírus de DNA/metabolismo , Drosophila melanogaster , Genoma Viral/genética , Modelos Moleculares , Nodaviridae/genética , Vírion/metabolismo , Montagem de Vírus/fisiologiaRESUMO
RNA interference (RNAi) is a powerful tool to study functional genomics in insects and the potential of using RNAi to suppress crop pests has made outstanding progress. However, the delivery of dsRNA is a challenging step in the development of RNAi bioassays. In this study, we investigated the ability of engineered Flock House virus (FHV) to induce targeted gene suppression through RNAi under in vitro and in vivo condition. As proxy for fruit flies of agricultural importance, we worked with S2 cells as derived from Drosophila melanogaster embryos, and with adult stages of D. melanogaster. We found that the expression level for all of the targeted genes were reduced by more than 70% in both the in vitro and in vivo bioassays. Furthermore, the cell viability and median survival time bioassays demonstrated that the recombinant FHV expressing target gene sequences caused a significantly higher mortality (60-73% and 100%) than the wild type virus (24 and 71%), in both S2 cells and adult insects, respectively. This is the first report showing that a single stranded RNA insect virus such as FHV, can be engineered as an effective in vitro and in vivo RNAi delivery system. Since FHV infects many insect species, the described method could be exploited to improve the efficiency of dsRNA delivery for RNAi-related studies in both FHV susceptible insect cell lines and live insects that are recalcitrant to the uptake of naked dsRNA.
RESUMO
Flock House virus (FHV) is a well-characterized model system to study infection mechanisms in non-enveloped viruses. A key stage of the infection cycle is the disruption of the endosomal membrane by a component of the FHV capsid, the membrane active γ peptide. In this study, we perform all-atom molecular dynamics simulations of the 21 N-terminal residues of the γ peptide interacting with membranes of differing compositions. We carry out umbrella sampling calculations to study the folding of the peptide to a helical state in homogenous and heterogeneous membranes consisting of neutral and anionic lipids. From the trajectory data, we evaluate folding energetics and dissect the mechanism of folding in the different membrane environments. We conclude the study by analyzing the extent of configurational sampling by performing time-lagged independent component analysis.
Assuntos
Membrana Celular/metabolismo , Nodaviridae/metabolismo , Peptídeos/química , Dobramento de Proteína , Proteínas Virais/química , Sequência de Aminoácidos , Modelos Moleculares , Nodaviridae/fisiologia , Peptídeos/metabolismo , Estrutura Secundária de Proteína , Proteínas Virais/metabolismoRESUMO
We recently reported a fragmentation-free method for the synthesis of Next-Generation Sequencing libraries called "ClickSeq" that uses biorthogonal click-chemistry in place of enzymes for the ligation of sequencing adaptors. We found that this approach dramatically reduces artifactual chimera formation, allowing the study of rare recombination events that include viral replication intermediates and defective-interfering viral RNAs. ClickSeq illustrates how robust, bio-orthogonal chemistry can be harnessed in vitro to capture and dissect complex biological processes. Here, we describe an updated protocol for the synthesis of "ClickSeq" libraries.
Assuntos
Química Click , Sequenciamento de Nucleotídeos em Larga Escala , Recombinação Genética/genética , Análise de Sequência de RNA , DNA Ligases/química , Primers do DNA/química , Biblioteca Gênica , Nodaviridae/genética , RNA Viral/químicaRESUMO
Since 1999, Caenorhabditis elegans has been extensively used to study microbe-host interactions due to its simple culture, genetic tractability, and susceptibility to numerous bacterial and fungal pathogens. In contrast, virus studies have been hampered by a lack of convenient virus infection models in nematodes. The recent discovery of a natural viral pathogen of C. elegans and development of diverse artificial infection models are providing new opportunities to explore virus-host interplay in this powerful model organism.
Assuntos
Caenorhabditis elegans , Interações Hospedeiro-Patógeno , Modelos Animais , Vírus de RNA/fisiologia , Viroses/virologia , Animais , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/virologia , Imunidade Inata , Nodaviridae/fisiologia , Interferência de RNA , Vírus de RNA/imunologia , Vesiculovirus/fisiologia , Viroses/imunologiaRESUMO
Positive-strand RNA viruses, the largest genetic class of viruses, include numerous important pathogens such as Zika virus. These viruses replicate their RNA genomes in novel, membrane-bounded mini-organelles, but the organization of viral proteins and RNAs in these compartments has been largely unknown. We used cryo-electron tomography to reveal many previously unrecognized features of Flock house nodavirus (FHV) RNA replication compartments. These spherular invaginations of outer mitochondrial membranes are packed with electron-dense RNA fibrils and their volumes are closely correlated with RNA replication template length. Each spherule's necked aperture is crowned by a striking cupped ring structure containing multifunctional FHV RNA replication protein A. Subtomogram averaging of these crowns revealed twelve-fold symmetry, concentric flanking protrusions, and a central electron density. Many crowns were associated with long cytoplasmic fibrils, likely to be exported progeny RNA. These results provide new mechanistic insights into positive-strand RNA virus replication compartment structure, assembly, function and control.
Assuntos
Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Nodaviridae/fisiologia , RNA Viral/metabolismo , Replicação Viral , Animais , Linhagem Celular , Drosophila , Membranas Mitocondriais/ultraestrutura , Membranas Mitocondriais/virologiaRESUMO
Flock House virus (FHV) RNA can be trans-encapsidated, entirely in planta, by tobacco mosaic virus coat protein to form virus-like particles (VLPs). Vaccination with these VLPs leads to strong antigen expression in mice and immune-activation. We hypothesize that creating an additional cellular site for replication and/or trans-encapsidation might significantly improve the final output of trans-encapsidated product. FHV protein A was engineered to target the endoplasmic reticulum (ER) via a heterologous tobacco etch virus ER-targeting domain, and was expressed in cis or in trans relative to the replicating FHV RNA1. A strong increase in marker gene expression in plants was noted when ER-targeted protein A was supplied in trans. RNA fluorescence in situ hybridization revealed RNA1 replication in both the mitochondria and ER, and total RNA1 accumulation was increased. In support of our hypothesis, VLP yield was increased significantly by the addition of this single genetic component to the inoculum.
Assuntos
Retículo Endoplasmático/virologia , Nicotiana/virologia , Nodaviridae/fisiologia , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral , Mitocôndrias/virologia , Nodaviridae/química , Nodaviridae/genética , Doenças das Plantas/virologia , Domínios Proteicos , Transporte Proteico , RNA Viral/genética , RNA Viral/metabolismo , Proteína Estafilocócica A/genética , Proteínas Virais/genéticaRESUMO
RNAi is broadly used as a technique for specific gene silencing in insects but few studies have investigated the factors that can affect its efficiency. Viral infections have the potential to interfere with RNAi through their production of viral suppressors of RNAi (VSRs) and the production of viral small RNAs that can saturate and inactivate the RNAi machinery. In this study, the impact of persistent infection of the RNA viruses Flock house virus (FHV) and Macula-like virus (MLV) on RNAi efficiency was investigated in selected lepidopteran cell lines. Lepidopteran cell lines were found to be readily infected by both viruses without any apparent pathogenic effects, with the exception of Bombyx-derived Bm5 and BmN4 cells, which could not be infected by FHV. Because Sf21 cells were free from both FHV and MLV and Hi5-SF were free from FHV and only contained low levels of MLV, they were tested to evaluate the impact of the presence of the virus. Two types of RNAi reporter assays however did not detect a significant interference with gene silencing in infected Sf21 and Hi5-SF cells when compared to virus-free cells. In Hi5 cells, the presence of FHV could be easily cleared through the expression of an RNA hairpin that targets its VSR gene, confirming that the RNAi mechanism was not inhibited. Sequencing indicated that the B2 RNAi inhibitor gene of FHV and a putative VSR gene from MLV were intact in persistently infected cell lines, indicating that protection against RNAi remains essential for virus survival. It is proposed that infection levels of persistent viruses in the cell lines are too low to have an impact on RNAi efficiency in the lepidopteran cell lines and that encoded VSRs act locally at the sites of viral replication (mitochondrial membranes) without affecting the rest of the cytoplasm.
Assuntos
Mariposas/virologia , Interferência de RNA , Vírus de RNA/fisiologia , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/genética , Linhagem Celular , Nodaviridae/fisiologiaRESUMO
Drosophila melanogaster is an important laboratory model for studies of antiviral immunity in invertebrates, and Drosophila species provide a valuable system to study virus host range and host switching. Here, we use metagenomic RNA sequencing of about 1600 adult flies to discover 25 new RNA viruses associated with six different drosophilid hosts in the wild. We also provide a comprehensive listing of viruses previously reported from the Drosophilidae. The new viruses include Iflaviruses, Rhabdoviruses, Nodaviruses, and Reoviruses, and members of unclassified lineages distantly related to Negeviruses, Sobemoviruses, Poleroviruses, Flaviviridae, and Tombusviridae. Among these are close relatives of Drosophila X virus and Flock House virus, which we find in association with wild Drosophila immigrans. These two viruses are widely used in experimental studies but have not been previously reported to naturally infect Drosophila. Although we detect no new DNA viruses, in D. immigrans and Drosophila obscura, we identify sequences very closely related to Armadillidium vulgare iridescent virus (Invertebrate iridescent virus 31), bringing the total number of DNA viruses found in the Drosophilidae to three.
RESUMO
Viral capsid proteins are programmed to assemble into homogeneous structures in native environments; but the molecular details of these assembly pathways are seldom clearly understood. In order to define the chain of events in the construction of a minimal system, we attempted controlled assembly of the capsid protein of a small insect nodavirus, Flock House Virus (FHV). Bacterial expression of the FHV capsid protein, and subsequent in vitro assembly, generated a heterogeneous population of closed particles. We show that in spite of the altered structure, these particles are capable of membrane disruption, like native viruses, and of incorporating and delivering foreign cargo to specific locations. The unique structure and characteristics of these particles extends our understanding of nodavirus assembly. Additionally, the establishment of a bacterial production system, and methods for in vitro assembly and packaging are of considerable benefit for biotechnological applications of FHV.
Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Nodaviridae/fisiologia , Montagem de Vírus , Capsídeo/química , Capsídeo/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Linhagem Celular , Células Cultivadas , Expressão Gênica , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/metabolismoRESUMO
Next-Generation Sequencing (NGS) has transformed our understanding of the dynamics and diversity of virus populations for human pathogens and model systems alike. Due to the sensitivity and depth of coverage in NGS, it is possible to measure the frequency of mutations that may be present even at vanishingly low frequencies within the viral population. Here, we describe a simple bioinformatic pipeline called CoVaMa (Co-Variation Mapper) scripted in Python that detects correlated patterns of mutations in a viral sample. Our algorithm takes NGS alignment data and populates large matrices of contingency tables that correspond to every possible pairwise interaction of nucleotides in the viral genome or amino acids in the chosen open reading frame. These tables are then analysed using classical linkage disequilibrium to detect and report evidence of epistasis. We test our analysis with simulated data and then apply the approach to find epistatically linked loci in Flock House Virus genomic RNA grown under controlled cell culture conditions. We also reanalyze NGS data from a large cohort of HIV infected patients and find correlated amino acid substitution events in the protease gene that have arisen in response to anti-viral therapy. This both confirms previous findings and suggests new pairs of interactions within HIV protease. The script is publically available at http://sourceforge.net/projects/covama.
Assuntos
Genoma Viral , HIV/genética , Sequenciamento de Nucleotídeos em Larga Escala , Desequilíbrio de Ligação , Mutação , Análise de Sequência de RNA/métodos , Algoritmos , Epistasia Genética , Infecções por HIV/virologia , Humanos , RNA ViralRESUMO
We present a simple method called "ClickSeq" for NGS (next-generation sequencing) library synthesis that uses click chemistry rather than enzymatic reactions for the ligation of Illumina sequencing adaptors. In ClickSeq, randomly primed reverse transcription reactions are supplemented with azido-2',3'-dideoxynucleotides that randomly terminate DNA synthesis and release 3'-azido-blocked cDNA fragments in a process akin to dideoxy-Sanger sequencing. Purified fragments are "click ligated" via copper-catalyzed alkyne-azide cycloaddition to DNA oligos modified with a 5'-alkyne group. This generates ssDNA molecules containing an unnatural triazole-linked DNA backbone that is sufficiently biocompatible for PCR amplification to generate a cDNA library for RNAseq. Here, we analyze viral RNAs and mRNA to demonstrate that ClickSeq produces unbiased NGS libraries with low error rates comparable to standard methods. Importantly, ClickSeq is robust against common artifacts of NGS such as chimera formation and artifactual recombination with fewer than 3 aberrant events detected per million reads.
Assuntos
Química Click/métodos , DNA Complementar/química , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Mensageiro/análise , RNA Viral/análise , Azidas/química , Sequência de Bases , DNA Complementar/biossíntese , DNA Complementar/genética , Didesoxinucleotídeos/química , Didesoxinucleotídeos/genética , Biblioteca Gênica , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Viral/genética , Análise de Sequência de DNA/métodosRESUMO
RNA silencing in plants and insects provides an antiviral defense and as a countermeasure most viruses encode RNA silencing suppressors (RSS). For the family Rhabdoviridae, no detailed functional RSS studies have been reported in plant hosts and insect vectors. In agroinfiltrated Nicotiana benthamiana leaves we show for the first time for a cytorhabdovirus, lettuce necrotic yellows virus (LNYV), that one of the nucleocapsid core proteins, phosphoprotein (P) has relatively weak local RSS activity and delays systemic silencing of a GFP reporter. Analysis of GFP small RNAs indicated that the P protein did not prevent siRNA accumulation. To explore RSS activity in insects, we used a Flock House virus replicon system in Drosophila S2 cells. In contrast to the plant host, LNYV P protein did not exhibit RSS activity in the insect cells. Taken together our results suggest that P protein may target plant-specific components of RNA silencing post siRNA biogenesis.
Assuntos
Drosophila/genética , Drosophila/virologia , Nicotiana/genética , Nicotiana/virologia , Fosfoproteínas/metabolismo , Interferência de RNA , Rhabdoviridae/metabolismo , Proteínas Virais/metabolismo , Animais , Fosfoproteínas/genética , Rhabdoviridae/genética , Proteínas Virais/genéticaRESUMO
Nodaviruses are icosahedral viruses with a bipartite, positive-sense RNA genome. The two RNAs are packaged into a single virion by a poorly understood mechanism. We chose two distantly related nodaviruses, Flock House virus and Nodamura virus, to explore formation of viral reassortants as a means to further understand genome recognition and encapsidation. In mixed infections, the viruses were incompatible at the level of RNA replication and their coat proteins segregated into separate populations of progeny particles. RNA packaging, on the other hand, was indiscriminate as all four viral RNAs were detectable in each progeny population. Consistent with the trans-encapsidation phenotype, fluorescence in situ hybridization of viral RNA revealed that the genomes of the two viruses co-localized throughout the cytoplasm. Our results imply that nodaviral RNAs lack rigorously defined packaging signals and that co-encapsidation of the viral RNAs does not require a pair of cognate RNA1 and RNA2.