Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.142
Filtrar
1.
J Environ Sci (China) ; 150: 149-158, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306392

RESUMO

Acid-base dissociable antibiotic-metal complexes are known to be emerging contaminants in the aquatic environments. However, little information is available on the photochemical properties and toxicity of these complex forms. This study investigated the spectral properties of three fluoroquinolones (FQs) with and without metal ions Fe(III), Cu(II), and Al(III) in solutions under different pH conditions, as well as evaluated the changes in toxicity due to the complex with these metal ions using luminescent bacteria (vibrio fischeri). FQs showed a higher tendency to coordinate metal ions under alkaline conditions compared to neutral and acidic conditions, and the formation of complexes weakened the ultraviolet-absorbing ability of FQs. At pH = 7.0, Cu(II) quenched the fluorescence intensity of FQs. Moreover, their Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy were explored, revealing that the coordination sites of Cu(II) in three FQs were situated in a bidentate manner through the oxygen atom of the deprotonated carboxyl group and cyclic carbonyl oxygen atom. This conclusion was further verified by the theory of molecular surface electrostatic potential. In addition, except for complexes of ciprofloxacin-metals, enhanced toxicity of FQs upon coordination with Fe(III) was observed, while reduced toxicity was found for coordination with Cu(II) and Al(III). These results are important for accurately evaluating the photochemical behavior and risk of these antibiotics in aquatic environments contaminated with metal ions.


Assuntos
Antibacterianos , Fluoroquinolonas , Poluentes Químicos da Água , Fluoroquinolonas/química , Fluoroquinolonas/toxicidade , Antibacterianos/química , Antibacterianos/toxicidade , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Metais/química , Metais/toxicidade , Aliivibrio fischeri/efeitos dos fármacos , Processos Fotoquímicos
2.
Sci Rep ; 14(1): 26423, 2024 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-39488602

RESUMO

In this study delafloxacin resistance mechanisms in Escherichia coli strains were analyzed. Delafloxacin is a new fluoroquinolone, that is approved for clinical application however, resistance against this agent is scarcely reported. In our study 37 E. coli strains were included and antimicrobial susceptibility testing was performed for ciprofloxacin, delafloxacin, levofloxacin, moxifloxacin, ceftazidime, cefotaxime, imipenem. Six delafloxacin resistant E. coli strains were selected for whole-genome sequencing and all of them exhibited resistance to other fluoroquinonlones and showed an extended-spectrum beta-lactamase phenotype. The six delafloxacin resistant E. coli strains belonged to different sequence types (STs) namely, ST131 (2 strains), ST57 (2 strains), ST162 and ST15840. Each delafloxacin resistant strain possessed multiple mutations in quinolone resistance-determining regions (QRDRs). Notably, three mutations in gyrA Ser83Leu, Asp87Asn and parC Ser80Ile were in strains of ST162, ST57 and ST15840. However, the two strains of ST131 carried five combined mutations namely, gyrA Ser83Leu, Asp87Asn, parC Ser80Ile, Glu84Val, parE Ile549Leu. Association of delafloxacin resistance and production of CTX-M-15 in ST131, CMY-2 in ST162 and ST15840 was detected. In this study a new ST, ST15840 of clonal complex 69 was identified. Our results demonstrate, that at least three mutations in QRDRs are required for delafloxacin resistance in E. coli.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Escherichia coli , Fluoroquinolonas , Testes de Sensibilidade Microbiana , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Fluoroquinolonas/farmacologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Mutação , Sequenciamento Completo do Genoma , Humanos , DNA Girase/genética , DNA Topoisomerase IV/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , beta-Lactamases/genética
3.
J Pharm Health Care Sci ; 10(1): 68, 2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39491012

RESUMO

BACKGROUND: Fluoroquinolone (FQ) antimicrobials have antipyretic effects during the treatment of bacterial infections; however, it is not clear whether these are due to their antimicrobial activities or their hypothermic effects. In this study, we investigated the hypothermic effects of FQ antimicrobials (ciprofloxacin [CPFX], gatifloxacin [GFLX], and levofloxacin [LVFX]) on fever by evaluating rectal body temperature changes in a mouse model of non-bacterial fever. METHODS: CPFX, GFLX, and LVFX were administered intraperitoneally to non-bacterial fever model mice induced by yeast. Rectal body temperature was measured up to 180 min after administration. RESULTS: A decrease in rectal body temperature of up to 1.2 °C for CPFX, 3.4 °C for GFLX, and 1.0 °C for LVFX was observed. The decrease in temperature was induced by an increase in the plasma concentration of FQ antimicrobials, suggesting that they are responsible for the temperature reduction. Focusing on glucocorticoids, one thermoregulation mechanism, we investigated the substances responsible for the reduction in rectal body temperature induced by FQ antimicrobials. Aminoglutethimide (an inhibitor of glucocorticoid production) were premedicated, followed by intraperitoneal administration of GFLX in the yeast-induced fever mouse model, resulting in attenuated GFLX-induced hypothermic effects. CONCLUSIONS: These results suggest that certain antipyretic effects of CPFX, GFPX, and LVFX during fever may contribute to their hypothermic effects; certain mechanisms are glucocorticoid-mediated.

4.
Food Chem ; 464(Pt 1): 141619, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39423527

RESUMO

Herein, a new, environmentally friendly, and economical magnetic solid-phase extraction method for fluoroquinolones (FQs) from milk samples was developed using novel recyclable zeolitic imidazolate framework functionalized magnetic multiwalled carbon nanotubes (Fe3O4@MWCNTs@SiO2@ZIF-8) as adsorbents. Various characterization techniques, including scanning electron microscopy, N2 adsorption-desorption analysis, and vibrating sample magnetometry, demonstrated that the adsorbent possessed a remarkable specific surface area, pore volume, and superparamagnetic properties, rendering it an excellent adsorbent. Combined with high-performance liquid chromatography, this method exhibited excellent linearity (R2 ≥ 0.9991) over the concentration range of 0.5-500 µg L-1, low limits of detection (0.10-0.34 µg kg-1), and low limits of quantification (0.30-1.00 µg kg-1). Finally, the developed method was successfully applied to analyze FQs in milk samples with recoveries ranging from 83.3% to 107.7% and relative standard deviations below 4.2%. The high efficiency and sensitivity of this method highlight the potential application of Fe3O4@MWCNTs@SiO2@ZIF-8 for analyzing FQs in complex matrices.

5.
Antimicrob Agents Chemother ; : e0105124, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39470195

RESUMO

Low-level drug resistance in noncanonical pathways can constitute steppingstones toward acquisition of high-level on-target resistance mutations in the clinic. To capture these intermediate steps in Mycobacterium abscessus (Mab), we performed classic mutant selection experiments with moxifloxacin at twofold its minimum inhibitory concentration (MIC) on solid medium. We found that low-level resistance emerged reproducibly as loss-of-function mutations in RshA (MAB_3542c), an anti-sigma factor that negatively regulates activity of SigH, which orchestrates a response to oxidative stress in mycobacteria. Since oxidative stress is generated in response to many antibiotics, we went on to show that deletion of rshA confers low to moderate resistance-by measure of MIC-to a dozen agents recommended or evaluated for the treatment of Mab pulmonary infections. Interestingly, this moderate resistance was associated with a wide range of drug tolerance, up to 1,000-fold increased survival of a ΔrshA Mab mutant upon exposure to several ß-lactams and DNA gyrase inhibitors. Consistent with the putative involvement of the SigH regulon, we showed that addition of the transcription inhibitor rifabutin (RBT) abrogated the high-tolerance phenotype of ΔrshA to representatives of the ß-lactam and DNA gyrase inhibitor classes. In a survey of 10,000 whole Mab genome sequences, we identified several loss-of-function mutations in rshA as well as non-synonymous polymorphisms in two cysteine residues critical for interactions with SigH. Thus, the multidrug multiform resistance phenotype we have uncovered may not only constitute a step toward canonical resistance acquisition during treatment but also contribute directly to treatment failure.

6.
Sci Total Environ ; 955: 177202, 2024 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-39471947

RESUMO

Widespread use of ciprofloxacin (CIP) in surface waters has raised ecological and human health concerns. However, the measured environmental concentration (MEC) of CIP may not directly indicate its ecological impact because CIP bioavailability and thus toxicity are influenced by environmental factors, such as pH and dissolved organic carbon (DOC). The present study integrates CIP toxicity as a function of pH and DOC into an environmental risk assessment (ERA) of CIP in European surface waters. A bioavailability model and water quality databases were used to estimate the predicted no-effect concentration (PNECECO) of CIP to protect freshwater ecosystems under five ERA scenarios. PNECECO values were predicted following the European Medicines Agency guidelines using ecotoxicity data for the cyanobacterium Microcystis aeruginosa, identified as the freshwater species most sensitive to CIP. The PNECECO values predicted under Scenarios 1 (not considering bioavailability) and 2 (assuming the most bioavailable form of CIP, the zwitterion CIP+/- at maximum relative abundance) were 25 ng L-1 and 32 ng L-1, respectively. Including the bioavailability effect of pH in Scenario 3 resulted in a range of PNECECO values from 25.0 to 62.4 ng L-1 (across Europe) whereas further including weak (Scenario 4) and strong (Scenario 5) CIP-DOC binding led to larger regional variations in PNECECO (25.8-1207 ng L-1). The PNECECO values were combined in Monte Carlo simulations with MEC data for the CIP to assess the probabilities of unacceptable risk (PUR), uncertain risk (PUN), and acceptable risk (PAR) for Europe and for ten countries. The EU-wide PUR values (9.8 %-22.0 %) were unrepresentative of individual countries (0 %-99 %), while variations in PUR across scenarios (0 %-95 %) indicated different influences of pH and DOC by country. Overall, DOC has a stronger impact than pH on the predicted no-effect concentrations (PNECs) and on the ecological risk of CIP, and thus the consideration of bioavailability can greatly improve the environmental relevance of the ERA outcomes.

7.
Front Microbiol ; 15: 1446818, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39417079

RESUMO

Background: Antibiotic prescription practices differ between countries, influencing regional antimicrobial resistance prevalence. However, comparisons of clonal diversity among resistant bacteria in countries with different prescribing practices are rare. The rise of fluoroquinolone-resistant Escherichia coli (FQREC), often multidrug-resistant, exacerbates global antibiotic resistance. Unlike in the USA, antibiotics are commonly dispensed in Iraq without prescriptions, leading to widespread overuse and misuse. This study aimed to assess the impact of varying antibiotic use practices on FQREC diversity. Methods: We compared FQREC prevalence, multidrug resistance, and clonality of FQREC among E. coli isolated from urine submitted between 2017 and 2018 to three US hospitals and two Iraqi hospitals. All FQREC isolates were analyzed for QRDR mutations and the presence of PMQR genes. A subset of FQREC strains from the ST131-H30R/Rx subgroups underwent whole-genome sequencing (WGS) and phylogenetic analysis. Results: E. coli from Iraq showed significantly higher resistance to all tested antibiotics compared to those from the USA, with 76.2% being FQREC versus 31.2% in the USA (p < 0.01). Iraqi FQREC strains were more frequently multidrug resistant. The predominant subgroup in both countries was ST131-H30, with the notable absence of ST1193 among Iraqi FQREC. Iraqi-origin ST131-H30 strains exhibited higher minimum inhibitory concentrations (MICs) for ciprofloxacin and greater resistance to third-generation cephalosporins (3GC), trimethoprim/sulfamethoxazole (TMP/STX), and imipenem (IMI) than those from the USA. Increased 3GC resistance in Iraqi strains was linked to a higher proportion of bla CTX-M-15-carrying H30Rx subclade isolates. Additionally, Iraqi H30 strains exhibited higher MICs for fluoroquinolones due to more frequent carriage of PMQR determinants compared to US strains. Whole-genome sequencing was performed on 46 Iraqi and 63 US H30 isolates. Phylogenetic analysis revealed two clades-H30R and H30Rx-present in both countries, with isolates from both regions distributed throughout, without the emergence of distinct new major subclones. However, Iraqi isolates tended to cluster in separate subclades, indicating endemic circulation of the strain groups. Conclusion: In regions like Iraq, where antibiotics are overused and misused, resistance among uropathogenic E. coli to various antibiotics is significantly higher. Most Iraqi resistant strains belong to well-known international groups, and no new highly successful strains have emerged. The absence of ST1193 in Iraq may reflect regional, socioeconomic, demographic, or cultural factors that hinder the success of certain strain groups in the country.

8.
Infect Drug Resist ; 17: 4101-4112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39319036

RESUMO

Objective: Aim to investigate the pathogens distribution and drug resistance of gram-negative bacteria causing bloodstream infection (BSIs) in Infectious Disease Surveillance of Pediatric from 2016 to 2022. The prevalence of four important drug resistance phenotypes was studied: difficult-to-treat resistance, fluoroquinolone resistance, carbapenem resistance, and extended-spectrum cephalosporin resistance, and to provide reference basis for preventing and treating BSIs diseases in children. Methods: Strain identification and antimicrobial susceptibility tests were independently performed at each hospital. Data were analyzed using Whonet 5.6 and GraphPad Prism 8 software. The Mann-Whitney U-test was used to examine and compare temporal changes. Results: A total of 39977 BSIs strains were isolated, with 27.1% of the negative bacteria causing BSIs (10824 strains). The highest bacteria detected were E. coli and S. maltophilia in the neonatal and pediatric groups. The detection rate of carbapenem-resistant-K. pneumoniae (CRKPN) in neonate group was 31.4%, significantly increased compared with pediatric group, whose detection rate was 24.7%. The rates of resistance to levofloxacin and trimethoprim/sulfamethoxazole were significantly lower in neonatal groups than pediatric groups in BSIs caused by K. pneumoniae. To imipenem and meropenem were 3.6% and 3.9% among neonatal isolates, which was lower than 4.7% and 5.8 among pediatric BSIs caused by E. coli. Isolated from neonatal BSIs caused by A. baumannii showed lower resistance ratios to all the agents tested than those from pediatric. However, only the prevalence of piperacillin/tazobactam resistance was statistically lower than that in pediatric BSIs caused by P. aeruginosa. The average detection rates of carbapenem resistance, extended-spectrum cephalosporin resistance, and fluoroquinolone resistance for K. pneumoniae and E. coli were 28.1%,41.4%,11.6% and 4.0%,24.3%,31.1%, respectively. Conclusion: The detection rate of gram-negative pathogens showed an increasing trend among the bloodstream infection. The detection rate of CRKPN assumed a downward trend in 2018. There are differences types of pathogens between the neonatal group and the pediatric group, The detection rate of CRKPN in the neonate group was significantly higher than pediatric group. The first average detection rates for carbapenem resistance, extended-spectrum cephalosporin resistance, and fluoroquinolone resistance were obtained for A. baumannii, K. pneumoniae, and Escherichia coli, respectively. Those data showed a high level of antimicrobial resistance, which has posed an urgent threat to Children's health, suggested that effective monitoring of antimicrobial resistance and antimicrobial stewardship among children in China are required.

9.
Int Med Case Rep J ; 17: 777-781, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39258108

RESUMO

A 68-year-old man on hemodialysis treatment for end-stage kidney disease secondary to autosomal dominant polycystic kidney disease (ADPKD) complained of right ankle pain that impaired walking ability two weeks after the initiation of intravenous levofloxacin as a treatment for concomitant liver cyst infection. A systemic workup led us to conclude that our patient had a fluoroquinolone-associated tendon injury. Such a disease condition has been recognized as a serious adverse event resulting from the receipt of fluoroquinolones in various clinical settings. Fluoroquinolones have received focus as standard therapeutic agents for liver and/or renal cyst infection because of their lipophilic properties that lead to good penetration into infected cysts. However, reports on fluoroquinolone-associated tendinopathy in patients with ADPKD associated with cyst infection are sparse. We believe the current report illustrates the pitfalls associated with managing patients with ADPKD who are subjected to the administration of fluoroquinolones due to infectious complications.

10.
Anal Chim Acta ; 1327: 343175, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39266065

RESUMO

BACKGROUND: Carbon quantum dots (CQDs) have gained much interest recently for being efficient probes. Their cost-effectiveness, eco-friendliness, and unique photocatalytic activities made them distinctive alternatives to other luminescent approaches like fluorescent dyes and luminous derivatization. Meanwhile, delafloxacin (DLF) is a recently approved antibacterial medicine. DLF has been authorized for the treatment of soft-tissue and skin infections as well as pneumonia. Therefore, new eco-friendly, cost-effective, and sensitive tools are needed its estimation in different matrices. RESULTS: In the proposed study, green copper and nitrogen carbon dots (Cu-N@CDs) were synthesized from a green source (plum juice with copper sulphate). Cu-N@CQDs were then characterized using multiple tools including X-ray photon spectroscopy (XPS), FTIR and UV-VIS spectroscopy, Zeta potential measurements, High-resolution transmission electron microscopy (HRTEM), and fluorescence spectroscopy. After gradually adding DLF, the developed quantum dots' fluorescence was significantly enhanced within the working range of 0.5-100.0 ng mL-1. The limits of detection and quantification were 0.08 and 0.27 ng mL-1, respectively. The accuracy of the proposed method ranged from 96.00 to 99.12 % in recovery%, when recovered from milk and plasma samples. SIGNIFICANCE: Cu-N@CDs were utilized and validated for selectively determining DLF in several matrices including pharmaceutical forms, human plasma and in milk samples using spectrofluorimetric technique. The bio-analytical method is simple and could be used in content uniformity testing as well as in therapeutic drug monitoring in human plasma.


Assuntos
Carbono , Cobre , Fluoroquinolonas , Nitrogênio , Pontos Quânticos , Pontos Quânticos/química , Nitrogênio/química , Cobre/química , Carbono/química , Fluoroquinolonas/análise , Fluoroquinolonas/sangue , Fluoroquinolonas/química , Humanos , Animais , Fluorometria/métodos , Limite de Detecção , Espectrometria de Fluorescência , Leite/química , Antibacterianos/sangue , Antibacterianos/análise , Antibacterianos/química
11.
Front Microbiol ; 15: 1418817, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39228379

RESUMO

Introduction: Antimicrobial therapy plays a crucial role in the management of CDI patients. However, the standard agent for treating CDIs is limited to oral fidaxomicin or vancomycin. For patients made nil by mouth, there is a clinically urgent and essential need to develop an intravenous antibiotic. Methods: For C. difficile with the lowest MIC of nemonoxacin and vancomycin, the inhibitory effects were tested using the kinetic time-kill assay and ex vivo co-culture model. The effectiveness of nemonoxacin and vancomycin in inhibiting spore germination, the sporicidal activity, and the treatment of mice with CDIs were compared. Results: For clinical isolates and laboratory strains, lower MICs of nemonoxacin against C. difficile than levofloxacin and ciprofloxacin were observed, even in those harboring point mutations in the quinolone-resistance determining region. Although nemonoxacin failed to suppress spore outgrowth and germination in C. difficile, it exhibited an effective inhibitory effect against C. difficile in the kinetic time-kill assay and the ex vivo co-culture model. Mice receiving intraperitoneal nemonoxacin had less weight loss, higher cecum weight, a longer colon length, and lower expression of the tcdB gene, compared with untreated mice. Notably, there were no significant differences observed in weight loss, cecum weight, colon length, or tcdB gene expression between mice treated with vancomycin and those treated with any dose of nemonoxacin. Similarly, no significant differences were found between mice receiving combination therapy of intraperitoneal nemonoxacin plus oral vancomycin and those treated with intraperitoneal nemonoxacin or oral vancomycin alone. Discussion: The potential role of nemonoxacin, which can be administered parenterally, for treating CDIs was evidenced through the in vitro, ex vivo, and mouse models.

12.
BMC Chem ; 18(1): 172, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285424

RESUMO

Herein, a novel UV spectrophotometric method coupled with chemometric tools was developed for the simultaneous determination of three fluoroquinolone antibiotics: ciprofloxacin, lomefloxacin, and enrofloxacin. Such integration of UV spectroscopy and chemometric analysis proved to be a simple, rapid, and cost-effective approach for the quantification of these clinically important pharmaceutical compounds and aid in their quality control analysis. The method employed firefly algorithm for variable selection and partial least squares (PLS) regression for model calibration. The developed method was validated by independent test set in addition the accuracy, intra and inter-day precision as per ICH guidelines which showed a satisfactory performance with mean recovery ranged between 98.18 and 101.83 with %RSD < 2. Besides, the developed method displayed ultrasensitive levels with LODs (0.0803, 0.1125, 0.1309 µg/mL) and LOQs (0.2434, 0.3409, 0.3968 µg/mL) for ciprofloxacin, lomefloxacin, and enrofloxacin, respectively. The greenness and blueness of the developed method were also evaluated using the recently proposed Analytical GREEnness metric approach (AGREE) and Blue applicability grade index (BAGI) tools, which showed a high AGREE score of 0.79 and a BAGI score of 77.5. These results indicate that the developed method provides an environmentally friendly alternative to the traditionally used chromatographic techniques, while maintaining high analytical practicability. Finally, the application of the developed methodology was demonstrated on real pharmaceutical and tap water samples, and the results were in good agreement with those obtained by the reference HPLC method indicating the reliability and suitability of the proposed spectrophotometric method for routine analysis of fluoroquinolone antibiotics.

13.
Heliyon ; 10(18): e37547, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39309803

RESUMO

Background: Fluoroquinolones, including ciprofloxacin, levofloxacin, and moxifloxacin, are extensively employed as broad-spectrum antibacterial agents. However, their use is discouraged during pregnancy due to potential adverse events (AEs). The aim of this study is to systematically investigate the association between fluoroquinolones (specifically ciprofloxacin, levofloxacin, and moxifloxacin) and AEs related to pregnancy, as well as their potential impact on congenital disorders. Methods: A disproportionality analysis was conducted utilizing FDA Adverse Event Reporting System (FAERS) data spanning from the first quarter of 2004 to September 2023. The objective was to identify potential AEs signatures associated with fluoroquinolones through conducting reporting odds ratios (RORs) and Bayesian confidence propagation neural networks (BCPNN). Assessing the potential risk of pregnancy-associated AEs involved comparing each fluoroquinolone with all other medications. Additionally, in-depth comparative analyses were carried out between various fluoroquinolones and a reference drug (azithromycin). Results: A total of 1159 cases were identified, involving AEs related to pregnancy and congenital disorders. Obvious disproportionate association of abortion spontaneous and other nine AEs was identified for fluoroquinolone during gestation. Upon comparison with all the other drugs, ciprofloxacin exhibited an elevated risk of spontaneous abortion, non-site specific bone disorders congenital and 10 other significant signals. Levofloxacin demonstrated an increased risk of congenital tongue disorders and three other significant signals. Moxifloxacin displayed a noteworthy signal indicating multiple congenital cardiac abnormalities. Conclusions: We present compelling evidence regarding pregnancy-related AEs and congenital disorders linked to fluoroquinolones. Considering perinatal and genotoxicity aspects, we explore whether levofloxacin or moxifloxacin might be preferable when fluoroquinolones are deemed necessary to balance the benefits of pregnant women and fetuses.

14.
Sci Total Environ ; 954: 176270, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39278506

RESUMO

Antibiotic contamination and eutrophication in mariculture have become problems that cannot be ignored, and enrofloxacin (ENR), as an example, is especially widely used in mariculture. This study firstly revealed that Sesuvium portulacastrum, a plant with world-wide distribution in coastal zones, with its rhizosphere microorganisms, could remove ENR as well as nutrients. The S. portulacastrum system could degrade ENR to small-molecule products 1,2,3,4-tetrahydroquinolin-4-ol and (2,4-dihydroxyphenyl)-cyclopropylamine. And there were 81.3-39.2 % removals of ENR with 0.01-100 mg/L. Although ENR significantly influenced functions of rhizosphere microbial community, like decreasing nitrogen fixation, shifting trophic strategies from phototrophy to chemoheterotrophy, nutrients (NH4+-N, NO2--N, NO3--N and total dissolved phosphorus) removal of S. portulacastrum system was essentially unaffected at low ENR concentration (< 1 mg/L). The removal mechanism of S. portulacastrum system was explored. Neither of the isolated root exudates and rhizosphere bacteria could degrade ENR, however, without rhizosphere bacteria, ENR removal rate would decrease. Root proteins including oxidase, decarboxylase, dehydrogenase, such as laccase, isocitrate dehydrogenase, delta-1-pyrroline-5-carboxylate dehydrogenase were overexpressed. Additionally, endocytosis is a pathway for antibiotics to enter S. portulacastrum. This study demonstrated that S. portulacastrum system could be used for remediation of antibiotics-nutrients combined pollution, and deepened understanding the antibiotic removal mechanism of macrophytes in mariculture, moreover, provided new macroplant species and a theoretical basis for antibiotics removal in aquatic systems.

15.
J Microorg Control ; 29(3): 121-126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39343582

RESUMO

Plasmid-mediated antibiotic-resistant bacteria's transmission is fatal and a major threat to public health. This study aimed to clarify the presence of plasmid-mediated quinolone resistance(PMQR)genes in extended-spectrum ß-lactamase(ESBL)-producing or/and mcr-harbouring colistin(COL)-resistant Escherichia coli(ESBL-COL-EC)isolates from Vietnamese and Japanese chicken meat. Resistance towards ciprofloxacin(CIP)was examined in 308 ESBL-COL-EC isolates; CIP-resistant ESBL-COL-EC isolates were examined for the PMQR gene. Approximately, 71.1% and 38.1% of ESBL-COL-EC and ESBLproducing E. coli isolates from Vietnamese and Japanese chicken meat were CIP-resistant, respectively. Multiplex PCR led PMQR detection showed that 35.2% of CIP-resistant ESBL-COL-EC isolates from Vietnamese food contained PMQR gene, whereas CIP-resistant ESBL-COL-EC isolates from Japanese chicken meat did not. Conjugation assays showed that the transmission of qnrS gene carried by E. coli to Salmonella. In conclusion, ESBL-COL-EC isolates from Vietnamese food are associated with a high frequency of fluoroquinolone resistance and a high distribution of the qnrS gene.


Assuntos
Colistina , Farmacorresistência Bacteriana , Proteínas de Escherichia coli , Escherichia coli , Carne , beta-Lactamases , Animais , Antibacterianos/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Galinhas/microbiologia , Ciprofloxacina/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Microbiologia de Alimentos , Carne/microbiologia , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Vietnã/epidemiologia
16.
Environ Mol Mutagen ; 65(8): 289-293, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39262280

RESUMO

Reporting any uncommon or untapped changes in bacterial genetics or physiology would be of great importance to support the drug development process. We studied 120 Mycobacterium tuberculosis clinical isolates with different geographical origin within India and their resistance profile and found a significant number of isolates (109) harboring the polymorphism at nucleotide positions 61 and 284 of the gyrA gene. Bioinformatics analysis of these changes for drug binding suggested no significant change in the binding of the drug but have lower binding energies as compared with the wild-type proteins. Although functionally silent for the gyrA gene, these changes are indicating a silent geographical and evolutionary change that needs to be further studied for drug discovery and bacterial fitness.


Assuntos
Antituberculosos , DNA Girase , Mutação , Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Índia , DNA Girase/genética , Humanos , Antituberculosos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética , Tuberculose/microbiologia , Tuberculose/genética
17.
Antibiotics (Basel) ; 13(9)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39334984

RESUMO

Avian Pathogenic Escherichia coli (APEC) is an extraintestinal pathotype of E. coli that leads to a range of clinical manifestations, including respiratory, systemic and reproductive infections of chickens in both egg and meat production. Unlike most E. coli pathotypes, APEC is not defined by specific virulence genes but rather is a collection of several distinct genotypes that can act as both primary and secondary pathogens leading to colibacillosis. Recent measures to reduce antimicrobials both as growth promoters and as flock-level therapeutics are considered to have led to increased numbers of animals affected. Nevertheless, antimicrobial resistance is a considerable problem in APEC, with resistance to third and fourth-generation cephalosporins via extended-spectrum beta-lactamases (ESBLs), fluoroquinolones and colistin seen as a particular concern. The need to control APEC without antimicrobial use at the flock level has seen an increased focus on vaccination. Currently, a few commercial vaccines are already available, and a range of approaches are being applied to develop new vaccines, and other controls, such as bacteriophage or probiotics, are attracting interest. The lack of a single defined APEC genotype presents challenges to these approaches.

18.
Antibiotics (Basel) ; 13(9)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39335059

RESUMO

The increase in fluoroquinolone (FQ)-resistant Escherichia coli (EC) is a serious global problem. In addition, much of acute uncomplicated cystitis (AUC) cases are caused by EC. FQs have been selected for the treatment of cystitis in outpatients, and there is concern about treatment failure. It is therefore necessary to select appropriate antimicrobials to spare FQs. However, there are few reported effective antimicrobial stewardship programs (ASPs) for outpatients. We aimed to establish the effective ASP for outpatients diagnosed with AUC caused by EC, to spare the use of FQs, and to explore optimal oral antimicrobials for AUC. The study subjects were outpatients treated for AUC caused by extended-spectrum ß-lactamase-non-producing EC (non-ESBL-EC). Based on the antibiogram results, we recommended cefaclor (CCL) as the initial treatment for AUC, and educated clinical pharmacists who also worked together to advocate for CCL or cephalexin (CEX) prescriptions. FQ usages decreased, and cephalosporin (Ceph) prescriptions increased in all medical departments. The Ceph group (n = 114; CCL = 60, CEX = 54) in the non-FQ group had fewer treatment failures than the FQ group (n = 86) (12.3% vs. 31.4%). Cephs, including CCL and CEX, were effective treatments for AUC caused by non-ESBL-EC. Antimicrobial selection based on antibiogram results and the practice of an ASP in collaboration with clinical pharmacists were useful for optimizing antimicrobial therapy in outpatients.

19.
Heliyon ; 10(14): e34384, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39130411

RESUMO

Shigella species significantly impact global health due to their role in diarrheal diseases. A 2019-2022 cross-sectional study on 432 stool samples from pediatric patients in Mashhad, Iran, identified Shigella spp. and tested their susceptibility to 12 antimicrobials by the disk diffusion method. The presence of virulence factors, namely ipaH, virA, stx1, and stx2, as well as plasmid-mediated quinolone resistance (PMQR) genes, including qnrA, qnrB, qnrC, qnrD, and qnrS, were ascertained through the utilization of polymerase chain reaction techniques. Sequencing of 15 isolates detected mutations within quinolone resistance-determining regions (QRDRs) at the gyrA and parC genes, indicating fluoroquinolone (FQ) resistance. 19.2 % (83/432) of stool samples contained Shigella, primarily S. sonnei (77.1 %), followed by S. flexneri (21.6 %) and S. boydii (1.2 %). Most isolates were from children under five (55.4 %). All strains had the ipaH gene, lacked stx1 and stx2, and 86.7 % had virA. High resistance was noted for ampicillin and tetracycline (84.3 % each), trimethoprim-sulfamethoxazole (81.9 %), and azithromycin (60.2 %). 87.1 % of isolates were multidrug-resistant (MDR). The most common PMQR genes were qnrA and qnrS (41 % each). The qnrD gene, prevalent in 36.1 % of cases, is reported in Iran for the first time. The most common PMQR profile was qnrADS (15.7 %). Resistance to nalidixic acid and ciprofloxacin was 45.8 % and 12 %, respectively. The Shigella isolates exhibited mutations in the gyrA (at codons 83, 87, and 211) and parC (at codons 80, 84, 93, 126, 128, 129, and 132) genes. The D87Y mutation in the gyrA gene was the most common in Shigella isolates, occurring in 73 % of cases. The F93S and L132T mutations in the parC gene were unique to this study. Empirical FQ therapy in patients infected with MDR Shigella, possessing PMQR determinants and/or mutations in the QRDRs of gyrA and parC, may escalate the risks of secondary diseases, extended treatment duration, therapeutic failure, and resistance spread. Consequently, the necessity for continuous surveillance and genetic testing to detect FQ-resistant Shigella strains is of paramount importance.

20.
Environ Pollut ; 360: 124700, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39137875

RESUMO

Improper waste disposal or inadequate wastewater treatment can result in pharmaceuticals reaching water bodies, posing environmental hazards. In this study, crude extracts containing the laccase enzyme from Pleurotus florida, Pleurotus eryngii, and Pleurotus sajor caju were used to degrade the fluoroquinolone antibiotics (FQs) levofloxacin (LEV), norfloxacin (NOR), ciprofloxacin (CIP), ofloxacin (OFL), and enrofloxacin (ENR) in aqueous solutions. The results for the fungi derived laccase extracts were compared with those obtained using commercially sourced laccase. Proteomics analysis of the crude extracts confirmed the presence of laccase enzyme across all three tested species, with proteins matching those found in Trametes versicolor and Pleurotus ostreatus. In vivo studies were conducted using species pure lines of fungal whole cells. The highest degradation efficiency observed was 77.7% for LEV in the presence of P. sajor caju after 25 days of treatment. Degradation efficiencies ranged from approximately 60-72% for P. florida, 45-76% for P. eryngii, and 47-78% for P. sajor caju. A series of in vitro experiments were also conducted using crude extracts from the three species and outcomes compared with those obtained when commercial laccase was used confirmed laccase as the enzyme responsible for antibiotic removal. The degradation efficiencies in vitro surpassed those measured in vivo, ranging from approximately 91-98% for commercial laccase, 77-92% for P. florida, 76-92% for P. eryngii, and 78-88% for P. sajor caju. Liquid chromatography-high-resolution mass spectrometry (LC-MS/MS) identified the degradation products, indicating a consistent enzymatic degradation pathway targeting the piperazine moiety common to all tested FQs, irrespective of the initial antibiotic structure. Phytoplankton toxicity studies with Dunaliella tertiolecta were performed to aid in understanding the impact of emerging contaminants on ecosystems, and by-products were analysed for ecotoxicity to assess treatment efficacy. Laccase-mediated enzymatic oxidation shows promising results in reducing algal toxicity, notably with Pleurotus eryngii extract achieving a 97.7% decrease for CIP and a 90% decrease for LEV. These findings suggest the potential of these naturally sourced extracts in mitigating antibiotic contamination in aquatic ecosystems.


Assuntos
Antibacterianos , Biodegradação Ambiental , Fluoroquinolonas , Lacase , Pleurotus , Poluentes Químicos da Água , Lacase/metabolismo , Pleurotus/metabolismo , Fluoroquinolonas/metabolismo , Fluoroquinolonas/toxicidade , Antibacterianos/toxicidade , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA