Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9133, 2024 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644370

RESUMO

Multimedia is extensively used for educational purposes. However, certain types of multimedia lack proper design, which could impose a cognitive load on the user. Therefore, it is essential to predict cognitive load and understand how it impairs brain functioning. Participants watched a version of educational multimedia that applied Mayer's principles, followed by a version that did not. Meanwhile, their electroencephalography (EEG) was recorded. Subsequently, they participated in a post-test and completed a self-reported cognitive load questionnaire. The audio envelope and word frequency were extracted from the multimedia, and the temporal response functions (TRFs) were obtained using a linear encoding model. We observed that the behavioral data are different between the two groups and the TRFs of the two multimedia versions were different. We saw changes in the amplitude and latencies of both early and late components. In addition, correlations were found between behavioral data and the amplitude and latencies of TRF components. Cognitive load decreased participants' attention to the multimedia, and semantic processing of words also occurred with a delay and smaller amplitude. Hence, encoding models provide insights into the temporal and spatial mapping of the cognitive load activity, which could help us detect and reduce cognitive load in potential environments such as educational multimedia or simulators for different purposes.


Assuntos
Encéfalo , Cognição , Eletroencefalografia , Multimídia , Humanos , Cognição/fisiologia , Masculino , Feminino , Encéfalo/fisiologia , Adulto Jovem , Adulto , Estimulação Acústica , Linguística , Atenção/fisiologia
2.
Neuroimage ; 226: 117562, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189931

RESUMO

An extensive body of work has shown that attentional capture is contingent on the goals of the observer: Capture is strongly reduced or even eliminated when an irrelevant singleton stimulus does not match the target-defining properties (Folk et al., 1992). There has been a long-standing debate on whether attentional capture can be explained by goal-driven and/or stimulus-driven accounts. Here, we shed further light on this matter by using EEG activity (raw EEG and alpha power) to provide a time-resolved index of attentional orienting towards salient stimuli that either matched or did not match target-defining properties. A search display containing the target stimulus was preceded by a spatially uninformative singleton cue that either matched the color of the upcoming target (contingent cues), or that appeared in an irrelevant color (non-contingent cues). Multivariate analysis of raw EEG and alpha power revealed preferential tuning to the location of both contingent and non-contingent cues, with a stronger bias towards contingent than non-contingent cues. The time course of these effects, however, depended on the neural signal. Raw EEG data revealed attentional orienting towards the contingent cue early on in the trial (>156 ms), while alpha power revealed sustained spatial selection in the cued locations at a later moment in the trial (>250 ms). Moreover, while raw EEG showed stronger capture by contingent cues during this early time window, an advantage for contingent cues arose during a later time window in alpha band activity. Thus, our findings suggest that raw EEG activity and alpha-band power tap into distinct neural processes that index separate aspects of covert spatial attention.


Assuntos
Ritmo alfa/fisiologia , Atenção/fisiologia , Encéfalo/fisiologia , Orientação Espacial/fisiologia , Adulto , Sinais (Psicologia) , Eletroencefalografia , Feminino , Humanos , Masculino , Análise Multivariada , Tempo de Reação/fisiologia , Adulto Jovem
3.
Neuroimage ; 202: 116060, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31362048

RESUMO

Electroencephalography (EEG) continues to be the most popular method to investigate cognitive brain mechanisms in young children and infants. Most infant studies rely on the well-established and easy-to-use event-related brain potential (ERP). As a severe disadvantage, ERP computation requires a large number of repetitions of items from the same stimulus-category, compromising both ERPs' reliability and their ecological validity in infant research. We here explore a way to investigate infant continuous EEG responses to an ongoing, engaging signal (i.e., "neural tracking") by using multivariate temporal response functions (mTRFs), an approach increasingly popular in adult EEG research. N = 52 infants watched a 5-min episode of an age-appropriate cartoon while the EEG signal was recorded. We estimated and validated forward encoding models of auditory-envelope and visual-motion features. We compared individual and group-based ('generic') models of the infant brain response to comparison data from N = 28 adults. The generic model yielded clearly defined response functions for both, the auditory and the motion regressor. Importantly, this response profile was present also on an individual level, albeit with lower precision of the estimate but above-chance predictive accuracy for the modelled individual brain responses. In sum, we demonstrate that mTRFs are a feasible way of analyzing continuous EEG responses in infants. We observe robust response estimates both across and within participants from only 5 min of recorded EEG signal. Our results open ways for incorporating more engaging and more ecologically valid stimulus materials when probing cognitive, perceptual, and affective processes in infants and young children.


Assuntos
Percepção Auditiva/fisiologia , Córtex Cerebral/fisiologia , Desenvolvimento Infantil/fisiologia , Eletroencefalografia/métodos , Percepção Visual/fisiologia , Feminino , Humanos , Lactente , Masculino , Modelos Teóricos , Fatores de Tempo
4.
Front Neurosci ; 12: 437, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30042652

RESUMO

Encoding models for mapping voxelwise semantic tuning are typically estimated separately for each individual, limiting their generalizability. In the current report, we develop a method for estimating semantic encoding models that generalize across individuals. Functional MRI was used to measure brain responses while participants freely viewed a naturalistic audiovisual movie. Word embeddings capturing agent-, action-, object-, and scene-related semantic content were assigned to each imaging volume based on an annotation of the film. We constructed both conventional within-subject semantic encoding models and between-subject models where the model was trained on a subset of participants and validated on a left-out participant. Between-subject models were trained using cortical surface-based anatomical normalization or surface-based whole-cortex hyperalignment. We used hyperalignment to project group data into an individual's unique anatomical space via a common representational space, thus leveraging a larger volume of data for out-of-sample prediction while preserving the individual's fine-grained functional-anatomical idiosyncrasies. Our findings demonstrate that anatomical normalization degrades the spatial specificity of between-subject encoding models relative to within-subject models. Hyperalignment, on the other hand, recovers the spatial specificity of semantic tuning lost during anatomical normalization, and yields model performance exceeding that of within-subject models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA