Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.234
Filtrar
1.
J Environ Manage ; 370: 122285, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39255577

RESUMO

A successful management of a show cave requires knowledge of cave dynamics and the main risk factors. Show caves close to the water table are prone to sporadic flooding, which can threaten visitor safety and result in severe economic losses. Las Güixas cave, located in the Collarada Massif (Pyrenees - Spain), is representative of a show cave close to the water table that is exposed to energetic flash floods. We conducted a five-year comprehensive cave monitoring study including air temperature, relative humidity, CO2 concentration and water level. Additionally, we measured outside temperature and precipitation. Air temperature variations and ventilation dynamics occurring in most of the cave are controlled by the outside temperature due to entrances at different elevations, except in a non-ventilated area showing more stable hygrothermal characteristics and higher summer values of CO2 concentration. The study also identifies distinct CO2 sources related to the degassing of water and visitors' breathing. Monitoring data show that the rapid degassing of cave water during flooding may increase subsurface CO2 concentrations to levels well above the exposure limits. However, the strong ventilation observed inside the cave rapidly removes CO2 peaks produced by flooding and limits the anthropic CO2 rise to ∼100 ppm. Hydrograph analysis revealed a response time of 8-12 h in the cave water levels to external rainfall/snowmelt events. Based on these results, a flood alarm system supports sustainable show cave management and the number of visitors is optimized according to the environmental conditions of the cave. This monitoring study has greatly contributed to our knowledge of cave dynamics, which can serve to improve flood risk management and increase the profitability of the show cave. Nonetheless, extreme floods remain a significant concern for potential economic losses in the future, considering current climate change scenarios. Hydrological studies together with a long-term monitoring will allow evaluating the impact of future changes in climate and environmental parameters.

2.
J Environ Manage ; 369: 122330, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39226808

RESUMO

Extreme meteorological events and rapid urbanization have led to serious urban flooding problems. Characterizing spatial variations in flooding susceptibility and elucidating its driving factors are essential for preventing damages from urban pluvial flooding. However, conventional methods, limited by spatial heterogeneity and the intricate mechanisms of urban flooding, frequently demonstrated a deficiency in precision when assessing flooding susceptibility in dense urban areas. Therefore, this study proposed a novel framework for an integrated assessment of urban flood susceptibility, based on a comprehensive cascade modeling chain consisting of XGBoost, SHapley Additive exPlanations (SHAP), and Partial Dependence Plots (PDP) in combination with K-means. It aimed to recognize the specific influence of urban morphology and the spatial patterns of flooding risk agglomeration under different rainfall scenarios in high-density urban areas. The XGBoost model demonstrated enhanced accuracy and robustness relative to other three benchmark models: RF, SVR, and BPDNN. This superiority was effectively validated during both training and independent testing in Shenzhen. The results indicated that urban 3D morphology characteristics were the dominant factors for waterlogging magnitude, which occupied 46.02 % of relative contribution. Through PDP analysis, multi-staged trends highlighted critical thresholds and interactions between significant indicators like building congestion degree (BCD) and floor area ratio (FAR). Specifically, optimal intervals like BCD between 0 and 0.075 coupled with FAR values between 0.5 and 1 have the potential to substantially mitigate flooding risks. These findings emphasize the need for strategic building configuration within urban planning frameworks. In terms of the spatial-temporal assessment, a significant aggregation effect of high-risk areas that prone to prolonged duration or high-intensity rainfall scenarios emerged in the old urban districts. The approach in the present study provides quantitative insights into waterlogging adaptation strategies for sustainable urban planning and design.

3.
J Environ Manage ; 369: 122328, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39226816

RESUMO

Lack of studies in developing countries with tropical climate such as the Philippines limit local LID adoption. This study compared the performance of different LID scenarios across different urban land use types at the sub-catchment level using peak flow, runoff volume and flood reductions as performance criteria. Results showed that the most effective strategies for each land use are: 1) combined green roof and bioretention for low-density residential (reduction up to 10% peak flow, 11% runoff volume and 33% flood volume); 2) green roof for high-density residential (8% peak flow, 6% runoff volume and 18% flood volume); 3) combined rain barrel, bioretention and permeable pavement for industrial (23% peak flow, 41% runoff volume and 56% flood volume), and 4) combined vegetative swale and detention pond for urban open spaces (81% peak flow, 8% runoff volume and 84% flood volume). While effective for most low intensity storms, the observed sharp decrease in LID performance with increased rainfall intensity poses a major challenge, especially in the context of the Philippines frequented by high intensity storms. This study also examined how differences in land use characteristics influence LID performance, unlike most studies that focused on LID type comparisons. It showed that low urban density setting positively affected peak flow and flood reduction performance of rain barrels and green roofs, while good drainage infrastructure quality positively affected peak flow and flood reduction performance of rain barrels and bioretention. Decision-makers may use these findings to conduct rapid assessments on LID selection and siting, provided similarities between land use characteristics described in this study and those at their localities are justified. This can lead to increased LID adoption towards building water resilient, and sustainable cities.

4.
Disasters ; : e12654, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39229769

RESUMO

Little evidence exists on the design and implementation of anticipatory action (AA) in complex crises. This article examines a 2022 United Nations 'early action' pilot in South Sudan in advance of extreme flooding. As a case study of efforts to act in a complex crisis, it contributes to learning on assisting conflict-affected and displaced populations in advance of extreme weather events. The research points towards the possibility and value of implementing forecast-informed early action in complex contexts with limited forecast skills and multiple hazards when trigger-based AA is not possible. It also argues for the need to link AA implemented in complex crises to development and peacebuilding actors and processes. More broadly, examining the perceptions and processes of AA in the form of early action, rather than a formal AA framework, is highly relevant for the AA community as attention is increasingly placed on providing AA in countries affected by fragility and conflict.

5.
Nat Hazards (Dordr) ; 120(11): 10043-10066, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39219864

RESUMO

This study assesses the performance of the Weather Research and Forecasting-Hydrological modeling system (WRF-Hydro) in the simulation of street-scale flood inundation. The case study is the Hackensack River Watershed in New Jersey, US, which is part of the operational Stevens Flood Advisory System (SFAS), a one-way coupled hydrodynamic-hydrologic system that currently uses the Hydrologic Engineering Center's Hydrologic Modeling System (HEC-HMS) to simulate streamflow. The performance of the 50-m gridded WRF-Hydro model was assessed for potential integration into the operational SFAS system. The model was calibrated with the dynamically dimensioned search algorithm using streamflow observations. The model performance was assessed using (i) streamflow observations, (ii) USGS HWMs, and (iii) crowdsourced data on street inundation. Results show that WRF-Hydro outperformed the HEC-HMS model. WRF-Hydro over and underestimated flood inundation extent due to the inaccuracy of the synthetic rating curves and the modeling structure errors. An agreement was noticed between WRF-Hydro and crowdsourced data on flood extent.

6.
Ecotoxicol Environ Saf ; 284: 116978, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39232292

RESUMO

Flooding intensity significantly alters the availability of iron (Fe), zinc (Zn), and cadmium (Cd) in paddy soil. However, the influence of arbuscular mycorrhizal fungi (AMF) on the uptake and transfer of Cd and micronutrients (Fe and Zn) under Cd stress in varying flooding conditions is not well understood. A pot experiment was conducted to investigate the micronutrient homeostasis and Cd uptake and transfer in rice cultivated in Cd-contaminated soil with AMF inoculation under continuous and intermittent flooding conditions. Compared to non-inoculation controls, mycorrhizal inoculation decreased Cd concentration in rice plants under continuous and intermittent flooding, and improved grain yield by 39.2 % for early season rice and 21.1 % for late season rice under continuous flooding. Mycorrhizal inoculation balanced the availability of Zn and Fe and decreased the availability of Cd in soil, lowering the ratios of soil-available Cd to both soil-available Zn and soil Fe2+. These changes led to a redistribution of Zn and Fe concentrations in rice, thereby reducing Cd acquisition in a soil-rice system. Structural equation model (SEM) analysis revealed that mycorrhizal inoculation had a strong direct negative effect on the expression of Zn and Fe-related genes OsNRAMP1, OsIRT1, and OsIRT2 in the roots of rice, which in turn directly affected root Cd concentration. Furthermore, mycorrhizal colonization decreased Cd transfer coefficients from leaves to grains under continuous flooding and from nodes and leaves to grains under intermittent flooding. In the nodes, the Fe concentration and the expression of genes OsIRT1 and OsHMA2 were associated with Cd transfer from the nodes to grains. Similarly, in the leaves, the expression of genes OsZIP1 and OsMTP1 corresponded with Cd transfer from leaves to grains. This study provides insights into the role of AMF in affecting micronutrient concentrations and Cd uptake in rice under varying flooding conditions.

7.
J Safety Res ; 90: 163-169, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39251274

RESUMO

INTRODUCTION: Vehicles driving, or being swept, into floodwaters is a leading cause of flood-related death. Establishing safe behaviors among learner drivers may reduce risk throughout their driving lifetime. METHODS: An environmental scan of publicly available government issued learner and driver handbooks across the eight Australian jurisdictions was conducted to identify information provided regarding floodwaters. Search terms included 'flood,' 'rain,' 'water,' and 'wet.' A visual audit of flood-related signage was also conducted. RESULTS: Twelve documents, across eight jurisdictions, were analyzed. Four jurisdictions' documents provided no information on flooding. Of the four jurisdictions that provided information, content varied. This included highlighting risks and discouraging entering floodwaters in a vehicle, including penalties associated with travel on closed roads, to advising depth and current checks if crossing a flooded roadway, with recommendations based on vehicle size (preference given to bigger vehicles, i.e., 4wds). Information on flood-related signage was found in one jurisdiction. DISCUSSION: Learner and driver handbooks represent a missed opportunity to provide flood safety information. Currently, information is not provided in all jurisdictions, despite flood-related vehicle drowning deaths of drivers and passengers being a national issue. Where information is presented, it is limited, often lacks practical guidance on how to assess water depth, current, and road base stability, and could better use evidence regarding the psychological factors underpinning, and behavioral prompts for performing, or avoiding, risky driving behavior during floods. CONCLUSIONS: The provision and content of information in learner driver and driver handbooks must be improved, particularly within the context of increasing flooding and extreme weather associated with the effects of climate change. PRACTICAL APPLICATIONS: We encourage all jurisdictions to provide practical information that draws on evidence-based risk factors and empirically established psychological factors for behavioral change to help establish safe driver behaviors around floods in the formative years of learning to drive.


Assuntos
Condução de Veículo , Inundações , Humanos , Austrália , Inundações/estatística & dados numéricos , Condução de Veículo/legislação & jurisprudência , Condução de Veículo/estatística & dados numéricos , Acidentes de Trânsito/prevenção & controle , Segurança , Afogamento/prevenção & controle
8.
Plant J ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259461

RESUMO

Flooding impairs plant growth through oxygen deprivation, which activates plant survival and acclimation responses. Transcriptional responses to low oxygen are generally associated with the activation of group VII ETHYLENE-RESPONSE FACTOR (ERFVII) transcription factors. However, the exact mechanisms and molecular components by which ERFVII factors initiate gene expression are not fully elucidated. Here, we show that the ERFVII factors RELATED TO APETALA 2.2 (RAP2.2) and RAP2.12 cooperate with the Mediator complex subunit AtMED25 to coordinate gene expression under hypoxia in Arabidopsis thaliana. Respective med25 knock-out mutants display reduced low-oxygen stress tolerance. AtMED25 physically associates with a distinct set of hypoxia core genes and its loss partially impairs transcription under hypoxia due to decreased RNA polymerase II recruitment. Association of AtMED25 with target genes requires the presence of ERFVII transcription factors. Next to ERFVII protein stabilisation, also the composition of the Mediator complex including AtMED25 is potentially affected by hypoxia stress as shown by protein-complex pulldown assays. The dynamic response of the Mediator complex to hypoxia is furthermore supported by the fact that two subunits, AtMED8 and AtMED16, are not involved in the establishment of hypoxia tolerance, whilst both act in coordination with AtMED25 under other environmental conditions. We furthermore show that AtMED25 function under hypoxia is independent of ethylene signalling. Finally, functional conservation at the molecular level was found for the MED25-ERFVII module between A. thaliana and the monocot species Oryza sativa, pointing to a potentially universal role of MED25 in coordinating ERFVII-dependent transcript responses to hypoxia in plants.

9.
Ann N Y Acad Sci ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39159317

RESUMO

This chapter of the New York City Panel on Climate Change 4 (NPCC4) report provides a comprehensive description of the different types of flood hazards (pluvial, fluvial, coastal, groundwater, and compound) facing New York City and provides climatological context that can be utilized, along with climate change projections, to support flood risk management (FRM). Previous NPCC reports documented coastal flood hazards and presented trends in historical and future precipitation and sea level but did not comprehensively assess all the city's flood hazards. Previous NPCC reports also discussed the implications of floods on infrastructure and the city's residents but did not review the impacts of flooding on the city's natural and nature-based systems (NNBSs). This-the NPCC's first report focused on all drivers of flooding-describes and profiles historical examples of each type of flood and summarizes previous and ongoing research regarding exposure, vulnerability, and risk management, including with NNBS and nonstructural measures.

10.
BMC Plant Biol ; 24(1): 749, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39103780

RESUMO

BACKGROUND: Climate change induces perturbation in the global water cycle, profoundly impacting water availability for agriculture and therefore global food security. Water stress encompasses both drought (i.e. water scarcity) that causes the drying of soil and subsequent plant desiccation, and flooding, which results in excess soil water and hypoxia for plant roots. Terrestrial plants have evolved diverse mechanisms to cope with soil water stress, with the root system serving as the first line of defense. The responses of roots to water stress can involve both structural and physiological changes, and their plasticity is a vital feature of these adaptations. Genetic methodologies have been extensively employed to identify numerous genetic loci linked to water stress-responsive root traits. This knowledge is immensely important for developing crops with optimal root systems that enhance yield and guarantee food security under water stress conditions. RESULTS: This review focused on the latest insights into modifications in the root system architecture and anatomical features of legume roots in response to drought and flooding stresses. Special attention was given to recent breakthroughs in understanding the genetic underpinnings of legume root development under water stress. The review also described various root phenotyping techniques and examples of their applications in different legume species. Finally, the prevailing challenges and prospective research avenues in this dynamic field as well as the potential for using root system architecture as a breeding target are discussed. CONCLUSIONS: This review integrated the latest knowledge of the genetic components governing the adaptability of legume roots to water stress, providing a reference for using root traits as the new crop breeding targets.


Assuntos
Mapeamento Cromossômico , Desidratação , Fabaceae , Fenótipo , Raízes de Plantas , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Fabaceae/genética , Fabaceae/fisiologia , Adaptação Fisiológica/genética , Secas , Inundações , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia
11.
Risk Anal ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166706

RESUMO

As urbanization continues to accelerate worldwide, urban flooding is becoming increasingly destructive, making it important to improve emergency scheduling capabilities. Compared to other scheduling problems, the urban flood emergency rescue scheduling problem is more complicated. Considering the impact of a disaster on the road network passability, a single type of vehicle cannot complete all rescue tasks. A reasonable combination of multiple vehicle types for cooperative rescue can improve the efficiency of rescue tasks. This study focuses on the urban flood emergency rescue scheduling problem considering the actual road network inundation situation. First, the progress and shortcomings of related research are analyzed. Then, a four-level emergency transportation network based on the collaborative water-ground multimodal transport transshipment mode is established. It is shown that the transshipment points have random locations and quantities according to the actual inundation situation. Subsequently, an interactive model based on hierarchical optimization is constructed considering the travel length, travel time, and waiting time as hierarchical optimization objectives. Next, an improved A* algorithm based on the quantity of specific extension nodes is proposed, and a scheduling scheme decision-making algorithm is proposed based on the improved A* and greedy algorithms. Finally, the proposed decision-making algorithm is applied in a practical example for solving and comparative analysis, and the results show that the improved A* algorithm is faster and more accurate. The results also verify the effectiveness of the scheduling model and decision-making algorithm. Finally, a scheduling scheme with the shortest travel time for the proposed emergency scheduling problem is obtained.

12.
Ecol Evol ; 14(8): e70036, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39130095

RESUMO

Human-induced disturbances such as dam construction and regulation have led to widespread alterations in hydrological processes and thus substantially influence plant characteristics in the hydro-fluctuation zones (HFZs). To reveal utilization of limited resources and mechanisms of inter-specific competition and species co-existence of plant communities based on niche breadth and overlap under the different HFZs of the Three Gorges Reservoir (TGR) in China, we conducted a field investigation with 368 quadrats on the effects of hydrological alterations on plant diversity and niche characteristics. The results showed anti-seasonal flooding precipitated the gradual disappearance of the original diverse niches, resulting in the reduction of plant species richness and functional diversity and more obvious competition among plant species with similar resource requirements. Annuals, perennials and shrubs accounted for 71.23%, 27.39% and 1.37%, respectively, suggesting that annuals and flood-tolerant riparian herbs were favored under such novel flooding conditions. A consistent increase in species number, Shannon-Wiener diversity index and Simpson dominance index with altitude was inconsistent with hump-shaped diversity-disturbance relationship of the intermediate disturbance hypothesis, while the opposite trend was observed for the Pielou evenness index. This species distribution pattern might be caused by several synergetic attributes (e.g., the submergence depth, plant tolerant capacity to flooding, life form, dispersal mode and inter-specific competition). Vegetation types shifted from xerophytes to mesophytes and eventually to hygrophytes with the increasing flooding time in the HFZs. Hydrological alterations proved to be the paramount driver of vegetation distribution in the different HFZs. The niche analysis provided the first insights on the mechanisms of resource utilization and inter-specific competition, of which annuals could germinate quickly after soil drainage to achieve the greatest competitive advantages and occupy a larger niche space than other plants. Vegetation was still in the early stage of primary succession in the novel riparian forests. Therefore, vegetation restoration strategies should be biased towards herbaceous plants, due to annuals with better environmental adaptability, supplemented by shrubs and small trees. To establish a complete reference system for vegetation restoration, natural vegetation monitory plots in the different succession stages should be established in the different HFZs of the TGR, and their environmental conditions, community structures and inter-specific relationships further analyzed.

13.
Sensors (Basel) ; 24(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39123948

RESUMO

Advances in connectivity, communication, computation, and algorithms are driving a revolution that will bring economic and social benefits through smart technologies of the Industry 4.0 era. At the same time, attackers are targeting this expanded cyberspace to exploit it. Therefore, many cyberattacks are reported each year at an increasing rate. Traditional security devices such as firewalls, intrusion detection systems (IDSs), intrusion prevention systems (IPSs), anti-viruses, and the like, often cannot detect sophisticated cyberattacks. The security information and event management (SIEM) system has proven to be a very effective security tool for detecting and mitigating such cyberattacks. A SIEM system provides a holistic view of the security status of a corporate network by analyzing log data from various network devices. The correlation engine is the most important module of the SIEM system. In this study, we propose the optimized correlator (OC), a novel correlation engine that replaces the traditional regex matching sub-module with a novel high-performance multiple regex matching library called "Hyperscan" for parallel log data scanning to improve the performance of the SIEM system. Log files of 102 MB, 256 MB, 512 MB, and 1024 MB, generated from log data received from various devices in the network, are input into the OC and simple event correlator (SEC) for applying correlation rules. The results indicate that OC is 21 times faster than SEC in real-time response and 2.5 times more efficient in execution time. Furthermore, OC can detect multi-layered attacks successfully.

14.
Sensors (Basel) ; 24(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39124024

RESUMO

This paper introduces a novel stability metric specifically developed for IQRF wireless mesh sensor networks, emphasizing flooding routing and data collection methodologies, particularly IQRF's Fast Response Command (FRC) technique. A key feature of this metric is its ability to ensure network resilience against disruptions by effectively utilizing redundant paths in the network. This makes the metric an indispensable tool for field engineers in both the design and deployment of wireless sensor networks. Our findings provide valuable insights, demonstrating the metric's efficacy in achieving robust and reliable network operations, especially in data collection tasks. The inclusion of redundant paths as a factor in the stability metric significantly enhances its practicality and relevance. Furthermore, this research offers practical ideas for enhancing the design and management of wireless mesh sensor networks. The stability metric uniquely assesses the resilience of data collection activities within these networks, with a focus on the benefits of redundant paths, underscoring the significance of stability in network evaluation.

15.
Plants (Basel) ; 13(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39204612

RESUMO

The impact of global climate change has highlighted the need for a better understanding of how plants respond to multiple simultaneous or sequential stresses, not only to gain fundamental knowledge of how plants integrate signals and mount a coordinated response to stresses but also for applications to improve crop resilience to environmental stresses. In recent years, there has been a stronger emphasis on understanding how plants integrate stresses and the molecular mechanisms underlying the crosstalk between the signaling pathways and transcriptional programs that underpin plant responses to multiple stresses. The combination of flooding (or resulting hypoxic stress) with pathogen infection is particularly relevant due to the frequent co-occurrence of both stresses in nature. This review focuses on (i) experimental approaches and challenges associated with the study of combined and sequential flooding/hypoxia and pathogen infection, (ii) how flooding (or resulting hypoxic stress) influences plant immunity and defense responses to pathogens, and (iii) how flooding contributes to shaping the soil microbiome and is linked to plants' ability to fight pathogen infection.

16.
Water Sci Technol ; 90(4): 1338-1358, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39215742

RESUMO

Urban flooding intensifies with escalating urbanization. This study focuses on Xiong'er river as the study area and couples a 1D/2D urban flooding model using InfoWorks ICM (Integrated Catchment Modeling). Ten scenarios are set respectively with a rainfall return period of 5a 10a, 20a, 50a, and 100a, alongside rainfall durations of 1 and 24 h. Subsequently, the H-V (hazard-vulnerability) method was applied to evaluate urban flooding risk. Three indicators were selected for each of hazard factors and vulnerability factors. The relative weight values of each indicator factor were calculated using the AHP method. The result shows that (1) flood depth, rate, and duration escalate with longer rainfall return periods, yet decrease as the duration of rainfall increases; (2) as the rainfall return period lengthens, the proportion of node overflow rises, whereas it diminishes with longer rainfall durations, leading to an overall overloaded state in the pipeline network; and (3) the distribution in the research area is mainly low-risk areas, with very few extremely high-risk. Medium to high-risk areas are mainly distributed on both sides of the river, in densely built and low-lying urban areas. This study demonstrates that the model can accurately simulate urban flooding and provide insights for flood analyses in comparable regions.


Assuntos
Inundações , Modelos Teóricos , Rios , China , Medição de Risco/métodos , Cidades , Chuva , Simulação por Computador
17.
Environ Res Lett ; 19(9): 094038, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39156758

RESUMO

The importance of climate in water resources management is well recognized, but less is known about how climate affects water access at the household level. Understanding this is crucial for identifying vulnerable households, reducing health and well-being risks, and finding equitable solutions. Using difference-in-differences regression analyses and relying on temporal variation in interview timing from multiple, cross-sectional surveys, we examine the effects of monsoon riverine flooding on household water access among 34 000 households in Bangladesh in 2011 and 2014. We compare water access, a combined measure of both water source and time for collection, among households living in flood-affected and non-flood-affected districts before and after monsoon flooding events. We find that households in monsoon flood-affected districts surveyed after the flooding had between 2.27 and 4.42 times higher odds of experiencing low water access. Separating geographically, we find that while households in coastal districts have lower water access than those in non-coastal districts, monsoon flood exposure is a stronger predictor of low water access in non-coastal districts. Non-coastal districts were particularly burdened in 2014, when households affected by monsoon flooding had 4.71 times higher odds of low water access. We also find that household wealth is a consistent predictor of household water access. Overall, our results show that monsoon flooding is associated with a higher prevalence of low water access; socioeconomically vulnerable households are especially burdened.

18.
Trends Plant Sci ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39168786

RESUMO

Flooding threatens crop productivity, agricultural sustainability, and global food security. In this article I review the effects of flooding on plants and highlight three important gaps in our understanding: (i) effects of flooding on ecological interactions mediated by plants both below (changing root metabolites and exudates) and aboveground (changing plant quality and metabolites, and weakening the plant immune system), (ii) flooding impacts on soil health and microorganisms that underpin plant and ecosystems health, and (iii) the legacy impacts of flooding. Failure to address these overlooked aspects could derail and undermine the monumental progress made in building climate-resilient crops and soil-microbe-assisted plant resilience. Addressing the outlined knowledge gaps will enhance solutions developed to mitigate flooding and preserve gains made to date.

19.
Front Psychol ; 15: 1429238, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39171232

RESUMO

Purpose: To explore the relationship between post-traumatic stress disorder (PTSD) and students' academic control and academic emotion in the aftermath of a flood disaster. The findings will offer educators and relevant departments valuable insights to understand and facilitate the restoration of learning capabilities among students affected by the disaster. Methods: This study employed a combined approach of questionnaire surveys and longitudinal tracking. Students from Guangling Primary and Secondary School (Shouguang City, Weifang, Shandong Province) participated in surveys administered in September 2018, December 2018, and September 2019. The instruments utilized included the Post-Disaster Trauma Assessment Questionnaire, the Adolescent Academic Control Scale, and the mathematical version of the Achievement Emotions Questionnaire. Data analysis involved two-factor correlation and mediation effect testing. Results: Significant differences were observed in overall PTSD scores and its three dimensions between the 1-week and 1-year post-disaster assessments. Both the average PTSD score and the detection rate were higher 1 year after the disaster compared to the first week. Students' academic control demonstrated a strong positive correlation with positive academic emotions and a significant negative correlation with anxiety-related academic emotions. Cross-lagged regression analysis indicated a predictive relationship: academic control measured 3 months post-disaster significantly predicted academic emotions at the 9-month assessment, and conversely, academic emotions at the 3-month point were predictive of academic control at 9 months. In addition, academic control appears to play a complete mediating role in the relationship between PTSD and academic emotions. Conclusion: Students exhibited a range of PTSD symptoms following the disaster, with a higher prevalence noted in the first year compared to the initial week. PTSD negatively affects academic standing in these students, and is predictive of both their sense of academic control and their emotional responses to learning. Crucially, academic control and academic emotions exhibit a strong correlation and can mutually affect one another. Interventions aimed at reducing PTSD symptoms, cultivating positive academic emotions, and strengthening students' sense of academic control must therefore consider the relationship between these factors. This holistic approach will enhance psychological well-being and improve academic performance.

20.
J Pineal Res ; 76(5): e13004, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39145574

RESUMO

Both seed germination and subsequent seedling establishment are key checkpoints during the life cycle of seed plants, yet flooding stress markedly inhibits both processes, leading to economic losses from agricultural production. Here, we report that melatonin (MT) seed priming treatment enhances the performance of seeds from several crops, including soybean, wheat, maize, and alfalfa, under flooding stress. Transcriptome analysis revealed that MT priming promotes seed germination and seedling establishment associated with changes in abscisic acid (ABA), gibberellin (GA), and reactive oxygen species (ROS) biosynthesis and signaling pathways. Real-time quantitative RT-PCR (qRT-PCR) analysis confirmed that MT priming increases the expression levels of GA biosynthesis genes, ABA catabolism genes, and ROS biosynthesis genes while decreasing the expression of positive ABA regulatory genes. Further, measurements of ABA and GA concentrations are consistent with these trends. Following MT priming, quantification of ROS metabolism-related enzyme activities and the concentrations of H2O2 and superoxide anions (O2 -) after MT priming were consistent with the results of transcriptome analysis and qRT-PCR. Finally, exogenous application of GA, fluridone (an ABA biosynthesis inhibitor), or H2O2 partially rescued the poor germination of non-primed seeds under flooding stress. Collectively, this study uncovers the application and molecular mechanisms underlying MT priming in modulating crop seed vigor under flooding stress.


Assuntos
Ácido Abscísico , Inundações , Germinação , Giberelinas , Melatonina , Espécies Reativas de Oxigênio , Plântula , Sementes , Melatonina/farmacologia , Melatonina/metabolismo , Germinação/efeitos dos fármacos , Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/genética , Sementes/efeitos dos fármacos , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Estresse Fisiológico , Produtos Agrícolas/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA