Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Neuroscience ; 560: 297-313, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39374644

RESUMO

This study aims to investigate whether glial cells, in particular putative astrocytes, contribute to functional distinctions between the dorsal (DH), intermediate (IH), and ventral (VH) hippocampus. To evaluate this, we performed three different behavioral tasks (i.e., Morris water maze; MWM, Passive avoidance; PA, T-maze place preference; TPP) to determine whether the DH, IH, and VH are necessary for each task. Sensitivity of behavioral tasks was confirmed using lidocaine (2 %, 1 µl) reversible inactivation. Subsequently, we examined the effects of silencing astrocytes, using fluorocitrate (FC, 1 mM/1 µl), into the DH, IH, and VH on these tasks. The effects of drugs were examined separately. We observed that injection of FC into the DH resulted in a significant impairment in MWM performance. In contrast, while FC injections into the IH or VH did not prevent platform localization during the acquisition phase, rats showed difficulty recalling the target zone during the retrieval phase. In the PA test, FC injection into the VH impaired task learning and memory. During the acquisition phase, FC injection into the DH or IH did not differ from the control in the number of shocks; however, during retrieval, there was a significant decrease in the latency before entering the dark chamber. The TPP test performance was impaired by FC injection in the IH. In sum, we show that glial cells, especially astrocytes in specific functional regions of the hippocampus, play distinct roles in processing aversive and rewarding experiences and contribute to the functional organization of the hippocampal longitudinal axis.

2.
J Undergrad Neurosci Educ ; 22(3): A273-A288, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39355664

RESUMO

Functional magnetic resonance imaging (fMRI) has been a cornerstone of cognitive neuroscience since its invention in the 1990s. The methods that we use for fMRI data analysis allow us to test different theories of the brain, thus different analyses can lead us to different conclusions about how the brain produces cognition. There has been a centuries-long debate about the nature of neural processing, with some theories arguing for functional specialization or localization (e.g., face and scene processing) while other theories suggest that cognition is implemented in distributed representations across many neurons and brain regions. Importantly, these theories have received support via different types of analyses; therefore, having students implement hands-on data analysis to explore the results of different fMRI analyses can allow them to take a firsthand approach to thinking about highly influential theories in cognitive neuroscience. Moreover, these explorations allow students to see that there are not clearcut "right" or "wrong" answers in cognitive neuroscience, rather we effectively instantiate assumptions within our analytical approaches that can lead us to different conclusions. Here, I provide Python code that uses freely available software and data to teach students how to analyze fMRI data using traditional activation analysis and machine-learning-based multivariate pattern analysis (MVPA). Altogether, these resources help teach students about the paramount importance of methodology in shaping our theories of the brain, and I believe they will be helpful for introductory undergraduate courses, graduate-level courses, and as a first analysis for people working in labs that use fMRI.

3.
Trends Cogn Sci ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39174398

RESUMO

The study of human working memory (WM) holds significant importance in neuroscience; yet, exploring the role of the medial temporal lobe (MTL) in WM has been limited by the technological constraints of noninvasive methods. Recent advancements in human intracranial neural recordings have indicated the involvement of the MTL in WM processes. These recordings show that different regions of the MTL are involved in distinct aspects of WM processing and also dynamically interact with each other and the broader brain network. These findings support incorporating the MTL into models of the neural basis of WM. This integration can better reflect the complex neural mechanisms underlying WM and enhance our understanding of WM's flexibility, adaptability, and precision.

4.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38282455

RESUMO

Individual variability in functional connectivity underlies individual differences in cognition and behaviors, yet its association with functional specialization in the auditory cortex remains elusive. Using resting-state functional magnetic resonance imaging data from the Human Connectome Project, this study was designed to investigate the spatial distribution of auditory cortex individual variability in its whole-brain functional network architecture. An inherent hierarchical axis of the variability was discerned, which radiates from the medial to lateral orientation, with the left auditory cortex demonstrating more pronounced variations than the right. This variability exhibited a significant correlation with the variations in structural and functional metrics in the auditory cortex. Four auditory cortex subregions, which were identified from a clustering analysis based on this variability, exhibited unique connectional fingerprints and cognitive maps, with certain subregions showing specificity to speech perception functional activation. Moreover, the lateralization of the connectional fingerprint exhibited a U-shaped trajectory across the subregions. These findings emphasize the role of individual variability in functional connectivity in understanding cortical functional organization, as well as in revealing its association with functional specialization from the activation, connectome, and cognition perspectives.


Assuntos
Córtex Auditivo , Conectoma , Humanos , Córtex Auditivo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Conectoma/métodos , Encéfalo , Cognição
5.
Pest Manag Sci ; 80(2): 282-295, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37671631

RESUMO

BACKGROUND: Insect chitinases play crucial roles in degrading chitin in the extracellular matrix, affecting insect development and molting. However, our understanding of the specific functions of various chitinases in Leptinotarsa decemlineata is limited, hindering the deployment of novel gene-targeting technologies as pest management strategies. RESULTS: We identified and characterized 19 full-length complementary DNA (cDNA) sequences of chitinase genes (LdChts) in Leptinotarsa decemlineata. Despite having varying domain architectures, all these chitinases contained at least one chitinase catalytic domain. Phylogenetic analysis classified the chitinase proteins into ten distinct clusters (groups I-X). Expression profiles showed the highest expression in chitin-rich tissues or during specific developmental stages from the larva-to-pupa transition. Gene-specific RNA interference (RNAi) experiments provided valuable insight into chitinase gene function. Silencing of group II LdCht10 prevented larval-larval molting, larval-prepupal, and prepupal-pupal processes. Moreover, our study revealed that LdCht5, LdCht2, LdCht11, LdCht1, and LdCht3 from groups I and VII-X were specifically essential for the transition from prepupal to pupal stage, whereas LdIDGF2 from group V was necessary for the larval-prepupal metamorphic process. The chitinase gene LdCht7 from group III and LdIDGF4 from group V were involved in both the larva-to-prepupa and the prepupa-to-pupa shift. Additionally, our findings also shed light on the exclusive expression of nine chitinase genes within group IV in the digestive system, suggesting their potential role in regulating larval body weight and larva-to-pupa transition. CONCLUSION: Our results provide a comprehensive understanding of the functional specialization of chitinase genes during the molting process of various stages and identify potential targets for RNAi-based management of Leptinotarsa decemlineata. © 2023 Society of Chemical Industry.


Assuntos
Quitinases , Besouros , Animais , Larva , Pupa , Quitinases/genética , Filogenia , Quitina/metabolismo , Proteínas de Insetos/metabolismo , Interferência de RNA
6.
Front Plant Sci ; 13: 1083409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523629

RESUMO

The TIR1/AFB family of proteins is a group of functionally diverse auxin receptors that are only found in plants. TIR1/AFB family members are characterized by a conserved N-terminal F-box domain followed by 18 leucine-rich repeats. In the past few decades, extensive research has been conducted on the role of these proteins in regulating plant development, metabolism, and responses to abiotic and biotic stress. In this review, we focus on TIR1/AFB proteins that play crucial roles in plant responses to diverse abiotic and biotic stress. We highlight studies that have shed light on the mechanisms by which TIR1/AFB proteins are regulated at the transcriptional and post-transcriptional as well as the downstream in abiotic or biotic stress pathways regulated by the TIR1/AFB family.

7.
Plant J ; 110(5): 1382-1396, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35306706

RESUMO

The exocyst complex is an octameric evolutionarily conserved tethering complex engaged in the regulation of polarized secretion in eukaryotic cells. Here, we focus on the systematic comparison of two isoforms of the SEC15 exocyst subunit, SEC15a and SEC15b. We infer that SEC15 gene duplication and diversification occurred in the common ancestor of seed plants (Spermatophytes). In Arabidopsis, SEC15a represents the main SEC15 isoform in the male gametophyte, and localizes to the pollen tube tip at the plasma membrane. Although pollen tubes of sec15a mutants are impaired, sporophytes show no phenotypic deviations. Conversely, SEC15b is the dominant isoform in the sporophyte and localizes to the plasma membrane in root and leaf cells. Loss-of-function sec15b mutants exhibit retarded elongation of hypocotyls and root hairs, a loss of apical dominance, dwarfed plant stature and reduced seed coat mucilage formation. Surprisingly, the sec15b mutants also exhibit compromised pollen tube elongation in vitro, despite its very low expression in pollen, suggesting a non-redundant role for the SEC15b isoform there. In pollen tubes, SEC15b localizes to distinct cytoplasmic structures. Reciprocally to this, SEC15a also functions in the sporophyte, where it accumulates at plasmodesmata. Importantly, although overexpressed SEC15a could fully complement the sec15b phenotypic deviations in the sporophyte, the pollen-specific overexpression of SEC15b was unable to fully compensate for the loss of SEC15a function in pollen. We conclude that the SEC15a and SEC15b isoforms evolved in seed plants, with SEC15a functioning mostly in pollen and SEC15b functioning mostly in the sporophyte.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Pólen/metabolismo , Tubo Polínico/genética , Tubo Polínico/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sementes/genética , Sementes/metabolismo
8.
Mol Biol Evol ; 39(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35134205

RESUMO

Siphonophores are complex colonial animals, consisting of asexually produced bodies (zooids) that are functionally specialized for specific tasks, including feeding, swimming, and sexual reproduction. Though this extreme functional specialization has captivated biologists for generations, its genomic underpinnings remain unknown. We use RNA-seq to investigate gene expression patterns in five zooids and one specialized tissue across seven siphonophore species. Analyses of gene expression across species present several challenges, including identification of comparable expression changes on gene trees with complex histories of speciation, duplication, and loss. We examine gene expression within species, conduct classical analyses examining expression patterns between species, and introduce species branch filtering, which allows us to examine the evolution of expression across species in a phylogenetic framework. Within and across species, we identified hundreds of zooid-specific and species-specific genes, as well as a number of putative transcription factors showing differential expression in particular zooids and developmental stages. We found that gene expression patterns tended to be largely consistent in zooids with the same function across species, but also some large lineage-specific shifts in gene expression. Our findings show that patterns of gene expression have the potential to define zooids in colonial organisms. Traditional analyses of the evolution of gene expression focus on the tips of gene phylogenies, identifying large-scale expression patterns that are zooid or species variable. The new explicit phylogenetic approach we propose here focuses on branches (not tips) offering a deeper evolutionary perspective into specific changes in gene expression within zooids along all branches of the gene (and species) trees.


Assuntos
Hidrozoários , Animais , Expressão Gênica , Genoma , Hidrozoários/genética , Filogenia , Especificidade da Espécie
9.
Plant Direct ; 5(5): e00320, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34095740

RESUMO

In Arabidopsis thaliana, each ribosomal protein (RP) is encoded by a small gene family consisting of two or more highly homologous paralogues, which results in ribosome heterogeneity. It is largely unknown that how genes from multiple member containing RP families are regulated at transcriptional level to accommodate the needs of different plant organs and developmental stages. In this study, we investigated the transcript accumulation profiles of RP genes and found that the expression levels of RP genes are varied dramatically in different organs and developmental stages. Although most RP genes are found to be ubiquitously transcribed, some are obviously transcribed with spatiotemporal specificity. The hierarchical clustering trees of transcript accumulation intensity of RP genes revealed that different organs and developmental stages have different population of RP gene transcripts. By interrogating of the expression fluctuation trend of RP genes, we found that in spite of the fact that most groups of paralogous RP genes are transcribed in concerted manners, some RPs gene have contrasting expression patterns. When transcripts of paralogous RP genes from the same family are considered together, the expression level of most RP genes are well-matched but some are obviously higher or lower, therefore we speculate that some superfluous RPs may act outside the ribosome and a portion of ribosomes may lack one or even more RP(s). Altogether, our analysis results suggested that functional divergence may exist among heterogeneous ribosomes that resulted from different combination of RP paralogues, and substoichiometry of several RP gene families may lead to another layer of heterogeneous ribosomes which also have divergent functions in plants.

10.
Brain Struct Funct ; 226(6): 1973-1990, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34041612

RESUMO

Specialization and flexibility are two basic attributes of functional brain organization, enabling efficient cognition and behavior. However, it is largely unknown what plastic changes in specialization and flexibility in visual-motor areas occur in support of extraordinary motor skills in expert athletes and how the selective adaptability of the visual-motor system affects general perceptual or cognitive domains. Here, we used a dynamic network framework to investigate intrinsic functional specialization and flexibility of visual-motor system in expert table tennis players (TTP). Our results showed that sensorimotor areas increased intrinsic functional flexibility, whereas visual areas increased intrinsic functional specialization in expert TTP compared to nonathletes. Moreover, the flexibility of the left putamen was positively correlated with skill level, and that of the left lingual gyrus was positively correlated with behavioral accuracy of a sport-unrelated attention task. This study has uncovered dissociable plasticity of the visual-motor system and their predictions of individual differences in skill level and general attention processing. Furthermore, our time-resolved analytic approach is applicable across other professional athletes for understanding their brain plasticity and superior behavior.


Assuntos
Córtex Sensório-Motor , Tênis , Atenção , Cognição , Humanos , Destreza Motora , Percepção Visual
11.
Environ Sci Pollut Res Int ; 28(31): 41851-41868, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33786769

RESUMO

The layout of urban spatial functions may play an important role in sustainable regional development. Given the rapid development of urbanization in China, this study attempts to analyze how functional specialization affects coordinated regional development. To quantitatively measure the degree of coordinated development within different regions, the coordinated degree index is used to calculate the degree of coordinated development of four Chinese metropolitan areas from 2008 to 2019. The panel vector autoregressive (PVAR) model is employed to empirically test the impact of urban functional specialization on coordinated regional development. The results indicate that high market activity is conducive to the formation of functional specialization synergy in space, and the level of social productivity directly affects the functional specialization and the level of synergy within a region. With the continuous strengthening of the implementation of local government policies, the functional specialization and synergy in metropolitan areas have gradually strengthened. However, the promotion effects and the expression of functional specialization, the coordinated development of government actions, and spatial functions differ across metropolitan areas in China.


Assuntos
Desenvolvimento Sustentável , Urbanização , China
12.
Laterality ; 26(6): 645-679, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33634737

RESUMO

Recent findings showed that children, like adults, exhibit directional biases leading to asymmetrical drawings. This appears to be the result of a complex interaction between several biological, motoric, and cultural factors. We created a drawing task designed to investigate the influence of laterality (i.e., hemispherical functional specialization and handedness) and sex on children's graphical asymmetries. This task consists of transcribing a symmetrical three-dimensional landscape model to a two-dimensional representation. Sixty-six French pre-school children, aged between 5 and 6 years, were asked to undertake the 3D-2D transcription task, as well as the classical Alter's directionality task. The novel task exhibited higher sensitivity than the Alter's directionality test when examining the spatial biases resulting from handedness, and sex. Specific drawing patterns related to these variables were identified. These results suggest that, in addition to the influence of biomechanical factors and handedness, sex plays a role in children's early graphomotor development. They also support the influence of laterality as a key factor underlying early directional biases.


Assuntos
Lateralidade Funcional , Adulto , Viés , Criança , Pré-Escolar , Humanos
13.
Elife ; 92020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33226336

RESUMO

Complex cognitive functions such as working memory and decision-making require information maintenance over seconds to years, from transient sensory stimuli to long-term contextual cues. While theoretical accounts predict the emergence of a corresponding hierarchy of neuronal timescales, direct electrophysiological evidence across the human cortex is lacking. Here, we infer neuronal timescales from invasive intracranial recordings. Timescales increase along the principal sensorimotor-to-association axis across the entire human cortex, and scale with single-unit timescales within macaques. Cortex-wide transcriptomic analysis shows direct alignment between timescales and expression of excitation- and inhibition-related genes, as well as genes specific to voltage-gated transmembrane ion transporters. Finally, neuronal timescales are functionally dynamic: prefrontal cortex timescales expand during working memory maintenance and predict individual performance, while cortex-wide timescales compress with aging. Thus, neuronal timescales follow cytoarchitectonic gradients across the human cortex and are relevant for cognition in both short and long terms, bridging microcircuit physiology with macroscale dynamics and behavior.


The human brain can both quickly react to a fleeting sight, like a changing traffic light, and slowly integrate complex information to form a long-term plan. To mirror these requirements, how long a neuron can be activated for ­ its 'timescale' ­ varies greatly between cells. A range of timescales has been identified in animal brains, by measuring single neurons at a few different locations. However, a comprehensive study of this property in humans has been hindered by technical and ethical concerns. Without this knowledge, it is difficult to understand the factors that may shape different timescales, and how these can change in response to environmental demands. To investigate this question, Gao et al. used a new computational method to analyse publicly available datasets and calculate neuronal timescales across the human brain. The data were produced using a technique called invasive electrocorticography, where electrodes placed directly on the brain record the total activity of many neurons. This allowed Gao et al. to examine the relationship between timescales and brain anatomy, gene expression, and cognition. The analysis revealed a continuous gradient of neuronal timescales between areas that require neurons to react quickly and those relying on long-term activity. 'Under the hood', these timescales were associated with a number of biological processes, such as the activity of genes that shape the nature of the connections between neurons and the amount of proteins that let different charged particles in and out of cells. In addition, the timescales could be flexible: they could lengthen when areas specialised in working memory were actively maintaining information, or shorten with age across many areas of the brain. Ultimately, the technique and findings reported by Gao et al. could have useful applications in the clinic, using neuronal timescale to better understand brain disorders and pinpoint their underlying causes.


Assuntos
Córtex Cerebral/fisiologia , Memória de Curto Prazo/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Adolescente , Adulto , Envelhecimento/fisiologia , Animais , Eletrocorticografia , Feminino , Humanos , Macaca , Masculino , Pessoa de Meia-Idade , Transcriptoma , Adulto Jovem
14.
BMC Plant Biol ; 20(1): 463, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33032526

RESUMO

BACKGROUND: In plants, each ribosomal protein (RP) is encoded by a small gene family but it is largely unknown whether the family members are functionally diversified. There are two RPL23a paralogous genes (RPL23aA and RPL23aB) encoding cytoplasmic ribosomal proteins in Arabidopsis thaliana. Knock-down of RPL23aA using RNAi impeded growth and led to morphological abnormalities, whereas knock-out of RPL23aB had no observable phenotype, thus these two RPL23a paralogous proteins have been used as examples of ribosomal protein paralogues with functional divergence in many published papers. RESULTS: In this study, we characterized T-DNA insertion mutants of RPL23aA and RPL23aB. A rare non-allelic non-complementation phenomenon was found in the F1 progeny of the rpl23aa X rpl23ab cross, which revealed a dosage effect of these two genes. Both RPL23aA and RPL23aB were found to be expressed almost in all examined tissues as revealed by GUS reporter analysis. Expression of RPL23aB driven by the RPL23aA promoter can rescue the phenotype of rpl23aa, indicating these two proteins are actually equivalent in function. Interestingly, based on the publicly available RNA-seq data, we found that these two RPL23a paralogues were expressed in a concerted manner and the expression level of RPL23aA was much higher than that of RPL23aB at different developmental stages and in different tissues. CONCLUSIONS: Our findings suggest that the two RPL23a paralogous proteins are functionally equivalent but the two genes are not. RPL23aA plays a predominant role due to its higher expression levels. RPL23aB plays a lesser role due to its lower expression. The presence of paralogous genes for the RPL23a protein in plants might be necessary to maintain its adequate dosage.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genes de Plantas , Proteínas Ribossômicas/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , DNA Bacteriano , Dosagem de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutação , Regiões Promotoras Genéticas , Proteínas Ribossômicas/fisiologia
15.
Eur J Neurosci ; 52(12): 4684-4694, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32722893

RESUMO

In this opinion essay, I address the perennial binding problem, that is to say of how independently processed visual attributes such as form, colour and motion are brought together to give us a unified and holistic picture of the visual world. A solution to this central issue in neurobiology remains as elusive as ever. No one knows today how it is implemented. The issue is not a new one and, though discussed most commonly in the context of the visual brain, it is not unique to it either. Karl Lashley summarized it well years ago when he wrote that a critical problem for brain studies is to understand how "the specialized areas of the cerebral cortex interact to provide the integration evident in thought and behaviour" (Lashley, 1931).


Assuntos
Percepção de Movimento , Córtex Visual , Encéfalo , Mapeamento Encefálico , Movimento (Física)
16.
Gene ; 754: 144818, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32485308

RESUMO

Plants are continuously exposed to agents that can generate DNA lesions. Nucleotide Excision Repair (NER) is one of the repair pathways employed by plants to protect their genome, including from sunlight. The Xeroderma Pigmentosum type B (XPB) protein is a DNA helicase shown to be involved in NER and is also an essential subunitof the Transcription Factor IIH (TFIIH) complex. XPB was found to be a single copy gene in eukaryotes, but found as a tandem duplication in the plant Arabidopsis thaliana, AtXPB1 and AtXPB2. We aimed to investigate whether the XPB in tandem duplication was common within members of the Brassicaceae. We analyzed genomic DNA of species from different tribes of the family and the results indicate that the tandem duplication occurred in Camelineae tribe ancestor, of which A. thaliana belongs, at approximately 8 million years ago. Further experiments were devised to study possible functional roles for the A. thaliana AtXPB paralogs. A non-coincident expression profile of the paralogs was observed in various plant organs, developmental and cell cycle stages. AtXPB2 expression was observed in proliferating cells and clustered with the transcription of other components of the TFIIH such as p44, p52 and XPD/UVH6 along the cell cycle. AtXPB1 gene transcription, on the other hand, was enhanced specifically after UV-B irradiation in leaf trichomes. Altogether, our results reported herein suggest a functional specialization for the AtXPB paralogs: while the AtXPB2 paralog may have a role in cell proliferation and repair as XPB of other eukaryotes, the AtXPB1 paralog is most likely implicated in repair functions in highly specialized A. thaliana cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Dano ao DNA , Reparo do DNA/genética , Duplicação Gênica , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Ciclo Celular , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Fatores de Transcrição/genética , Raios Ultravioleta
17.
eNeuro ; 7(4)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32471848

RESUMO

The olfactory system is uniquely heterogeneous, performing multifaceted functions (beyond basic sensory processing) across diverse, widely distributed neural substrates. While knowledge of human olfaction continues to grow, it remains unclear how the olfactory network is organized to serve this unique set of functions. Leveraging a large and high-quality resting-state functional magnetic resonance imaging (rs-fMRI) dataset of nearly 900 participants from the Human Connectome Project (HCP), we identified a human olfactory network encompassing cortical and subcortical regions across the temporal and frontal lobes. Highlighting its reliability and generalizability, the connectivity matrix of this olfactory network mapped closely onto that extracted from an independent rs-fMRI dataset. Graph theoretical analysis further explicated the organizational principles of the network. The olfactory network exhibits a modular composition of three (i.e., the sensory, limbic, and frontal) subnetworks and demonstrates strong small-world properties, high in both global integration and local segregation (i.e., circuit specialization). This network organization thus ensures the segregation of local circuits, which are nonetheless integrated via connecting hubs [i.e., amygdala (AMY) and anterior insula (INSa)], thereby enabling the specialized, yet integrative, functions of olfaction. In particular, the degree of local segregation positively predicted olfactory discrimination performance in the independent sample, which we infer as a functional advantage of the network organization. In sum, an olfactory functional network has been identified through the large HCP dataset, affording a representative template of the human olfactory functional neuroanatomy. Importantly, the topological analysis of the olfactory network provides network-level insights into the remarkable functional specialization and spatial segregation of the olfactory system.


Assuntos
Conectoma , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem , Reprodutibilidade dos Testes , Olfato
18.
J Clin Neurosci ; 78: 317-322, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32448728

RESUMO

Cognitive control, the ability to use goal-directed information to guide behaviour, is impaired in schizophrenia, and mainly related to dysfunctions within the fronto-posterior brain network. However, cognitive control is a broad cognitive function encompassing distinct sub-processes that, until now, studies have failed to separate and relate to specific brain regions. The goal of this preliminary fMRI study is to investigate the functional specialization of posterior brain regions, and their functional interaction with lateral prefrontal cortex (LPFC) regions, in schizophrenia. Fourteen healthy participants and 15 matched schizophrenic patients participated in this fMRI study. We used a task paradigm that differentiates two cognitive control sub-processes according to the temporal framing of information, namely the control of immediate context (present cues) vs. temporal episode (past instructions). We found that areas activated during contextual and episodic controls were in dorsal posterior regions and that activations did not significantly differ between schizophrenic patients and healthy participants. However, while processing contextual signals, patients with schizophrenia failed to show decreased connectivity between caudal LPFC and areas located in ventral posterior regions. The absence of group difference in the functional specialization of posterior regions is difficult to interpret due to our small sample size. One interpretation for our connectivity results is that patients present an inefficient extinction of posterior regions involved in attention shifting by prefrontal areas involved in the top-down control of contextual signals. Further studies with larger sample sizes will be needed to ascertain those observations.


Assuntos
Cognição , Imageamento por Ressonância Magnética/métodos , Esquizofrenia/fisiopatologia , Adulto , Atenção , Encéfalo/fisiopatologia , Mapeamento Encefálico/métodos , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/diagnóstico por imagem , Psicologia do Esquizofrênico
19.
Handb Clin Neurol ; 163: 61-72, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31590748

RESUMO

Functional imaging methodology has revolutionized our ability to understand brain-behavior relationships. In contrast with the static images obtained with standard imaging methods, functional images permit us to track brain activity as humans view stimuli, hear sounds, consider choices, and make decisions. The insights now possible because of this technology have not only provided new potential markers for disease but have also permitted questions of neural mechanism to be addressed in living humans. Because of the breadth and depth of research that directly or tangentially touches upon functional imaging, it is impossible to do justice to the various subfields, analysis streams, and methodological complexities in one chapter. Instead, this chapter will provide a brief overview of the underlying conceptual framework, basic analytic techniques, and details of the imaging methodologies available for the acquisition of functional imaging data.


Assuntos
Encéfalo/diagnóstico por imagem , Neuroimagem Funcional/métodos , Mapeamento Encefálico/métodos , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética
20.
J Mol Biol ; 431(23): 4712-4731, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31260694

RESUMO

In order to survive and reproduce, organisms must perform a multitude of tasks. However, trade-offs limit their ability to allocate energy and resources to all of these different processes. One strategy to solve this problem is to specialize in some traits and team up with other organisms that can help by providing additional, complementary functions. By reciprocally exchanging metabolites and/or services in this way, both parties benefit from the interaction. This phenomenon, which has been termed functional specialization or division of labor, is very common in nature and exists on all levels of biological organization. Also, microorganisms have evolved different types of synergistic interactions. However, very often, it remains unclear whether or not a given example represents a true case of division of labor. Here we aim at filling this gap by providing a list of criteria that clearly define division of labor in microbial communities. Furthermore, we propose a set of diagnostic experiments to verify whether a given interaction fulfills these conditions. In contrast to the common use of the term, our analysis reveals that both intraspecific and interspecific interactions meet the criteria defining division of labor. Moreover, our analysis identified non-cooperators of intraspecific public goods interactions as growth specialists that divide labor with conspecific producers, rather than being social parasites. By providing a conceptual toolkit, our work will help to unambiguously identify cases of division of labor and stimulate more detailed investigations of this important and widespread type of inter-microbial interaction.


Assuntos
Fenômenos Microbiológicos , Microbiota , Evolução Biológica , Regulação da Expressão Gênica , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA