Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(42)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38975704

RESUMO

Microfluidics have been widely used for cell sorting and capture. In this work, numerical simulations of cell transport in microfluidic devices were studied considering cell sizes, deformability, and five different device designs. Among these five designs, deterministic lateral displacement device (DLD) and hyperuniform device (HU) performed better in promoting cell-micropost collision due to the continuously shifted micropost positions as compared with regular grid, staggered, and hexagonal layout designs. However, the grid and the hexagonal layouts showed best in differentiating cells by their size dependent velocity due to the size exclusion effect for cell transport in clear and straight paths in the flow direction. A systematic study of the velocity differentiation under different dimensionless groups was performed showing that the velocity difference is dominated by the micropost separation distance perpendicular to the direction of flow. Microfluidic experiments also confirmed the velocity differentiation results. The study can provide guiding principles for microfluidic design.

2.
Front Bioeng Biotechnol ; 12: 1383459, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756411

RESUMO

Introduction: Glaucoma, the leading cause of irreversible blindness globally, affects more than 70 million people across the world. When initial treatments prove ineffective, especially for cases with high intraocular pressure (IOP), the preferred approach involves employing glaucoma drainage devices (GDDs). Methods: This study introduces a novel self-adjustable glaucoma drainage device (SAGDD) designed to maintain IOP within the desired biological range (10 mmHg < IOP <18 mmHg) by dynamically modulating its fluidic resistance. Inspired by the starling resistor, we designed a circular valve with a thin, flexible membrane placed over the valve's inlet and outlet. To achieve the ideal design for the SAGDD and optimize its parameters, we utilized fluid-solid interaction (FSI) numerical models and conducted parametric studies, wherein simulations demonstrated the validity of the concept. Subsequently, to confirm and validate the numerical results, we fabricated a SAGDD at a 3:1 scale and subjected it to in vitro testing. Results: Our findings demonstrate that, on a 3:1 scale, a circular SAGDD with a diameter of 8.1 mm and a stainless-steel membrane with a thickness of 10 µm effectively maintained IOP within the target range when the membrane exposed to external pressures of 7.5 or 10 mmHg. Discussion: In summary, our study establishes a strong foundation for further exploration of the potential efficacy of SAGDD as a promising treatment for glaucoma. The cost-effectiveness and simplicity of its design, devoid of costly instrumentation, hold considerable promise in addressing the challenges associated with glaucoma.

3.
Proc Natl Acad Sci U S A ; 121(10): e2317832121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412136

RESUMO

Non-Newtonian fluids can be used for the protection of flexible laminates. Understanding the coupling between the flow of the protecting fluid and the deformation of the protected solids is necessary in order to optimize this functionality. We present a scaling analysis of the problem based on a single coupling variable, the effective width of a squeeze flow between flat rigid plates, and predict that impact protection for laminates is optimized by using shear-thinning, and not shear-thickening, fluids. The prediction is verified experimentally by measuring the velocity and pressure in impact experiments. Our scaling analysis should be generically applicable for non-Newtonian fluid-solid interactions in diverse applications.

4.
Front Bioeng Biotechnol ; 11: 1249867, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799813

RESUMO

3D-structured hydrogel scaffolds are frequently used in tissue engineering applications as they can provide a supportive and biocompatible environment for the growth and regeneration of new tissue. Hydrogel scaffolds seeded with human mesenchymal stem cells (MSCs) can be mechanically stimulated in bioreactors to promote the formation of cartilage or bone tissue. Although in vitro and in vivo experiments are necessary to understand the biological response of cells and tissues to mechanical stimulation, in silico methods are cost-effective and powerful approaches that can support these experimental investigations. In this study, we simulated the fluid-structure interaction (FSI) to predict cell differentiation on the entire surface of a 3D-structured hydrogel scaffold seeded with cells due to dynamic compressive load stimulation. The computational FSI model made it possible to simultaneously investigate the influence of both mechanical deformation and flow of the culture medium on the cells on the scaffold surface during stimulation. The transient one-way FSI model thus opens up significantly more possibilities for predicting cell differentiation in mechanically stimulated scaffolds than previous static microscale computational approaches used in mechanobiology. In a first parameter study, the impact of the amplitude of a sinusoidal compression ranging from 1% to 10% on the phenotype of cells seeded on a porous hydrogel scaffold was analyzed. The simulation results show that the number of cells differentiating into bone tissue gradually decreases with increasing compression amplitude, while differentiation into cartilage cells initially multiplied with increasing compression amplitude in the range of 2% up to 7% and then decreased. Fibrous cell differentiation was predicted from a compression of 5% and increased moderately up to a compression of 10%. At high compression amplitudes of 9% and 10%, negligible areas on the scaffold surface experienced high stimuli where no cell differentiation could occur. In summary, this study shows that simulation of the FSI system is a versatile approach in computational mechanobiology that can be used to study the effects of, for example, different scaffold designs and stimulation parameters on cell differentiation in mechanically stimulated 3D-structured scaffolds.

5.
Comput Methods Programs Biomed ; 242: 107810, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37769417

RESUMO

BACKGROUND AND OBJECTIVE: We used a 2D fluid-solid interaction (FSI) model to investigate the critical conditions for the arrest of the CTCs traveling through the narrowed capillary with a platelet attached to the capillary wall. This computational model allows us to determine the deformations and the progression of the passage of the CTC through different types of microvessels with platelet included. METHODS: The modeling process is obtained using the strong coupling approach following the remeshing procedure. Also, the 1D FE rope element for simulating active ligand-receptor bonds is implemented in our computational tool (described below). RESULTS: A relationship between the CTCs properties (size and stiffness), the platelet size and stiffness, and the ligand-receptor interaction intensity, on one side, and the time in contact between the CTCs and platelet and conditions for the cell arrest, on the other side, are determined. The model is further validated in vitro by using a microfluidic device with metastatic breast tumor cells. CONCLUSIONS: The computational framework that is presented, with accompanying results, can be used as a powerful tool to study biomechanical conditions for CTCs arrest in interaction with platelets, giving a prognosis of disease progression.


Assuntos
Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Ligantes , Prognóstico , Mama/patologia , Capilares/patologia
6.
Med Eng Phys ; 118: 104021, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37536831

RESUMO

Considering the lipid concentration and side effects regarding the stents used by surgeons, a new heart stent model is proposed. In the new stent, a few piezo plates are designed and attached to the stents by which release of the lipids can take place due to the applied alternative voltages. Due to the vibrations of small-scale piezoelectric plates, the deposition of low-density-lipoproteins (LDL) floating in the blood flow in the coronary arteries is prevented. Small-scale effects are considered using nonlocal elasticity theory, and the interaction between fluid and solid is modeled using the Navier-Stokes equation. The effect of fluid parameters as well as applied voltage and geometry structure is reported. Developing of smart stents maybe the key for prevention of short time conventional stents failure.


Assuntos
Vasos Coronários , Stents , Vasos Coronários/cirurgia , Hemodinâmica , Vibração , Lipídeos
7.
Comput Biol Med ; 163: 107225, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37437361

RESUMO

The Head Impulse Test, the most widely accept test to assess the vestibular function, comprises rotations of the head based on idealized orientations of the semicircular canals, instead of their individual arrangement specific for each patient. In this study, we show how computational modelling can help personalize the diagnosis of vestibular diseases. Based on a micro-computed tomography reconstruction of the human membranous labyrinth and their simulation using Computational Fluid Dynamics and Fluid-Solid Interaction techniques, we evaluated the stimulus experienced by the six cristae ampullaris under different rotational conditions mimicking the Head Impulse Test. The results show that the maximum stimulation of the crista ampullaris occurs for directions of rotation that are more aligned with the orientation of the cupulae (average deviation from alignment of 4.7°, 9.8°, and 19.4° for the horizontal, posterior, and superior maxima, respectively) than with the planes of the semicircular canals (average deviation from alignment of 32.4°, 70.5°, and 67.8° for the horizontal, posterior, and superior maxima, respectively). A plausible explanation is that when rotations are applied with respect to the center of the head, the inertial forces acting directly over the cupula become dominant over the endolymphatic fluid forces generated in the semicircular canals. Our results indicate that it is necessary to consider cupulae orientation to ensure optimal conditions for testing the vestibular function.


Assuntos
Simulação por Computador , Teste do Impulso da Cabeça , Ductos Semicirculares , Humanos , Ductos Semicirculares/diagnóstico por imagem , Canais Semicirculares , Microtomografia por Raio-X , Doenças Vestibulares , Medicina de Precisão
8.
J Food Sci ; 88(6): 2536-2556, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37125946

RESUMO

The non-Newtonian fluid-solid interaction food has complex physical properties and complicated contact force, which brings the greater technical challenge to improving the food fetching rate. In this work, we used the smooth particle hydrodynamics and finite element coupling method for a node-to-surface penalty function contact to characterize the contact forces between non-Newtonian fluid food and solid foods. The shear rheological properties and density of non-Newtonian fluid food, including xanthan gum (XG) and guar gum (GG), were investigated by a viscometer and densitometer, respectively. The results showed that the shear viscosity of non-Newtonian fluid food depends to some extent on the mass ratio of the thickening gums. We investigated the effects of the end-effector with different fetching velocities and different inclination angles, and the nut root powder paste (NRPP) food with different ratios of XG and GG, on the fetching rate, stress-strain, and motion behavior. The results showed that the stress increased with increasing v1 and w; however, the v2 had less effect on the stress. The sparseness of the distribution of solid food was related to the v1 and w, whereas it was less influenced by the v2 . The distribution of solid food became denser in the X-Z plane and sparser in the X-Y plane with increasing inclination angle. The motion behavior of viscoelastic solid foods depended on the mass ratio of XG to GG dissolved in NRPP. The present work can provide a theoretical foundation for meal-assisting robots and robots in the field of food engineering with the task of improving the food fetching rate.


Assuntos
Viscosidade , Reologia
9.
Materials (Basel) ; 16(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36903208

RESUMO

The various concepts involved in the mathematical modeling of the fluid-solid interactions (FSIs) of catalytic combustion processes occurring within a porous burner are presented and discussed in this paper. The following aspects of them are addressed: (a) the relevant physical and chemical phenomena appearing at the interface between the gas and the catalytic surface; (b) a comparison of mathematical models; (c) a proposal of a hybrid two/three-field model, (d) an estimation of the interphase transfer coefficients; (e) a discussion of the proper constitutive equations and the closure relations; and (f) a generalization of the Terzaghi concept of stresses. Selected examples of application of the models are then presented and described. Finally, a numerical verification example is presented and discussed to demonstrate the application of the proposed model.

10.
Heliyon ; 9(3): e13873, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36967925

RESUMO

As a security protection system, the marine interdiction system can be set up outside the port to provide security protection for the ships and facilities there as well as to prevent explosions and ship collisions. This paper uses the Arbitrary Lagrangian Euler (ALE) method in ANSYS LS/DYNA to simulate a blast for an interdiction system close to the water's surface. The simulated shock wave overpressure is extracted and fitted, and when compared with the empirical formula, it is discovered that the trend and value are in good agreement. In the case of controlled calculation scale, closer to the real situation and only consider the explosion transient effect, analysis of the dynamic reaction of the interdiction system under various operating situations to test its anti-explosion performance would help to confirm the validity of the proportional burst distance as a criterion for near-water explosion damage. The safe distance for a 500 kg TNT charge is 4.62 m, and the safe distance for a 1500 kg TNT charge is 6.37 m, when the proportional burst distance reaches 0.5, some of the cable tension reaches the breaking tension level at this moment, and foam floating balls appear to fail for some elements, but the system as a whole is still in a safe state. The research will also provide support for the optimization of the interdiction system and also provide support for the optimization and development of the marine interdiction system.

11.
J Biomech ; 152: 111550, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36996600

RESUMO

Snoring is a common condition in the general population, and the management of snoring requires a better understanding of its mechanism through a fluid-structure interaction (FSI) perspective. Despite the recent popularity of numerical FSI techniques, outstanding challenges are accurately predicting airway deformation and its vibration during snoring due to complex airway morphology. In addition, there still needs to be more understanding of snoring inhibition when lying on the side, and the possible effect of airflow rates, as well as nose or mouth-nose breathing, on snoring remains to be investigated. In this study, an FSI method verified against in vitro models was introduced to predict upper airway deformation and vibration. The technique was applied to predict airway aerodynamics, soft palate flutter, and airway vibration in four sleep postures (supine, left/right lying, and sitting positions) and four breathing patterns (mouth-nose, nose, mouth, and unilateral nose breathing). It was found that, at given elastic properties of soft tissues, the evaluated flutter frequency of 19.8 Hz in inspiration was in good agreement with the reported frequency of snoring sound in literature. Reduction in flutter and vibrations due to the mouth-nose airflow proportion changes were also noticed when having side-lying and sitting positions. Breathing through the mouth results in larger airway deformation than breathing through the nose or mouth-nose. These results collectively demonstrate the potential of FSI for studying the physics of airway vibration and clarify to some degree the reason for snoring inhibition during sleep postures and breathing patterns.


Assuntos
Faringe , Apneia Obstrutiva do Sono , Humanos , Criança , Ronco , Vibração , Sono/fisiologia , Palato Mole , Respiração , Postura
12.
Acta Biomater ; 155: 423-435, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372152

RESUMO

Brain tissue is considered to be biphasic, with approximately 80% liquid and 20% solid matrix, thus exhibiting viscoelasticity due to rearrangement of the solid matrix and poroelasticity due to fluid migration within the solid matrix. However, how to distinguish poroelastic and viscoelastic effects in brain tissue remains challenging. In this study, we proposed a method of unconfined compression-isometric hold to measure the force versus time relaxation curves of porcine brain tissue samples with systematically varied sample lengths. Upon scaling the measured relaxation force and relaxation time with different length-dependent physical quantities, we successfully distinguished the poroelasticity and viscoelasticity of the brain tissue. We demonstrated that during isometric hold, viscoelastic relaxation dominated the mechanical behavior of brain tissue in the short-time regime, while poroelastic relaxation dominated in the long-time regime. Furthermore, compared with poroelastic relaxation, viscoelastic relaxation was found to play a more dominant role in the mechanical response of porcine brain tissue. We then evaluated the differences between poroelastic and viscoelastic effects for both porcine and human brain tissue. Because of the draining of pore fluid, the Young's moduli in poroelastic relaxation were lower than those in viscoelastic relaxation; brain tissue changed from incompressible during viscoelastic relaxation to compressible during poroelastic relaxation, resulting in reduced Poisson ratios. This study provides new insights into the physical mechanisms underlying the roles of viscoelasticity and poroelasticity in brain tissue. STATEMENT OF SIGNIFICANCE: Although the poroviscoelastic model had been proposed to characterize brain tissue mechanical behavior, it is difficult to distinguish the poroelastic and viscoelastic behaviors of brain tissue. The study distinguished viscoelasticity and poroelasticity of brain tissue with time scales and then evaluated the differences between poroelastic and viscoelastic effects for both porcine and human brain tissue, which helps to accurate selection of constitutive models suitable for application in certain situations (e.g., pore-dominant and viscoelastic-dominant deformation).


Assuntos
Encéfalo , Modelos Biológicos , Humanos , Animais , Suínos , Elasticidade , Fenômenos Biomecânicos , Módulo de Elasticidade , Viscosidade , Estresse Mecânico
13.
Foods ; 11(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37431021

RESUMO

In the tea industry, achieving a high winnowing accuracy to produce high-quality tea is a complex challenge. The complex shape of the tea leaves and the uncertainty of the flow field lead to the difficulty in determining the wind selection parameters. The purpose of this paper was to determine the accurate wind selection parameters of tea through simulation and improve the precision of tea wind selection. This study used three-dimensional modeling to establish a high-precision simulation of dry tea sorting. The simulation environment of the tea material, flow field, and wind field wall were defined using a fluid-solid interaction method. The validity of the simulation was verified via experiments. The actual test found that the velocity and trajectory of tea particles in the actual and simulated environments were consistent. The numerical simulations identified wind speed, wind speed distribution, and wind direction as the main factors affecting the winnowing efficacy. The weight-to-area ratio was used to define the characteristics of different types of tea materials. The indices of discrete degree, drift limiting velocity, stratification height, and drag force were employed to evaluate the winnowing results. The separation of tea leaves and stems is best in the range of the wind angle of 5-25 degrees under the same wind speed. Orthogonal and single-factor experiments were conducted to analyze the influence of wind speed, wind speed distribution, and wind direction on wind sorting. The results of these experiments identified the optimal wind-sorting parameters: a wind speed of 12 m s-1, wind speed distribution of 45%, and wind direction angle of 10°. The larger the difference between the weight-to-area ratios of the tea leaves and stems, the more optimized the wind sorting. The proposed model provides a theoretical basis for the design of wind-based tea-sorting structures.

14.
Membranes (Basel) ; 11(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34940420

RESUMO

Cross-flow hollow fiber membranes are commonly applied in humidification/dehumidification. Hollow fiber membranes vibrate and deform under the impinging force of incoming air and the gravity of liquid in the inner tube. In this study, fiber deformation was caused by the pulsating flow of air. With varied pulsating amplitudes and frequencies, single-fiber deformation was investigated numerically using the fluid-structure interaction technique and verified with experimental data testing with a laser vibrometer. Then, the effect of pulsating amplitude and frequency on heat and mass transfer performance of the hollow fiber membrane was analyzed. The maximum fiber deformation along the airflow direction was far larger than that perpendicular to the flow direction. Compared with the case where the fiber did not vibrate, increasing the pulsation amplitude could strengthen Nu by 14-87%. Flow-induced fiber vibration could raise the heat transfer enhancement index from 13.8% to 80%. The pulsating frequency could also enhance the heat transfer of hollow fiber membranes due to the continuously weakened thermal boundary layer. With the increase in pulsating amplitude or frequency, the Sh number or Em under vibrating conditions can reach about twice its value under non-vibrating conditions.

15.
Front Physiol ; 12: 746796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759837

RESUMO

Introduction: Aging has many effects on the cardiovascular system, including changes in structure (aortic composition, and thus stiffening) and function (increased proximal blood pressure, and thus cardiac afterload). Mouse models are often used to gain insight into vascular aging and mechanisms of disease as they allow invasive assessments that are impractical in humans. Translation of results from murine models to humans can be limited, however, due to species-specific anatomical, biomechanical, and hemodynamic differences. In this study, we built fluid-solid-interaction (FSI) models of the aorta, informed by biomechanical and imaging data, to compare wall mechanics and hemodynamics in humans and mice at two equivalent ages: young and older adults. Methods: For the humans, 3-D computational models were created using wall property data from the literature as well as patient-specific magnetic resonance imaging (MRI) and non-invasive hemodynamic data; for the mice, comparable models were created using population-based properties and hemodynamics as well as subject-specific anatomies. Global aortic hemodynamics and wall stiffness were compared between humans and mice across age groups. Results: For young adult subjects, we found differences between species in pulse pressure amplification, compliance and resistance distribution, and aortic stiffness gradient. We also found differences in response to aging between species. Generally, the human spatial gradients of stiffness and pulse pressure across the aorta diminished with age, while they increased for the mice. Conclusion: These results highlight key differences in vascular aging between human and mice, and it is important to acknowledge these when using mouse models for cardiovascular research.

16.
Bioengineering (Basel) ; 8(7)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34356198

RESUMO

Bicuspid aortic valve (BAV) patients are conventionally not treated by transcathether aortic valve implantation (TAVI) because of anatomic constraint with unfavorable outcome. Patient-specific numerical simulation of TAVI in BAV may predict important clinical insights to assess the conformability of the transcathether heart valves (THV) implanted on the aortic root of members of this challenging patient population. We aimed to develop a computational approach and virtually simulate TAVI in a group of n.6 stenotic BAV patients using the self-expanding Evolut Pro THV. Specifically, the structural mechanics were evaluated by a finite-element model to estimate the deformed THV configuration in the oval bicuspid anatomy. Then, a fluid-solid interaction analysis based on the smoothed-particle hydrodynamics (SPH) technique was adopted to quantify the blood-flow patterns as well as the regions at high risk of paravalvular leakage (PVL). Simulations demonstrated a slight asymmetric and elliptical expansion of the THV stent frame in the BAV anatomy. The contact pressure between the luminal aortic root surface and the THV stent frame was determined to quantify the device anchoring force at the level of the aortic annulus and mid-ascending aorta. At late diastole, PVL was found in the gap between the aortic wall and THV stent frame. Though the modeling framework was not validated by clinical data, this study could be considered a further step towards the use of numerical simulations for the assessment of TAVI in BAV, aiming at understanding patients not suitable for device implantation on an anatomic basis.

17.
Front Physiol ; 12: 645438, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935800

RESUMO

Background: Carotid plaque morphology and tissue composition help assess risk stratification of stroke events. Many post-processing image techniques based on CT and MR images have been widely used in related research, such as image segmentation, 3D reconstruction, and computer fluid dynamics. However, the criteria for the 3D numerical model of carotid plaque established by CT and MR angiographic image data remain open to questioning. Method: We accurately duplicated the geometry and simulated it using computer software to make a 3D numerical model. The initial images were obtained by CTA and TOF-MRA. MIMICS (Materialize's interactive medical image control system) software was used to process the images to generate three-dimensional solid models of blood vessels and plaques. The subsequent output was exported to the ANSYS software to generate finite element simulation results for the further hemodynamic study. Results: The 3D models of carotid plaque of TOF-MRA and CTA were simulated by using computer software. CTA has a high-density resolution for carotid plaque, the boundary of the CTA image is obvious, and the main component of which is a calcified tissue. However, the density resolution of TOF-MRA for the carotid plaque and carotid artery was not as good as that of CTA. The results show that there is a large deviation between the TOF-MRA and CTA 3D model of plaque in the carotid artery due to the unclear recognition of plaque boundary during 3D reconstruction, and this can further affect the simulation results of hemodynamics. Conclusion: In this study, two-dimensional images and three-dimensional models of carotid plaques obtained by two angiographic techniques were compared. The potential of these two imaging methods in clinical diagnosis and fluid dynamics of carotid plaque was evaluated, and the selectivity of image post-processing analysis to original medical image acquisition was revealed.

18.
Ultrason Sonochem ; 69: 105252, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32682313

RESUMO

Cavitation bubble collapse close to a submerged sphere on a microscale is investigated numerically using a finite volume method in order to determine the likelihood of previously suspected mechanical effects to cause bacterial cell damage, such as impact of a high speed water jet, propagation of bubble emitted shock waves, shear loads, and thermal loads. A grid convergence study and validation of the employed axisymmetric numerical model against the Gilmore's equation is performed for a case of a single microbubble collapse due to a sudden ambient pressure increase. Numerical simulations of bubble-sphere interaction corresponding to different values of nondimensional bubble-sphere standoff distance δ and their size ratio ε are carried out. The obtained results show vastly different bubble collapse dynamics across the considered parameter space, from the development of a fast thin annular jet towards the sphere to an almost spherical bubble collapse. Although some similarities in bubble shape progression to previous studies on larger bubbles exist, it can be noticed that bubble jetting is much less likely to occur on the considered scale due to the cushioning effects of surface tension on the intensity of the collapse. Overall, the results show that the mechanical loads on a spherical particle tend to increase with a sphere-bubble size ratio ε, and decrease with their distance δ. Additionally, the results are discussed with respect to bacteria eradication by hydrodynamic cavitation. Potentially harmful mechanical effects of bubble-sphere interaction on a micro scale are identified, namely the collapse-induced shear loads with peaks of a few megapascals and propagation of bubble emitted shock waves, which could cause spatially highly variable compressive loads with peaks of a few hundred megapascals and gradients of 100 MPa/µm.

19.
Med Eng Phys ; 82: 40-48, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32709264

RESUMO

Left ventricular outflow tract (LVOT) obstruction is a feared complication of transcatheter mitral valve replacement (TMVR). This procedure leads to an elongation of LVOT in the left ventricle (namely, the neoLVOT), ultimately portending hemodynamic impairment and death. This study sought to understand the biomechanical implications of LVOT obstruction in two patients who underwent TMVR as an "off-label" application of the Edwards SAPIEN 3 (S3) Ultra transcatheter heart valve (THV). A computational framework of TMVR was developed to assess the neoLVOT area and quantify the sub-aortic flow structure. We observed that the annuloplasty ring serves as the key anchor zone of S3 Ultra THV. A good agreement was found between the numerically-predicted and CT-imaging measurements of neoLVOT area, with differences less than 10% in both patients. The pressure drop across the neoLVOT did not determine hemodynamic impairment in both patients. Quantification of structural and hemodynamic variables by computational modeling may facilitate more accurate predictions of the LVOT obstruction in TMVR, particularly for patients which are considered to have a borderline risk of obstruction.


Assuntos
Implante de Prótese de Valva Cardíaca , Próteses Valvulares Cardíacas , Obstrução do Fluxo Ventricular Externo , Cateterismo Cardíaco , Próteses Valvulares Cardíacas/efeitos adversos , Implante de Prótese de Valva Cardíaca/efeitos adversos , Humanos , Valva Mitral/diagnóstico por imagem , Valva Mitral/cirurgia , Resultado do Tratamento , Obstrução do Fluxo Ventricular Externo/diagnóstico por imagem , Obstrução do Fluxo Ventricular Externo/etiologia , Obstrução do Fluxo Ventricular Externo/cirurgia
20.
Acta Biomater ; 113: 452-463, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32645439

RESUMO

The interaction shear force between internal interstitial fluid motion and the solid circumferential-longitudinal medial lamellae helps generate the shear stress involved in dissection of human ascending aorta aneurysmal or non-pathologic tissue. Frequency analysis parameters from the total shear stress versus time response to translational 1 Hz sinusoidal shear deformation over 50 cycles measure the interaction with respect to the three factors: tissue type, sinusoidal deformation amplitude and direction of the shear deformation. Significant 1, 3, and 5 Hz components exist in this order of descending magnitude for shear deformation amplitudes of either 25% or 50% of the specimen length. Evaporation tests indicate that the amount of free water in both aneurysmal and non-pathological tissue is nearly the same. The interstitial fluid-solid interaction under shear deformation is visible in the shoulders of the total shear stress versus time response curve that are caused by the 3 Hz component. During a single deformation cycle, the ratio of the amplitudes of the 3 Hz and the 1 Hz components measures the normalized amount of interaction. Under translational sinusoidal shear deformation at 25% amplitude, this interaction ratio is statistically smaller in non-pathologic than in aneurysmal human ascending aortic tissue in the circumferential direction. The frequency analysis parameters provide evidence that the structural changes in aneurysmal tissue induce an increase in the interstitial fluid-medial solid interaction shear force which contributes to the propensity for aneurysmal rupture. STATEMENT OF SIGNIFICANCE: Circumferential shear force between the interstitial fluid and medial lamellae within the human ascending aortic wall is demonstrably greater in aneurysmal than non-pathologic tissue. This force likely increases with medial elastin degeneration and may facilitate the dissection propensity in aneurysmal tissue. The 3 Hz component in frequency analyses of the total shear stress versus time curve produced by 1 Hz sinusoidal translational shear deformation measures the fluid-solid interaction shear force that is otherwise difficult to isolate. This non-standard examination of the interstitial fluid interaction helps clarify clinical mechanical implications of structural differences between aneurysmal and non-pathologic human ascending aortic tissue. The aneurysmal dissection susceptibility does not appear to depend on the amount of interstitial fluid or the wall thickness compared to non-pathologic tissue.


Assuntos
Aorta , Líquido Extracelular , Humanos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA