Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 263: 116619, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094291

RESUMO

Dual-mode signal output platforms have demonstrated considerable promise due to their improved anti-interference capability and inherent signal self-correction. Nevertheless, traditional discrete-distributed signal probes often encounter significant drawbacks, including limited mass transfer efficiency, diminished signal strength, and instability in intricate biochemical environments. In response to these challenges, a scalable and hyper-compacted 3D DNA nanoplatform resembling "periodic focusing heliostat" has been developed for synergistically enhanced fluorescence (FL) and surface-enhanced Raman spectroscopy (SERS) biosensing of miRNA in cancer cells. Our approach utilized a distinctive assembly strategy integrating gold nanostars (GNS) as fundamental "heliostat units" linked by palindromic DNA sequences to facilitate each other hand-in-hand cascade alignment and condensed into large scale nanostructures. This configuration was further augmented by the incorporation of gold nanoparticles (GNP) via strong Au-S bonds, resulting in a sturdy framework for improved signal transduction. The initiation of this assembly process was mediated by the hybridization of dsDNA to miRNA-21, which served as a primer for polymerization and nicking reactions, thus generating a multifunctional T2 probe. This probe is intricately designed with three distinct parts: a 3'-palindromic end for structural integrity, a central region for capturing SERS-active probes (Cy3-P2), and a 5'-segment for attaching fluorescence reporters. Upon integration T2 into the GNS-based heliostat unit, it promotes palindromic arm-induced aggregation and plasma exciton coupling between plasma nanoparticles and signal transduction tags. This clustered arrangement creates a high-density "hot spot" array that maximizes the local electromagnetic fields necessary for enhanced SERS and FL response. This superstructure supports enhanced aggregation-induced signal amplification for both SERS and FL, offering exceptional sensitivity with LOD as low as 0.0306 pM and 0.409 pM. The efficacy of this method was demonstrated in the evaluation of miRNA-21 in various cancer cell lines.


Assuntos
Técnicas Biossensoriais , DNA , Ouro , Nanopartículas Metálicas , MicroRNAs , Análise Espectral Raman , Humanos , Técnicas Biossensoriais/métodos , MicroRNAs/análise , Ouro/química , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , DNA/química , Neoplasias , Linhagem Celular Tumoral , Limite de Detecção , Hibridização de Ácido Nucleico , Nanoestruturas/química
2.
Food Chem ; 459: 140313, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39106536

RESUMO

Food safety is a serious issue worldwide and practical detection method is vital for the supervision of food safety. It is necessary to establish efficient and economical methods to detect antibiotics, especially antibiotics in complex systems. This study employs citric acid and m-phenylenediamine to synthesize N, P-codoped carbon dots (N, P-CDs) by a microwave-assisted method. Anhydrous ethanol and phosphoric acid are essential to the properties of N, P-CDs. A "turn-on" fluorescent probe based on N, P-CDs was established for detecting ciprofloxacin (CIP) with detection limit down to 24.2 nm. Semiquantitative test stripe and a PS color detection system for CIP were developed to achieve visual and smart detection. The test stripe is applied to the visual detection of CIP residues in milk and a popular Chinese cuisine, Malatang, for the first time. N, P-CDs can also be used to detect pH in the range of pH 7.5-12.

3.
Anal Chim Acta ; 1320: 342968, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39142796

RESUMO

BACKGROUND: Cancer is known as one of the main non-communicable diseases and the leading cause of death in the new era. Early diagnosis of cancer requires the identification of special biomarkers. Currently, microRNAs (miRNAs) have attracted the attention of researchers as useful biomarkers for cancer early detection. Hence, various methods have been recently developed for detecting and monitoring miRNAs. Among all miRNAs, detection of miRNA-21 (miR-21) is important because it is abnormally overexpressed in most cancers. Here, a new biosensor based on silver nanoclusters (AgNCs) is introduced for detecting miR-21. RESULTS: As a fluorescent probe, a rationally designed hairpin sequence containing a poly-cytosine motif was used to facilitate the formation of AgNCs. A guanine-rich sequence was also employed to enhance the sensing signal. It was found that in the absence of miR-21, adding a guanine-rich sequence to the detecting probe caused only a slight change in the fluorescence emission intensity of AgNCs. While in the presence of miR-21, the emission signal enhanced. A direct correlation was observed between the increase in the fluorescence of AgNCs and the concentration of miR-21. The performance of the proposed biosensor was characterized thoroughly and confirmed. The biosensor detected miR-21 in an applicable linear range from 9 pM to 1.55 nM (LOD: 2 pM). SIGNIFICANCE: The designed biosensor was successfully applied for detecting miR-21 in human plasma samples and also in human normal and lung and ovarian cancer cells. This biosensing strategy can be used as a model for detecting other miRNAs. The designed nanobiosensor can measure miR-21 without using any enzymes, with fewer experimental steps, and at a low cost compared to the reported biosensors in this field.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , MicroRNAs , Neoplasias Ovarianas , Prata , Humanos , Prata/química , MicroRNAs/sangue , MicroRNAs/análise , Técnicas Biossensoriais/métodos , Neoplasias Ovarianas/diagnóstico , Nanopartículas Metálicas/química , Feminino , Corantes Fluorescentes/química , DNA/química , Espectrometria de Fluorescência , Limite de Detecção , Linhagem Celular Tumoral
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124854, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39089061

RESUMO

Ion specificity is crucial for developing fluorescence probes. Using a recently reported optical sensor (BDA-1) of Zn2+ as a representative, we carried out extensive quantum chemical calculations on its photophysical properties using density function theory. According to the calculated optimized geometries, excitation energies and transition oscillator strengths, the weak fluorescence of BDA-1 observed in experiments is attributed to the suppression of fluorescence emission by efficient internal conversion, rather than the previously proposed photoinduced electron transfer (PET) mechanism. With the addition of Zn2+ or Cd2+ ions, the tetradentate chelates [M:BDA-1-H+]+ (M=Zn, Cd) are produced. According to frontier molecular orbital and interfragment charge transfer analyses of these complexes, PET is preferentially confirmed to occur upon photo-excitation. Notably, as one coordination bond in the excited [Cd:BDA-1-H+]+ complex is significantly weakened in comparison to that of [Zn:BDA-1-H+]+, their molecular orbital compositions in the S1 state are completely different. As a result, absorption and radiation transitions of [Zn:BDA-1-H+]+ both have considerable oscillator strength, while fluorescence radiation from the excited [Cd:BDA-1-H+]+ is doubly suppressed. This difference causes that the fluorescence intensity of BDA-1 is sensitive to the addition of metal ions, and exhibits the zinc ion-specificity.

5.
Talanta ; 279: 126628, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39084040

RESUMO

The polymer dots (Pdots) prepared by the conjugated polymer (PFO, poly (9,9-dihexylfluorene-2,7-diyl)) have high fluorescence intensity and are often used in biological fluorescence imaging. However, due to the chain defects, the PFO Pdots suffer from stability issues such as photoinactivation and photobleaching. To solve this problem, we drew inspiration from the preparation process of organic planar light-emitting devices and added an optimization processing after Pdots was prepared. We used illumination as the driving force to activate defects on its chain, and ascorbic acid as a reducing substance to restore the chain defects of the polymer to a more stable state. Through this method, we increased the fluorescence intensity by nearly 1.9 times, and significantly improving their long and short-term stability. In addition, it ensures other properties remain unchanged. This optimization scheme is also fully compatible with the entire biological imaging process, ensuring that other important properties such as cytotoxicity do not undergo unnecessary changes. Furthermore, we conducted material characterization and theoretical simulation, revealing that the optimization scheme mainly serves to repair C-9 alkyl defects on the polyfluorene unit. This study has improved and enhanced the fluorescence performance of PFO Pdots, and also provides a way to optimize the treatment of other similar conjugated polymer material systems.

6.
Anal Chim Acta ; 1316: 342865, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969412

RESUMO

BACKGROUND: Nitroaromatic compounds are inherently hazardous and explosive, so convenient and rapid detection strategies are needed for the sake of human health and the environment. There is an urgent demand for chemical sensing materials that offer high sensitivity, operational simplicity, and recognizability to effectively monitor nitroaromatic residues in industrial wastewater. Despite its importance, the mechanisms underlying fluorescence quenching or enhancement in fluorescent sensing materials have not been extensively researched. The design and synthesis of multiresponsive fluorescent sensing materials have been a great challenge until now. RESULTS: In this study, a one-dimensional Cd-based fluorescent porous coordination polymer (Cd-CIP-1) was synthesized using 5-(4-cyanobenzyl)isophthalic acid (5-H2CIP) and 4,4'-bis(1-imidazolyl)biphenyl (4,4'-bimp) and used for the selective detection of nitrobenzene in aqueous solution by fluorescence quenching, with a limit of detection of 1.38 × 10-8 mol L-1. The presence of aniline in the Cd-CIP-1 solution leads to the enhancement of fluorescence property. Density functional theory and time-dependent density functional theory calculations were carried out to elucidate the mechanisms of the fluorescence changes. This study revealed that the specific pore size of Cd-CIP-1 facilitates analyte screening and enhances host-guest electron coupling. Furthermore, π-π interactions and hydrogen bond between Cd-CIP-1 and the analytes result in intermolecular orbital overlap and thereby boosting electron transfer efficiency. The different electron flow directions in NB@Cd-CIP-1 and ANI@Cd-CIP-1 lead to fluorescence quenching and enhancement. SIGNIFICANCE AND NOVELTY: The multiresponsive coordination polymer (Cd-CIP-1) can selectively detect nitrobenzene and recognize aniline in aqueous solutions. The mechanism of fluorescence quenching and enhancement has been thoroughly elucidated through a combination of density functional theory and experimental approaches. This study presents a promising strategy for the practical implementation of a multiresponsive fluorescent chemical sensor.

7.
ACS Appl Mater Interfaces ; 16(26): 34303-34312, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38885089

RESUMO

Perovskite nanocrystals hold significant promise for a wide range of applications, including solar cells, LEDs, photocatalysts, humidity and temperature sensors, memory devices, and low-cost photodetectors. Such technological potential stems from their exceptional quantum efficiency and charge carrier conduction capability. Nevertheless, the underlying mechanisms of photoexcitation, such as phase segregation, annealing, and ionic diffusion, remain insufficiently understood. In this context, we harnessed hyperspectral fluorescence microspectroscopy to advance our comprehension of fluorescence enhancement triggered by UV continuous-wave (cw) laser irradiation of CsPbBr3 colloidal nanocrystal thin films. Initially, we explored the kinetics of fluorescence enhancement and observed that its efficiency (φph) correlates with the laser power (P), following the relationship φph = 7.7⟨P⟩0.47±0.02. Subsequently, we estimated the local temperature induced by the laser, utilizing the finite-difference method framework, and calculated the activation energy (Ea) required for fluorescence enhancement to occur. Our findings revealed a very low activation energy, Ea ∼ 9 kJ/mol. Moreover, we mapped the fluorescence photoenhancement by spatial scanning and real-time static mode to determine its microscale length. Below a laser power of 60 µW, the photothermal diffusion length exhibited nearly constant values of approximately (22 ± 5) µm, while a significant increase was observed at higher laser power levels. These results were ascribed to the formation of nanocrystal superclusters within the film, which involves the interparticle spacing reduction, creating the so-called quantum dot solid configuration along with laser-induced annealing for higher laser powers.

8.
Mikrochim Acta ; 191(7): 412, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902398

RESUMO

CdTeS quantum dots (CdTeS QDs) were synthesized using the hydrothermal method and subsequently modified with (3-aminopropyl)triethoxysilane (APTES). This modification resulted in a significant enhancement of the fluorescence intensity, which was observed to be five times stronger than that of unmodified CdTeS QDs at 597 nm. Only after the fluorescence enhancement by APTES modification, the material showed a response to 1-naphthol (1-NP). Based on this, the molecularly imprinted polymers (MIPs) with ratiometric fluorescence were developed for the detection of 1-NP, that is, the synthetic raw material and the metabolite of the pesticide carbaryl. Under the excitation of 365 nm UV, the bright orange-red fluorescence (597 nm) of CdTeS QDs encapsulated in MIPs was quenched by 1-NP in the suspension, and 1-NP showed a gradually increasing blue emission (460 nm) with the increase of its concentration. This sensor has a good linear relationship between fluorescence intensity ratio (F460/F597) and 1-NP concentration (C1-NP) in a large concentration range (6.0-140.0 µM, LOD=0.45 µM, RSD<4.41%). It exhibits a visible fluorescence change from orange-red to blue-purple. Excellent recoveries in real samples were obtained by simulating carbaryl metabolism and demonstrated its potential in detection of 1-NP and carbaryl.

9.
Angew Chem Int Ed Engl ; : e202408861, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898541

RESUMO

Despite various efforts to optimize the near-infrared (NIR) performance of perylene diimide (PDI) derivatives for bio-imaging, convenient and efficient strategies to amplify the fluorescence of PDI derivatives in biological environment and the intrinsic mechanism studies are still lacking. Herein, we propose an alkyl-doping strategy to amplify the fluorescence of PDI derivative-based nanoparticles for improved NIR fluorescence imaging. The developed PDI derivative, OPE-PDI, shows much brighter in n-Hexane (HE) compared with that in other organic media, and the excited state dynamics investigation experimentally elucidates the solvent effect-induced suppression of intermolecular energy transfer and intramolecular nonradiative decay as the underlying mechanism for the fluorescence improvement. Theoretical calculations reveal the lowest reorganization energies of OPE-PDI in HE among various solvents, indicating the effectively suppressed conformational relaxation to support the strongest radiative decay. Inspired by this, an alkyl atmosphere mimicking HE is constructed by incorporating the octadecane into OPE-PDI-based nanoparticles, permitting up to 3-fold fluorescence improvement compared with the counterpart nanoparticles. Owing to the merits of high brightness, anti-photobleaching, and low biotoxicity for the optimal nanoparticles, they have been employed for probing and long-term monitoring of tumor. This work highlights a facile strategy for the fluorescence enhancement of PDI derivative-based nanoparticles.

10.
Methods Appl Fluoresc ; 12(3)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38537299

RESUMO

Lead halide perovskite nanocrystals (PNCs) have attracted intense attention due to their excellent optoelectronic properties. In this work, a series of water-stable CsPb(Br/I)3PNCs fluorescent probes were prepared using an anion exchange method. It was found that the PNCs probes could be used to detect ascorbic acid (AA) in water, and interestingly, the FL spectra of the PNCs probes can be adjusted by controlling the concentration of KI in anion exchange to improve the detection selectivity of AA. The high sensitivity and selectivity make CsPb(Br/I)3PNCs an ideal material for AA sensing. The concentration of AA can be linearly measured in the range from 0.01 to 50µM, with a detection limit of 4.2 nM. The reason for the enhanced FL of CsPb(Br/I)3PNCs was studied, and it is considered that AA causes the aggregation of CsPb(Br/I)3PNCs. This strategy of improving the selectivity of the probe to the substrate by adjusting the spectrum will significantly expand the application of PNCs in the field of analysis and detection.

11.
FEBS Lett ; 598(9): 1022-1033, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479985

RESUMO

Transcription initiation, the first step in gene expression, has been studied extensively in dilute buffer, a condition which fails to consider the crowded environment in live cells. Recent reports indicate the kinetics of promoter escape is altered in crowded conditions for a consensus bacterial promoter. Here, we use a real-time fluorescence enhancement assay to study the kinetics of unwound bubble formation and promoter escape for three separate promoters. We find that the effect of crowding on transcription initiation is complex, with lower rates of unwound bubble formation, higher rates of promoter escape, and large variations depending on promoter identity. Based on our results, we suggest that altered conditions of crowding inside a live cell can trigger global changes.


Assuntos
Escherichia coli , Regiões Promotoras Genéticas , Iniciação da Transcrição Genética , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Substâncias Macromoleculares/metabolismo , Substâncias Macromoleculares/química
12.
Chemphyschem ; 25(11): e202400140, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38497816

RESUMO

N-(9-anthracenylmethyl)-N-(2-pyridinylmethyl)-2-pyridinemethanamine (ADPA) as a specific ion sensor for Zn2+ has been widely applied. Although the photo-induced electron transfer (PET) mechanism was proposed previously, its fluorescence-enhanced effect still remains somewhat ambiguous, according to unknown influences of non-radiative energy decay pathways, such as intersystem crossing and internal conversion. Herein, a thorough study using density functional theory has been performed for low-lying electronic states of the ADPA monomer and hydrated ADPA-Zn2+ complex. Based on interfragment charge transfer analyses, we quantitatively calculated the amount of transferred electrons in the monomer and complex, providing solid evidences for the PET mechanism and in line with the conclusion of frontier molecular orbital analyses. Moreover, the ISC process of S1→T2 was confirmed to play a considerable role in the excitation energy relaxation process of the ADPA monomer, but this influence was significantly suppressed in the hydrated ADPA-Zn2+ complex. These results provide additional clues for the design of new metal ion-specific fluorescence probes.

13.
Methods ; 224: 47-53, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387709

RESUMO

Nucleotide excision repair (NER) promotes genomic integrity by removing bulky DNA adducts introduced by external factors such as ultraviolet light. Defects in NER enzymes are associated with pathological conditions such as Xeroderma Pigmentosum, trichothiodystrophy, and Cockayne syndrome. A critical step in NER is the binding of the Xeroderma Pigmentosum group A protein (XPA) to the ss/ds DNA junction. To better capture the dynamics of XPA interactions with DNA during NER we have utilized the fluorescence enhancement through non-canonical amino acids (FEncAA) approach. 4-azido-L-phenylalanine (4AZP or pAzF) was incorporated at Arg-158 in human XPA and conjugated to Cy3 using strain-promoted azide-alkyne cycloaddition. The resulting fluorescent XPA protein (XPACy3) shows no loss in DNA binding activity and generates a robust change in fluorescence upon binding to DNA. Here we describe methods to generate XPACy3 and detail in vitro experimental conditions required to stably maintain the protein during biochemical and biophysical studies.


Assuntos
Dano ao DNA , Reparo do DNA , Humanos , Reparo do DNA/genética , Dano ao DNA/genética , Reparo por Excisão , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína de Xeroderma Pigmentoso Grupo A/química , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , DNA/química , Raios Ultravioleta , Nucleotídeos , Ligação Proteica
14.
Food Chem ; 445: 138749, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38368699

RESUMO

In this study, a type of luminescent porous coordination network-224 (PCN-224) in alkaline conditions was synthesized with the dramatic fluorescence enhancement by 20.4 times, which was explained by the fact that the decrease of Zr4+ content in alkaline conditions resulted in the partial recovery of the electron cloud density of 4,4',4'',4'''-(Porphine-5,10,15,20-tetrayl) tetrakis(benzoic acid) (TCPP). Given the large overlap between the excitation spectrum of PCN-224 and the absorption band of Ag nanoparticles (Ag NPs), the coating of the Ag layer on PCN-224 triggered the fluorescence quenching effect, which was applied to "turn off" fluorescence immunoassay for sensitive detection of Escherichia coli O157:H7 (E. coli O157:H7) in milk. The proposed immunoassay reached a low limit of detection (LOD) of 3.3 × 102 CFU mL-1, 29.7 times more sensitive than the conventional ELISA. It will provide a novel alternative strategy for sensitively detecting pathogenic bacteria in the field of food safety.


Assuntos
Escherichia coli O157 , Nanopartículas Metálicas , Animais , Leite/microbiologia , Prata , Imunoensaio/métodos , Microbiologia de Alimentos
15.
ACS Appl Mater Interfaces ; 16(7): 9436-9442, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38320754

RESUMO

Recently, bioinspired fluorescent materials have drawn ever-increasing attention due to their ecofriendliness and easy accessibility. Herein, we demonstrate that anthraquinone/metal ion coordination complexes can form well-defined crystals and possess obvious fluorescence enhancement properties. The fluorescence quantum yields of anthraquinone/metal ion assemblies are more than 2 orders of magnitude compared to those of anthraquinone assemblies. The electronic structures of the first excited singlet states of anthraquinone/metal ion molecules are obtained, and the mechanism of the fluorescence enhancement is elucidated. Such photoluminescent anthraquinone/metal ion crystals can be considered as efficient phosphors in fabricating light-emitting diodes. This work provides a simple route for the development of highly efficient natural fluorescent materials.

16.
Talanta ; 271: 125719, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38281429

RESUMO

The design of surface ligands is crucial for ligand-protected gold nanoparticles (AuNPs). Herein, following the principle of green synthesis, environmentally friendly gold nanoparticles (AuNPs@His@CC, AuHC) were fabricated based on dual ligands of histidine and carboxylated chitosan. AuHC showed the advantages of low toxicity, good photoluminescent stability and ideal biocompatibility. Compared with single histidine-coated gold nanoclusters (AuNCs@His, AuH), AuHC presented enhanced fluorescence attributed to the addition of chitosan. The blue-emitting AuHC has a unique response to Fe3+ with detection limits as low as 9.51 nM. Interestingly, the quenched fluorescence of AuHC-Fe3+ system could be restored through the introduction of PPi with a detection limit of 10.6 µM. So an "on-off-on" fluorescence sensing platform was achieved. Apart from good optical properties and sensing, the designed AuHC demonstrated outstanding photothermal conversion efficiency (27.8 %), which made it ideal material for thermal ablation of tumor. To be specific, after laser irradiation (660 nm, 0.78 W cm-2, 10 min) of AuHC, the survival rate of HeLa cells as a tumor cell model decreased to 12.7 %, indicating that AuHC has a significant tumor inhibition effect in vitro. Besides, AuHC also could be a befitting candidate for overcoming drug-resistant tumor cells such as MCF-7/ADR cells. Notably, AuHC can markedly ablate solid tumors in 4T1 tumor-bearing mice after laser irradiation (660 nm, 0.78 W cm-2, 10 min). Hence this work provides insight into the design of multifunctional AuNPs platform for simultaneously integrating the ion sensing and photothermal therapy of cancer.


Assuntos
Quitosana , Nanopartículas Metálicas , Humanos , Animais , Camundongos , Terapia Fototérmica , Ouro , Fluorescência , Células HeLa , Histidina
17.
Nanotechnology ; 35(19)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38241734

RESUMO

Fluorescence resonance energy transfer (FRET) was found strongly enhanced by plasmon resonance. In this work, Nanoporous Gold with small amount of residual silver was used to form nanoporous gold/organic molecular layer compound with PSS and PAH. The ratio of its specific gold and silver content is achieved by controlling the time of its dealloying. Layered films of polyelectrolyte multilayers were assembled between the donor-acceptor pairs and NPG films to control distance. The maximum of FRET enhancement of 80-fold on the fluorescence intensity between the donor-acceptor pairs (CFP-YFP) is observed at a distance of ∼10.5 nm from the NPG film. This Nanoporous Gold with small amount of residual silver not only enhanced FRET 4-fold more than nanoporous gold of only gold content almost, but also effectively realized the regulation of FRET enhancement. The ability to precisely measure and regulate the enhancement of FRET enables the rational selection of plasmonic nanotransducer dimensions for the particular biosensing application.

18.
Small ; 20(22): e2309589, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105589

RESUMO

Achieving ultrabright fluorogens is a key issue for fluorescence-guided surgery (FGS). Fluorogens with aggregation-induced emission (AIEgens) are potential agents for FGS on the benefit of the bright fluorescence in physiological conditions. Herein, the fluorescence brightness of AIEgen is further improved by preparing the nanoparticle using a polystyrene-based matrix and utilizing it for tumor FGS with a high signal-to-background ratio. After encapsulating AIEgen into polystyrene-poly (ethylene glycol) (PS-PEG), the fluorescence intensity of the prepared AIE@PS-PEG nanoparticles is multiple times that of nanoparticles in 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-poly (ethylene glycol) (DSPE-PEG), a commonly used polymer matrix for nanoparticle preparation. Molecular dynamics simulations suggest that higher free energy is required for the outer rings of AIEgen to rotate in polystyrene than in the DSPE, indicating that the benzene rings in polystyrene can restrict the intramolecular motions of AIEgen better than the alkyl chain in DSPE-PEG. Fluorescence correlation microscopy detections suggest that the triplet excited state of AIEgens is less in PS-PEG than in DSPE-PEG. The restricted intramolecular motions and suppressed triplet excited state result in ultrabright AIE@PS-PEG nanoparticles, which are more conducive to illuminating tumor tissues in the intestine for FGS. The illumination of metastatic tumors in lungs by AIE@PS-PEG nanoparticles is also tried.


Assuntos
Poliestirenos , Poliestirenos/química , Fluorescência , Polietilenoglicóis/química , Humanos , Nanopartículas/química , Cirurgia Assistida por Computador/métodos , Simulação de Dinâmica Molecular , Animais , Corantes Fluorescentes/química
19.
Chemistry ; 30(10): e202303101, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38116855

RESUMO

Developing luminescent materials that exhibit strong emissions in both solution and solid phases is highly desirable and challenging. Herein, we report imine-bond directed formation of a rigid organic cage (TPE-cage) that was synthesized by [2+4] imine condensation of a TPE-cored tetra-aldehyde (TPE-TA) with a clip-like diamine (XA) to illustrate confinement-induced fluorescence enhancement. Compared to the non-emissive TPE-TA (ϕF =0.26 %) in the dichloromethane (DCM) solution, the TPE-cage achieved a remarkable (~520-fold) emission enhancement (ϕF =70.38 %). In contrast, a monomeric tetra-imine model compound (TPE-model) showed only a minor enhancement (ϕF =0.56 %) in emission compared to the parent tetra-aldehyde TPE-TA. The emission of TPE-cage was further enhanced by ~1.5-fold (ϕF =80.96 %) in the aggregated state owing to aggregation-induced emission enhancement (AIEE). This approach establishes the potential for synthesizing luminescent materials with high emission in both solution and solid-state by employing a single-step imine condensation reaction.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123769, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38128329

RESUMO

Cholesterol is one of the major markers for cardiovascular diseases. Herein, a portable cholesterol measurement system based on fluorescence color detection was constructed by combining the high sensitivity of fluorescence analysis with the ease of color sensing to determine low levels of serum cholesterol. Cyclodextrin capping gold nanoclusters with blue-green emission were used as fluorescent probes because cholesterol exposure induced fluorescence enhancement of the probe due to the host-guest inclusion interaction between cholesterol and the cavity of cyclodextrin. The integrated sensing system consisted of modules including a microprocessor, a power supply, an LED light with a constant current source, an RGB color sensor, a display, and a darkroom. All the modules except the display screen were placed in a 3D printing darkroom to avoid interference from ambient light. An RGB color sensor TCS230 was applied to capture the RGB signals of the fluorescent color of the probe solution before and after cholesterol addition. Then the obtained RGB signals were converted into the signals in Hue, Saturation, and Value (HSV) color space with a central control chip STM32F407. The Hue value of the fluorescent color of the solution can discriminate the concentration change of cholesterol. Experimental results demonstrate that the system responds linearly to cholesterol in the concentration range of 20.00 âˆ¼ 150.00 µmol·L-1 with a detection limit of 16.07 µmol·L-1 (3σ, n = 3). The detection of the system has good consistency and accuracy compared with the standard instrument, showing potential for the detection of low levels of serum cholesterol.


Assuntos
Nanopartículas Metálicas , Pontos Quânticos , beta-Ciclodextrinas , Ouro , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes , Colesterol , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA