Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Environ Sci Technol ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134052

RESUMO

Methane fluxes (FCH4) vary significantly across wetland ecosystems due to complex mechanisms, challenging accurate estimations. The interactions among environmental drivers, while crucial in regulating FCH4, have not been well understood. Here, the interactive effects of six environmental drivers on FCH4 were first analyzed using 396,322 half-hourly measurements from 22 sites across various wetland types and climate zones. Results reveal that soil temperature, latent heat turbulent flux, and ecosystem respiration primarily exerted direct effects on FCH4, while air temperature and gross primary productivity mainly exerted indirect effects by interacting with other drivers. Significant spatial variability in FCH4 regulatory mechanisms was highlighted, with different drivers demonstrated varying direct, indirect, and total effects among sites. This spatial variability was then linked to site-specific annual-average air temperature (17.7%) and water table (9.0%) conditions, allowing the categorization of CH4 sources into four groups with identified critical drivers. An improved estimation approach using a random forest model with three critical drivers was consequently proposed, offering accurate FCH4 predictions with fewer input requirements. By explicitly accounting for environmental interactions and interpreting spatial variability, this study enhances our understanding of the mechanisms regulating CH4 emissions, contributing to more efficient modeling and estimation of wetland FCH4.

2.
Sci Total Environ ; 922: 171218, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38423329

RESUMO

Freshwater wetlands have a disproportionately large influence on the global carbon cycle, with the potential to serve as long-term carbon sinks. Many of the world's freshwater wetlands have been destroyed or degraded, thereby affecting carbon-sink capacity. Ecological restoration of degraded wetlands is thus becoming an increasingly sought-after natural climate solution. Yet the time required to revert a degraded wetland from a carbon source to sink remains largely unknown. Moreover, increased methane (CH4) and nitrous oxide (N2O) emissions might complicate the climate benefit that wetland restoration may represent. We conducted a global meta-analysis to evaluate the benefits of wetland restoration in terms of net ecosystem carbon and greenhouse gas balance. Most studies (76 %) investigated the benefits of wetland restoration in peatlands (bogs, fens, and peat swamps) in the northern hemisphere, whereas the effects of restoration in non-peat wetlands (freshwater marshes, non-peat swamps, and riparian wetlands) remain largely unexplored. Despite higher CH4 emissions, most restored (77 %) and all natural peatlands were net carbon sinks, whereas most degraded peatlands (69 %) were carbon sources. Conversely, CH4 emissions from non-peat wetlands were similar across degraded, restored, and natural non-peat wetlands. When considering the radiative forcings and atmospheric lifetimes of the different greenhouse gases, the average time for restored wetlands to have a net cooling effect on the climate after restoration is 525 years for peatlands and 141 years for non-peat wetlands. The radiative benefit of wetland restoration does, therefore, not meet the timeframe set by the Paris Agreement to limit global warming by 2100. The conservation and protection of natural freshwater wetlands should be prioritised over wetland restoration as those ecosystems already play a key role in climate change mitigation.

3.
Environ Sci Technol ; 58(3): 1709-1720, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38181227

RESUMO

Mercury (Hg)-impaired aquatic ecosystems often receive multiple inputs of different Hg species with varying potentials for transformation and bioaccumulation. Over time, these distinct input pools of Hg homogenize in their relative distributions and bioaccumulation potentials as a result of biogeochemical processes and other aging processes within the ecosystem. This study sought to evaluate the relative time scale for homogenization of multiple Hg inputs to wetlands, information that is relevant for ecosystem management strategies that consider Hg source apportionment. We performed experiments in simulated freshwater wetland mesocosms that were dosed with four isotopically labeled mercury forms: two dissolved forms (Hg2+ and Hg-humic acid) and two particulate forms (nano-HgS and Hg adsorbed to FeS). Over the course of one year, we monitored the four Hg isotope endmembers for their relative distribution between surface water, sediment, and fish in the mesocosms, partitioning between soluble and particulate forms, and conversion to methylated mercury (MeHg). We also evaluated the reactivity and mobility of Hg through sequential selective extractions of sediment and the uptake flux of aqueous Hg in a diffusive gradient in thin-film (DGT) passive samplers. We observed that the four isotope spikes were relatively similar in surface water concentration (ca. 3000 ng/L) immediately after spike addition. At 1-3 months after dosing, Hg concentrations were 1-50 ng/L and were greater for the initially dissolved isotope endmembers than the initially particulate endmembers. In contrast, the Hg isotope endmembers in surface sediments were similar in relative concentration within 2 months after spike addition. However, the uptake fluxes of Hg in DGT samplers, deployed in both the water column and surface sediment, were generally greater for initially dissolved Hg endmembers and lower for initially particulate endmembers. At one year postdosing, the DGT-uptake fluxes were converging toward similar values between the Hg isotope endmembers. However, the relative distribution of isotope endmembers was still significantly different in both the water column and sediment (p < 0.01 according to one-way ANOVA analysis). In contrast, selective sequential extractions resulted in a homogeneous distribution, with >90% of each endmember extracted in the KOH fraction, suggesting that Hg species were associated with sediment organic matter. For MeHg concentrations in surface sediment and fish, the relative contributions from each endmember were significantly different at all sampling time points. Altogether, these results provide insights into the time scales of distribution for different Hg species that enter a wetland ecosystem. While these inputs attain homogeneity in concentration in primary storage compartments (i.e., sediments) within weeks after addition, these input pools remain differentiated for more than one year in terms of reactivity for passive samplers, MeHg concentration, and bioaccumulation.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Mercúrio/análise , Compostos de Metilmercúrio/análise , Áreas Alagadas , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Água Doce , Peixes , Água , Isótopos/análise
4.
Biology (Basel) ; 12(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37626958

RESUMO

Potentially toxic elements (PTEs) such as Hg, As, and Pb have become concentrated in the aquatic ecosystem as a result of increased human activities. However, these substances frequently have synergistic or antagonistic effects on the human body or other animals. As a result, there are concerns world-wide that commercially available food products, especially fish, may be contaminated with hazardous elements. In this study, samples of four selected fishes, Gutum (Lepidocephalichthys guntea), Baim (Macrognathus pancalus), Baila (Glossogobius giuris), Meni (Nandus nandus) were analyzed from one of the largest freshwater wetlands (designed as a Ramsar Site) in South Asia to evaluate PTEs contamination status and human health risk assessment. The result demonstrated that the degree of contamination for six PTEs decreased in the following sequences for fish: Fe > Zn > Cu > Pb > As > Hg. The edible part of G. giuris had the maximum value for Hg (0.42 µg/g dw), while N. nandus predominantly accumulated As (<0.41 µg/g dw). The estimated daily intake (EDI) values ranged from 0.003 to 1.75, which was much lower than the recommended values. The hazard index (HI), THQ, total target hazard quotient (TTHQ) scores through consuming fish followed the decreasing order of Fe > Hg > Cu > Zn > Pb. The values for each index were less than 1, indicating that there were no substantial health risks for the consumers. The carcinogenic risks (CR) derived from the intake of Pb ranged from 4.92 × 10-8 to 4.14 × 10-8 for males and 5.45 × 10-8 to 4.59 × 10-8 for females, which also did not exceed the standard limit (1.00 × 10-6). This study demonstrated that, under the existing consumption rate, there was no potential health harm to consumers from consuming the studied fishes. This study offers a chance to regularly check PTEs in this environment, reducing the contamination of heavy metals.

5.
Microb Ecol ; 85(2): 441-453, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35098330

RESUMO

Candidatus Methanoperedens-like archaea, which can use multiple electron acceptors (nitrate, iron, manganese, and sulfate) for anaerobic methane oxidation, could play an important role in reducing methane emissions from freshwater wetlands. Currently, very little is known about the distribution and community composition of Methanoperedens-like archaea in freshwater wetlands, particularly based on their alpha subunit of methyl-coenzyme M reductase (mcrA) genes. Here, the community composition, diversity, and abundance of Methanoperedens-like archaea were investigated in a freshwater wetland through high-throughput sequencing and quantitative PCR on their mcrA genes. A large number of Methanoperedens-like mcrA gene sequences (119,250) were recovered, and a total of 31 operational taxonomic units (OTUs) were generated based on 95% sequence similarity cut-off. The majority of Methanoperedens-like sequences can be grouped into three distinct clusters that were closely associated with the known Methanoperedens species which can couple anaerobic methane oxidation to nitrate or iron reduction. The community composition of Methanoperedens-like archaea differed significantly among different sampling sites, and their mcrA gene abundance was 1.49 × 106 ~ 4.62 × 106 copies g-1 dry soil in the examined wetland. In addition, the community composition of Methanoperedens-like archaea was significantly affected by the soil water content, and the archaeal abundance was significantly positively correlated with the water content. Our results suggest that the mcrA gene is a good biomarker for detection and quantification of Methanoperedens-like archaea, and provide new insights into the distribution and environmental regulation of these archaea in freshwater wetlands.


Assuntos
Archaea , Áreas Alagadas , Archaea/genética , Nitratos , Solo , Filogenia , Oxirredução , Água Doce , Metano , Água , Ferro , Anaerobiose
6.
Environ Res ; 216(Pt 1): 114456, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181891

RESUMO

In 1999, a tidal wetland located along the St. Lawrence River close to Ste. Croix de Lotbinière (Quebec, Eastern Canada) was the site of an experimental oil spill. Test plots were established and subjected to an experimental crude oil spill to evaluate natural attenuation, nutrient amendment and vegetation cropping as countermeasures. In 2020, this study re-visited the test plots to investigate residual oil and habitat recovery. Only concentrations of mid-chain length n-alkanes (C10-C36), but not of polycyclic aromatic hydrocarbons (PAHs), were significantly above detection limit, and were detected in both test plot and control sediments. Hydrocarbon, total organic carbon, nitrogen and phosphate contents did not differ significantly between test plot and control sediments. Microbial analyses did not detect significant differences in microbial load, microbial diversity or microbial community composition between test plot and control sediments. Key genes for the aerobic and anaerobic degradation of n-alkanes as well as for the aerobic degradation of PAHs were detected in all sediment samples. Associated gene abundances did not differ significantly between test plot and control sediments. This study shows that oil-exposed test plot sediments of the Ste. Croix wetland can be considered completely recovered after 21 years irrespective of the performed countermeasure.


Assuntos
Microbiota , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Poluição por Petróleo/análise , Rios , Áreas Alagadas , Petróleo/análise , Sedimentos Geológicos/análise , Poluentes Químicos da Água/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Alcanos/análise , Monitoramento Ambiental
7.
FEMS Microbiol Ecol ; 98(3)2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35170736

RESUMO

In freshwater wetlands, competitive and cooperative interactions between respiratory, fermentative and methanogenic microbes mediate the decomposition of organic matter. These interactions may be disrupted by saltwater intrusion disturbances that enhance the activity of sulfate-reducing bacteria (SRB), intensifying their competition with syntrophic bacteria and methanogens for electron donors. We simulated saltwater intrusion into wetland soil microcosms and examined biogeochemical and microbial responses, employing metabolic inhibitors to isolate the activity of various microbial functional groups. Sulfate additions increased total carbon dioxide production but decreased methane production. Butyrate degradation assays showed continued (but lower) levels of syntrophic metabolism despite strong demand by SRB for this key intermediate decomposition product and a shift in the methanogen community toward acetoclastic members. One month after removing SRB competition, total methane production recovered by only ∼50%. Similarly, butyrate assays showed an altered accumulation of products (including less methane), although overall rates of syntrophic butyrate breakdown largely recovered. These effects illustrate that changes in carbon mineralization following saltwater intrusion are driven by more than the oft-cited competition between SRB and methanogens for shared electron donors. Thus, the impacts of disturbances on wetland biogeochemistry are likely to persist until cooperative and competitive microbial metabolic interactions can recover fully.


Assuntos
Solo , Áreas Alagadas , Água Doce , Metano/metabolismo , Interações Microbianas , Solo/química
8.
Sci Total Environ ; 790: 147920, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34380259

RESUMO

Invasive species management typically aims to promote diversity and wildlife habitat, but little is known about how management techniques affect wetland carbon (C) dynamics. Since wetland C uptake is largely influenced by water levels and highly productive plants, the interplay of hydrologic extremes and invasive species is fundamental to understanding and managing these ecosystems. During a period of rapid water level rise in the Laurentian Great Lakes, we tested how mechanical treatment of invasive plant Typha × glauca shifts plant-mediated wetland C metrics. From 2015 to 2017, we implemented large-scale treatment plots (0.36-ha) of harvest (i.e., cut above water surface, removed biomass twice a season), crush (i.e., ran over biomass once mid-season with a tracked vehicle), and Typha-dominated controls. Treated Typha regrew with approximately half as much biomass as unmanipulated controls each year, and Typha production in control stands increased from 500 to 1500 g-dry mass m-2 yr-1 with rising water levels (~10 to 75 cm) across five years. Harvested stands had total in-situ methane (CH4) flux rates twice as high as in controls, and this increase was likely via transport through cut stems because crushing did not change total CH4 flux. In 2018, one year after final treatment implementation, crushed stands had greater surface water diffusive CH4 flux rates than controls (measured using dissolved gas in water), likely due to anaerobic decomposition of flattened biomass. Legacy effects of treatments were evident in 2019; floating Typha mats were present only in harvested and crushed stands, with higher frequency in deeper water and a positive correlation with surface water diffusive CH4 flux. Our study demonstrates that two mechanical treatments have differential effects on Typha structure and consequent wetland CH4 emissions, suggesting that C-based responses and multi-year monitoring in variable water conditions are necessary to accurately assess how management impacts ecological function.


Assuntos
Typhaceae , Áreas Alagadas , Dióxido de Carbono , Ecossistema , Metano , Água
9.
Front Plant Sci ; 12: 604677, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122461

RESUMO

In lacustrine wetlands connected to rivers, the changes in flood regimes caused by hydrological projects lead to changes in the community traits of dominant macrophytes and, consequently, influence the structure and function of wetland vegetation. However, community trait responses of macrophytes to the timing and duration of flood disturbance have been rarely quantified. In 2011-2019, we investigated plant species diversity, density, and biomass in three dominant macrophyte communities (Carex brevicuspis C.B. Clarke, Miscanthus sacchariflorus (Maxim.) Hackel, and Polygonum hydropiper L.) through monthly field surveys in Dongting Lake wetlands. Partial least squares regressions were used to analyze how the variations in hydrological regimes affected plant community traits. Apparent inter-annual fluctuations in plant community traits were detected during 2011-2019. The species richness and Shannon index of diversity of Miscanthus and Polygonum communities increased, whereas the Shannon index of diversity of Carex community decreased. Variation in flooding had a greater effect on Polygonum and Carex community traits than on Miscanthus community traits. Flooding disturbed all plant communities, especially when the duration and timing varied. Shorter inundation periods caused the biomass of Miscanthus community to decline, and that of Carex and Polygonum communities to increase. Earlier flood recession caused the species richness and Shannon index of diversity of Polygonum and Miscanthus community to increase, and those of Carex community to decrease. These findings imply that shorter inundation durations and earlier flood recession generated by the operation of the Three Gorges Dam have changed the macrophyte growth pattern.

10.
Sci Total Environ ; 761: 143221, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33218805

RESUMO

Groundwater is the major source of water for Tamarix chinensis growth in the Yellow River Delta (YRD) region, and the groundwater depth (GWD) dramatically influences the physiological activities of T. chinensis. The quantitative response of the photosynthetic physiological process of T. chinensis to the GWD in freshwater habitats remains unclear. In this study, the response characteristics of gas exchange parameters in the leaves of three-year-old T. chinensis seedlings were measured and analyzed at a graded series of seven GWDs (0 m, 0.3 m, 0.6 m, 0.9 m, 1.2 m, 1.5 m and 1.8 m). The GWD thresholds corresponding to drastic changes in the photosynthetic efficiency and the GWDs of several levels of photosynthetic productivity and efficiency were also determined. In the freshwater habitats of the YRD, variations in GWD significantly altered the relative soil water content (RSWC) and thus influenced the photosynthetic efficiency of T. chinensis. RSWC at 0 ≤ GWD ≤ 0.9 m and GWD at 1.2 m ≤ GWD ≤ 1.8 m directly influenced the photosynthetic physiology of T. chinensis. When the GWD was 1.2 m, net photosynthetic rate (Pn), apparent quantum efficiency and water use efficiency (WUE) values all peaked. Thus, T. chinensis exhibited a high light and water use efficiency, wide ecological amplitude in terms of light, and high photosynthetic capacity. The optimum GWD for photosynthetic carbon assimilation and WUE in T. chinensis was determined to be 1.2 m. At a deep (≥1.64 m) or shallow (≤0.53 m) GWD, both Pn and WUE in T. chinensis clearly decreased below the corresponding mean values. The main causes for the reduction in Pn in these two GWD ranges (≤0.53 m, ≥1.64 m) were stomatal and nonstomatal limitations, respectively. Additionally, a moderate GWD of 1.09-1.25 m corresponded to the "high-productivity and high-efficiency GWD" range, in which T. chinensis displayed a high photosynthetic yield and WUE. Overall, the photosynthetic capacity of T. chinensis shows characteristics of high tolerance to moderate GWDs from 1.09 m to 1.25 m but intolerance at both shallow (≤0.53 m) and deep (≥1.64 m) GWDs in freshwater habitats.


Assuntos
Água Subterrânea , Tamaricaceae , Ecossistema , Fotossíntese , Folhas de Planta , Solo , Água
11.
Ecotoxicology ; 29(8): 1183-1194, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31942663

RESUMO

Environmental conditions in wetlands facilitate favorable biogeochemical conditions for the conversion of inorganic mercury into methylmercury. For this reason, wetlands are increasingly classified as mercury hotspots, places where biota exhibit elevated mercury concentrations. While it is clear that wetlands play an important role in methylmercury production, factors such as geographic variation in mercury deposition, wetland type, and trophic dynamics can cause variation in mercury dynamics and bioaccumulation in biota occupying wetlands or connected to wetland trophic systems. Here, we use songbirds as bioindicators in a two-pronged approach aimed at evaluating the state of our understanding of mercury bioaccumulation by songbirds in wetland ecosystems. First, we use a case study in southeast Missouri to compare blood mercury concentrations in tree swallows (Tachycineta bicolor) and eastern bluebirds (Sialia sialis) occupying wetland and non-wetland habitats to test the hypothesis that songbirds in wetlands will have higher mercury bioaccumulation than those in non-wetlands. Adult tree swallows in wetlands had significantly higher blood mercury concentrations than those in non-wetlands; however, no difference between ecosystems was detected in eastern bluebirds. Second, we present a review of the current literature on mercury in songbirds in wetland ecosystems across North America. Mercury concentrations in songbirds varied among wetland types and with geographic location, often in an unpredictable manner. Mercury concentrations in songbird blood varied 3-10 fold at locations separated only by ~10 to several hundred kilometers. This magnitude of difference in blood mercury concentrations among wetlands exceeds documented differences between wetland and non-wetland ecosystems. Therefore, we caution against the automatic assumption that songbirds occupying wetlands will have higher mercury bioaccumulation than conspecifics living in other habitats.


Assuntos
Monitoramento Ambiental , Aves Canoras/metabolismo , Poluentes Químicos da Água/metabolismo , Áreas Alagadas , Animais , Ecossistema , Cadeia Alimentar , Mercúrio
12.
J Environ Manage ; 256: 109971, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31989987

RESUMO

Wetland ecosystems have a disproportionally large influence on the global carbon cycle. They can act as carbon sinks or sources depending upon their location, type, and condition. Rehabilitation of wetlands is gaining popularity as a nature-based approach to helping mitigate climate change; however, few studies have empirically tested the carbon benefits of wetland restoration, especially in freshwater environments. Here we investigated the effects of passive rehabilitation (i.e. fencing and agricultural release) of 16 semi-arid rain-filled freshwater wetlands in southeastern Australia. Eight control sites were compared with older (>10 year) or newer (2-5 year) rehabilitated sites, dominated by graminoids or eucalypts. Carbon stocks (soils and plant biomass), and emissions (carbon dioxide - CO2; and methane - CH4) were sampled across three seasons, representing natural filling and drawdown, and soil microbial communities were sampled in spring. We found no significant difference in soil carbon or greenhouse gas emissions between rehabilitated and control sites, however, plant biomass was significantly higher in older rehabilitated sites. Wetland carbon stocks were 19.21 t Corg ha-1 and 2.84 t Corg ha-1 for soils (top 20 cm; n = 137) and plant biomass (n = 288), respectively. Hydrology was a strong driver of wetland greenhouse gas emissions. Diffusive fluxes (n = 356) averaged 117.63 mmol CO2 m2 d-1 and 2.98 mmol CH4 m2 d-1 when wet, and 124.01 mmol CO2 m2 d-1 and -0.41 mmol CH4 m2 d-1 when dry. Soil microbial community richness was nearly 2-fold higher during the wet phase than the dry phase, including relative increases in Nitrososphaerales, Myxococcales and Koribacteraceae and methanogens Methanobacteriales. Vegetation type significantly influenced soil carbon, aboveground carbon, and greenhouse gas emissions. Overall, our results suggest that passive rehabilitation of rain-filled wetlands, while valuable for biodiversity and habitat provisioning, is ineffective for increasing carbon gains within 20 years. Carbon offsetting opportunities may be better in systems with faster sediment accretion. Active rehabilitation methods, particularly that reinstate the natural hydrology of drained wetlands, should also be considered.


Assuntos
Ecossistema , Áreas Alagadas , Austrália , Dióxido de Carbono , Metano , Chuva , Solo
13.
Ying Yong Sheng Tai Xue Bao ; 29(9): 3024-3032, 2018 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-30411579

RESUMO

Yellow River basin is a significant habitat for biodiversity conservation in China. Here, we established a integrated classification system of wetlands based on climate types and geomorphological units, with which as the coarse-filter surrogates of biodiversity elements to complement the fine-filter surrogates of distribution of focal bird species. Then, we applied the theoretical framework of systematic conservation planning (SCP), with those two biodiversity surrogates as protection objects and watershed as planning units. We calculated social and economic costs (including roads, railroads, towns, rural settlements, dams) and set targets of 30% to input Marxan to figure out the optimal set of planning units, which met the protection target with the minimum of social economy cost and land resources. We identified a conservation priority pattern by calculating the irreplaceability of each unit by Marxan. Then, we compared the priority pattern with the existing reserve system to analyze conservation gap in the Yellow River basin. The results showed that most marsh wetlands were concentrated in the upper reaches of the Yellow River. The coverage of reserves in the source area was large. Some rare wetland types in Inner Mongolia, Gansu and Sichuan were separated from the protection system. The main wetland types in the middle reaches of the Yellow River were riverine wetlands, with low protection coverage rate and large conservation gaps. After protection network system being optimized, the protection effect was improved by29.1%-37.6%. The wetland in the lower reaches of the Yellow River was mainly concentrated in the Yellow River Delta area. The protection system was good and the conservation gaps was small. Overall, riverine wetlands in the middle reaches of the Yellow River basin had the highest area proportion of conservation gaps which needed more attention. Based on the priority conservation pattern, our results provided scientific suggestions for the protection planning and management of wetlands in the Yellow River basin, which would lay a foundation for the water ecological protection of the Yellow River basin from the macro scale.


Assuntos
Conservação dos Recursos Naturais/métodos , Áreas Alagadas , Animais , Biodiversidade , China , Rios
14.
Remote Sens (Basel) ; 10(4): 580, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30147945

RESUMO

Efforts are increasingly being made to classify the world's wetland resources, an important ecosystem and habitat that is diminishing in abundance. There are multiple remote sensing classification methods, including a suite of nonparametric classifiers such as decision-tree (DT), rule-based (RB), and random forest (RF). High-resolution satellite imagery can provide more specificity to the classified end product, and ancillary data layers such as the Normalized Difference Vegetation Index, and hydrogeomorphic layers such as distance-to-a-stream can be coupled to improve overall accuracy (OA) in wetland studies. In this paper, we contrast three nonparametric machine-learning algorithms (DT, RB, and RF) using a large field-based dataset (n = 228) from the Selenga River Delta of Lake Baikal, Russia. We also explore the use of ancillary data layers selected to improve OA, with a goal of providing end users with a recommended classifier to use and the most parsimonious suite of input parameters for classifying wetland-dominated landscapes. Though all classifiers appeared suitable, the RF classification outperformed both the DT and RB methods, achieving OA >81%. Including a texture metric (homogeneity) substantially improved the classification OA. However, including vegetation/soil/water metrics (based on WorldView-2 band combinations), hydrogeomorphic data layers, and elevation data layers to increase the descriptive content of the input parameters surprisingly did not markedly improve the OA. We conclude that, in most cases, RF should be the classifier of choice. The potential exception to this recommendation is under the circumstance where the end user requires narrative rules to best manage his or her resource. Though not useful in this study, continuously increasing satellite imagery resolution and band availability suggests the inclusion of ancillary contextual data layers such as soil metrics or elevation data, the granularity of which may define its utility in subsequent wetland classifications.

15.
J Environ Manage ; 204(Pt 1): 1-11, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28846889

RESUMO

Freshwater ecosystems encompass all inland water bodies, in which riverine and nonriverine freshwaters are linked through hydrological connectivity within a catchment. However, riverine and nonriverine freshwaters have often been assessed separately and their interdependence and connection has not been considered appropriately in prevailing freshwater conservation planning. To address the representation and persistence of freshwater ecosystems in conservation assessment, we integrated riverine and nonriverine freshwater wetlands as broad-scale conservation surrogates and incorporated longitudinal, lateral and vertical connectivity rules in a conservation planning for the freshwater wetlands in the North China Plain (NCP). We also considered interbasin connectivity by incorporating conservation features of key transferring nodes of the South-to-North Water Diversion Project (SNWD) in the NCP to safeguard their unique ecosystem services of regulating interbasin freshwater. Three scenarios (i.e., 2D, 3D and interbasin scenario) were developed by incorporating different multiple conservation targets, and their spatial priorities and cost-efficiency in freshwater conservation were compared. We applied systematic conservation framework and modified Marxan to accommodate these multidirectional and interbasin connectivity targets in our freshwater conservation assessment. The results indicated that the existing conservation system covered approximately 20% of the freshwater wetlands in the NCP, and there were still considerable conservation gaps that need to be filled. The optimal scenarios could substantially improve the representation, complementarity and persistence for the conservation of freshwater ecosystems, but would not significantly increased overall costs. The framework developed by our research has the potential to facilitate further application of systematic methods in freshwater conservation and rehabilitation planning at multiple scales.


Assuntos
Água Doce , Hidrologia/métodos , China , Conservação dos Recursos Naturais/métodos , Ecossistema , Água
16.
Ambio ; 46(8): 915-930, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28573600

RESUMO

Climate change (CC) threatens ecosystems in both developed and developing countries. As the impacts of CC are pervasive, global, and mostly irreversible, it is gaining worldwide attention. Here we review vulnerability and impacts of CC on forest and freshwater wetland ecosystems. We particularly look at investigations undertaken at different geographic regions in order to identify existing knowledge gaps and possible implications from such vulnerability in the context of Nepal along with available adaptation programs and national-level policy supports. Different categories of impacts which are attributed to disrupting structure, function, and habitat of both forest and wetland ecosystems are identified and discussed. We show that though still unaccounted, many facets of forest and freshwater wetland ecosystems of Nepal are vulnerable and likely to be impacted by CC in the near future. Provisioning ecosystem services and landscape-level ecosystem conservation are anticipated to be highly threatened with future CC. Finally, the need for prioritizing CC research in Nepal is highlighted to close the existing knowledge gap along with the implementation of adaptation measures based on existing location specific traditional socio-ecological system.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Florestas , Áreas Alagadas , Água Doce , Nepal
17.
Neotrop. ichthyol ; 14(2): e150162, 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-785084

RESUMO

La caracterización de los rasgos funcionales de las especies es un paso importante en la comprensión y descripción de las comunidades en hábitats naturales. La clasificación de especies en grupos funcionales es una herramienta útil para identificar la redundancia y la especialización. Se estudió la comunidad de peces de un humedal prístino de agua dulce en la Reserva de la Biosfera de Sian Ka'an, analizando dos funciones multidimensionales: adquisición de alimento y la locomoción. Analizamos los cambios en la estructura de los grupos funcional entre hábitats (permanentes y temporales) y temporadas (lluvias y secas). Seis grupos funcionales con características ecológicas distintas fueron detectados, dos de los cuales presentaron una alta redundancia funcional y tres de ellos están representados únicamente por una especie con una función ecológica particular. En las pozas permanentes durante la temporada de secas, la riqueza y diversidad de grupos funcionales fueron menores; mientras que la equitatividad de grupos funcionales fue mayor. Durante la temporada de lluvias se detectaron todos los grupos funcionales y la estructura de los grupos fue similar entre los hábitat. Estos resultados sugieren que los filtros ambientales tienen un efecto durante la temporada de secas y la complementariedad de nicho durante la temporada de lluvias.


The characterization of species' functional traits is a major step in the understanding and description of communities in natural habitats. The classification of species into functional groups is a useful tool to identify redundancy and uniqueness. We studied the fish community of a pristine freshwater wetland in the Sian Ka'an Biosphere Reserve by analysing two multidimensional functions: food acquisition and locomotion. We investigated changes in the functional group structure between habitats (permanent and temporary pools) and seasons (dry and wet). Six functional groups with different ecological characteristics were detected, two of which had high functional redundancy and three of them were represented by single species with unique ecological functions. In permanent pools during the dry season, functional group richness and diversity were lower, while evenness was higher. During the wet season, all functional groups were detected and similar functional group structure was found between habitats. These results suggest an effect of environmental filtering during the dry season and niche complementarity during the wet season.


Assuntos
Animais , Ecologia , Ecossistema , Peixes/crescimento & desenvolvimento
18.
Ann Bot ; 115(5): 847-59, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25660345

RESUMO

BACKGROUND AND AIMS: Rock pools are small, geologically stable freshwater ecosystems that are both hydrologically and biologically isolated. They harbour high levels of plant endemism and experience environmental unpredictability driven by the presence of water over variable temporal scales. This study examined the hypothesis that the sediment seed bank in monsoon tropical freshwater rock pools would persist through one or more periods of desiccation, with seed dormancy regulating germination timing in response to rock pool inundation and drying events. METHODS: Seeds were collected from seven dominant rock pool species, and germination biology and seed dormancy were assessed under laboratory conditions in response to light, temperature and germination stimulators (gibberellic acid, karrikinolide and ethylene). Field surveys of seedling emergence from freshwater rock pools in the Kimberley region of Western Australia were undertaken, and sediment samples were collected from 41 vegetated rock pools. Seedling emergence and seed bank persistence in response to multiple wetting and drying cycles were determined. KEY RESULTS: The sediment seed bank of individual rock pools was large (13 824 ± 307 to 218 320 ± 42 412 seeds m(-2) for the five species investigated) and spatially variable. Seedling density for these same species in the field ranged from 13 696 to 87 232 seedlings m(-2). Seeds of rock pool taxa were physiologically dormant, with germination promoted by after-ripening and exposure to ethylene or karrikinolide. Patterns of seedling emergence varied between species and were finely tuned to seasonal temperature and moisture conditions, with the proportions of emergent seedlings differing between species through multiple inundation events. A viable seed bank persisted after ten consecutive laboratory inundation events, and seeds retained viability in dry sediments for at least 3 years. CONCLUSIONS: The persistent seed bank in freshwater rock pools is likely to provide resilience to plant communities against environmental stochasticity. Since rock pool communities are often comprised of highly specialized endemic and range-restricted species, sediment seed banks may represent significant drivers of species persistence and diversification in these ecosystems.


Assuntos
Magnoliopsida/fisiologia , Dormência de Plantas , Sementes/fisiologia , Ecossistema , Meio Ambiente , Etilenos/farmacologia , Água Doce , Furanos/farmacologia , Sedimentos Geológicos , Germinação/efeitos dos fármacos , Giberelinas/farmacologia , Luz , Magnoliopsida/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Piranos/farmacologia , Estações do Ano , Plântula/efeitos dos fármacos , Plântula/fisiologia , Sementes/efeitos dos fármacos , Temperatura , Clima Tropical , Austrália Ocidental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA