Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.018
Filtrar
1.
Microbiol Res ; 289: 127911, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39303412

RESUMO

Soybean root rot, caused by soil-borne pathogens such as Fusarium oxysporum, frequently occurs in Northeast China and leads to a decline in soil health and becoming a bottleneck for soybean yield in the region. To address this issue, applying beneficial microorganisms and altering soil microbial community structure have become effective strategies. In this study, the 90-day soybean pot experiment was conducted to explore the assembly process and life strategy selection of bacterial communities in the rhizosphere of healthy (inoculated with Funneliformis mosseae, F group and treated with Pseudomonas putida, P group) and diseased (inoculated with F. oxysporum, O group) soybean plants, as well as the recovery effect of beneficial microorganisms on soil-borne diseases (combined treatments OP and OF). Results indicated that in healthy soils (P and F), microbial community assembly process in the soybean rhizosphere was entirely governed by heterogeneous selection (HeS, 100 %). However, inoculated with P. putida (OP) was primarily driven by stochastic processes (HeS 40 %, dispersal limitation (DL) 60 %), and the F. mosseae treatment (OF) predominantly followed a deterministic process (HeS 89 %, DL 11 %) in diseased soils. Inoculation of plant growth-promoting microorganisms (PGPMs) in diseased soil drove the life strategy of the rhizosphere bacterial community from r- to K-strategy, evident from the lower rRNA operon (rrn) copy numbers (O 3.7, OP 2.1, OF 2.3), higher G+ to G- ratios (O 0.47, OP 0.58, OF 0.57), and a higher abundance of oligotrophs (O 50 %, OP 53 %, OF 54 %). In healthy (P and F) and diseased (O, OP, OF) rhizosphere soils, OTU820, OTU6142, and OTU8841 under the K-strategy, and OTU6032 and OTU6917 under the r-strategy, which served as keystone species, had a significant promoting relationship with plant biomass and defense capabilities ( p <0.05). Additionally, inoculation of PGPMs improved autotoxin degradation and positively correlated with bacterial life strategies in both healthy and diseased soils (P, F, OP and OF) ( p <0.05). These findings enhance our understanding of soil-microbe interactions and offer new insights and precise control measures for soybean disease management and soil environment remediation.

2.
BMC Microbiol ; 24(1): 336, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39256659

RESUMO

BACKGROUND: Fusarium wilt is a devastating soil-borne fungal disease of tomato across the world. Conventional method of disease prevention including usage of common pesticides and methods like soil solarisation are usually ineffective in the treatment of this disease. Therefore, there is an urgent need to identify virulence related genes in the pathogen which can be targeted for fungicide development. RESULTS: Pathogenicity testing and phylogenetic classification of the pathogen used in this study confirmed it as Fusarium oxysporum f. sp. lycopersici (Fol) strain. A recent discovery indicates that EF1α, a protein with conserved structural similarity across several fungal genera, has a role in the pathogenicity of Magnaporthe oryzae, the rice blast fungus. Therefore, in this study we have done structural and functional classification of EF1α to understand its role in pathogenicity of Fol. The protein model of Fol EF1α was created using the template crystal structure of the yeast elongation factor complex EEF1A:EEF1BA which showed maximum similarity with the target protein. Using the STRING online database, the interactive information among the hub genes of EF1α was identified and the protein-protein interaction network was recognized using the Cytoscape software. On combining the results of functional analysis, MCODE, CytoNCA and CytoHubba 4 hub genes including Fol EF1α were selected for further investigation. The three interactors of Fol EF1α showed maximum similarity with homologous proteins found in Neurospora crassa complexed with the known fungicide, cycloheximide. Through the sequence similarity and PDB database analysis, homologs of Fol EF1α were found: EEF1A:EEF1BA in complex with GDPNP in yeast and EF1α in complex with GDP in Sulfolobus solfataricus. The STITCH database analysis suggested that EF1α and its other interacting partners interact with guanosine diphosphate (GDPNP) and guanosine triphosphate (GTP). CONCLUSIONS: Our study offers a framework for recognition of several hub genes network in Fusarium wilt that can be used as novel targets for fungicide development. The involvement of EF1α in nucleocytoplasmic transport pathway suggests that it plays role in GTP binding and thus apart from its use as a biomarker, it may be further exploited as an effective target for fungicide development. Since, the three other proteins that were found to be tightly associated Fol EF1α have shown maximum similarity with homologous proteins of Neurospora crassa that form complex with fungicide- Cycloheximide. Therefore, we suggest that cycloheximide can also be used against Fusarium wilt disease in tomato. The active site cavity of Fol EF1α can also be determined for computational screening of fungicides using the homologous proteins observed in yeast and Sulfolobus solfataricus. On this basis, we also suggest that the other closely associated genes that have been identified through STITCH analysis, they can also be targeted for fungicide development.


Assuntos
Proteínas Fúngicas , Fusarium , Fator 1 de Elongação de Peptídeos , Filogenia , Doenças das Plantas , Fusarium/genética , Fusarium/metabolismo , Fusarium/patogenicidade , Fator 1 de Elongação de Peptídeos/genética , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Solanum lycopersicum/microbiologia , Mapas de Interação de Proteínas , Reação em Cadeia da Polimerase , Virulência/genética , Modelos Moleculares
3.
Front Plant Sci ; 15: 1435963, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39290733

RESUMO

Fusarium is a soil-borne pathogen that poses a serious threat to the quality and yield of hundreds of crops worldwide, particularly tobacco production. Using metabolomics technology, we investigated natural metabolites from disease-conducting soil (DCS) and disease-suppressing soil (DSS) of tobacco rhizosphere as fungicides to control tobacco Fusarium wilt (TFW), which is mainly caused by Fusarium oxysporum. Furthermore, the antifungal mechanisms of these natural metabolites were preliminarily elucidated through various assessments, including antifungal activity determination, chemotaxis effect tests, PI staining experiments, and measurements of extracellular conductivity and protein content. Metabolomics results showed that the DCS with three different disease grades (G1, G5 and G9 groups) had significantly higher levels of 15, 14 and 233 differential rhizosphere metabolites (DRMs) and significantly lower levels of 72, 152 and 170 DRMs compared to the DSS (G0 group). According to KEGG pathway analysis, these DRMs were found to be enriched in the caffeine metabolism, biosynthesis of phenylpropanoids, galactose metabolism and tyrosine metabolism, etc. Linustatin, scopoletin and phenylpropiolic acid were picked out from these DRMs and found to have suppressive activity against F. oxysporum through correlation analysis and antifungal experiments. The three DRMs showed strong inhibitory effects on the growth and spore germination of F. oxysporum at concentrations of 0.5 mM or higher in each test period. Furthermore, F. oxysporum showed a phobotaxis effect against these three DRMs at concentrations as low as 0.25 mM. Finally, we found that the three DRMs had an inhibitory effect on F. oxysporum by destroying the integrity of the cell membrane and increasing the membrane permeability of F. oxysporum. This study firstly reports the inhibition activity of phenylpropiolic acid and linustatin on F. oxysporum, providing a practical and environmentally friendly method for biocontrol of TFW by using natural fungicides.

4.
Plant Dis ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39219005

RESUMO

Recently, Saudi growers have expanded their production of organic, soilless-grown strawberries (Fragaria × ananassa Duch.), but their production shows many difficulties associated with disease susceptibility. In October 2021, 45% of strawberry plants cv. "Festival" organically cultivated in Dammam city, Saudi Arabia (26°31'34.5"N 50°00'51.0"E) showed wilting symptoms. Typical symptoms were yellowing, rapid wilting, death of older leaves, stunting, and decreased roots. Vascular bundle necrosis and crown and root rot were also observed; plants eventually collapsed and died. Twenty symptomatic strawberry plants were sampled to isolate the pathogen. Pieces (4 × 4 mm) of the symptomatic tissues from crowns and roots were sanitized with 1% NaOCl (90 s), submerged in 70% alcohol (20 s), rinsed with sterile water (2x 30 s), placed on potato dextrose agar (PDA; Scharlau Chemie, Spain) and incubated at 25°C for 6 days. Next, we prepared single-spore cultures on PDA and synthetic nutrient-poor agar (SNA). On PDA media, pure cultures produced abundant aerial mycelium, with light pink or purple pigmentation in the medium after incubation at 25°C for 7 days. On SNA media, aerial microconidia were abundant cylindrical to ellipsoid hyaline with zero to one septate (3.8 - 5.9 × 1.3 - 2.5 µm, n = 50). Macroconidia were few, hyaline and falcate, with slightly curved apexes and 2 to 4 septate (18.9 - 27.5 × 3.3 - 4.6 µm, n = 50). Chlamydospores were roundish and terminal or intercalary. As Leslie and Summerell (2006) described, such morphological characteristics are typical of F. oxysporum. The isolates' identities were established by extracting DNA using the DNeasy Plant Mini kit (QIAGEN, Hilden, Germany). This was followed by amplification and sequencing of the internal transcribed spacer (ITS) (White et al., 1990), elongation factor 1-α (TEF1-α) (O'Donnell et al., 1998), and the ribosomal RNA intergenic spacer (IGS) (Canizares et al., 2015). The ITS, TEF1-α, and IGS sequences of an isolate Fof-10 were submitted to GenBank (PP564462, PP703242, and PP784894, respectively). BLAST analysis confirmed 99.71 and 100% identities to the ITS, TEF-1α, and IGS sequences of F. oxysporum (KU931552.1, OR640020.1, and FJ985519.1), respectively. All isolates tested were confirmed at the forma specialis fragariae, level using the specific primers FofraF/FofraR (Suga et al. 2013). The ∼239 bp amplicon was sequenced and submitted to GenBank (PP703243). Two-month-old healthy strawberry plants of cultivars "Festival," "Marquis," and "Monterey" were inoculated by dipping the roots in the spore suspension (107 conidia ml-1) for 15 min (Henry et al. 2017). There were five replicates for each cultivar. Plants dipped in water were used as a control treatment. The plants were transplanted in sterilized soil and placed in a greenhouse at 30/26°C (day/night). Within 4 to 6 weeks, inoculated plants showed severe wilting and discoloration of the internal crown tissue, while control plants were symptomless. The pathogen was re-isolated from the discolored vascular tissue onto PDA and identified morphologically and molecularly as the original one, thus fulfilling Koch's postulates. The test was repeated twice. This report confirms F. oxysporum f. sp. fragariae as a causal agent of Fusarium wilt of strawberries in Saudi Arabia. This pathogen was previously reported to cause the Fusarium wilt of strawberries in California (Dilla-Ermita et al., 2023). This disease has been observed in several hydroponic strawberry greenhouses in Saudi Arabia, with incidence ranging from 25% to 45% across multiple locations. Given this, proper strategies are needed to manage this disease and to be compatible with organic farming.

5.
Braz J Microbiol ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240496

RESUMO

One of the most promising biologically based nanomanufacturing processes is the production of selenium nanoparticles (SeNPs) by fungi. The use of these biosynthesized nanoparticles in agricultural practices has emerged as a new approach for controlling pathogen growth and mycotoxin production. In the present study, different chemical and physical parameters were investigated for the growth of Fusarium oxysporum (CCASU-2023-F9) to increase selenite reduction and obtain the highest yield of selenium nanoparticles (SeNPs). Fusarium oxysporum (CCASU-2023-F9) exhibited tolerance to up to 1 mM sodium selenite (Na2SeO3), accompanied by red coloration of the medium, which suggested the reduction of selenite and the formation of selenium nanoparticles (SeNPs). Reduced selenite was quantified using inductively coupled plasma‒mass spectrometry (ICP-MS), and the results revealed that Fusarium oxysporum (CCASU-2023-F9) is able to transform 45.5% and 50.9% of selenite into elemental selenium by using fructose and urea as the best carbon and nitrogen sources, respectively. An incubation temperature of 30 °C was the best physical condition at which 67.4% of the selenite was transformed into elemental selenium. The results also indicated that pH 7 was the optimum pH, as it displayed 27.2% selenite reduction with a net dry weight of 6.8 mg/mL. Increasing the concentration of sulfate resulted in a significant increase in selenite reduction, as it reached a maximum value of 75.3% at 0.15% g/ml sulfate. The maximum reduction in sodium selenite content was 85.2% at a C/N ratio of 2:1. The biosynthesized SeNPs exhibited antifungal activity against several fungi, such as Aspergillus flavus, Aspergillus niger, and Fusarium oxysporum, that were isolated from animal and poultry feed. Elevated SeNP concentrations (10500 ppm) significantly inhibited fungal growth. SeNPs at a concentration of 5000 ppm inhibited aflatoxin production (B1, B2, G1, and G2) by A. flavus, in addition to inhibiting mycotoxin production (T2 toxin, fumonisin B1, zearaleone, fusarin C, and moniliformin) by F. oxysporum. In conclusion, the results revealed favorable nutritional conditions for the maximum production of SeNPs by Fusarium oxysporum (CCASU-2023-F9) and indicated the marked inhibitory effect of SeNPs on mycotoxins that contaminate animal feed, causing serious consequences for animal health, and that lead to improving the quality of commercially produced animal feed. The obtained results can serve as a basis for commercial applicability.

6.
J Exp Bot ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271144

RESUMO

Cotton (Gossypium hirsutum) is the world's most important fiber crop, critical to global textile industries and agricultural economies. However, cotton yield and harvest quality are undermined by the challenges introduced from invading pathogens and pests. Plant-synthesized oxylipins, specifically 9-hydroxy fatty acids resulting from 9-lipoxygenase activity (9-LOX), enhance the growth and development of many microbes and pests. We hypothesized that targeted disruption of 9-LOX-encoding genes in cotton could bolster crop resilience against prominent agronomic threats. Fusarium oxysporum f. sp. vasinfectum (FOV), Aphis gossypii (cotton aphid), and Tobacco rattle virus induced the expression of 9-oxylipin biosynthesis genes, suggesting that the 9-LOX gene products were susceptibility factors to these stressors. Transiently disrupting the expression of the 9-LOX-encoding genes by virus-induced gene silencing significantly reduced target transcript accumulation, and this correlated with impaired progression of FOV infections and a significant decrease in the fecundity of cotton aphids. These findings emphasize that the cotton 9-LOX-derived oxylipins are leveraged by multiple pathogens and pests to enhance their virulence in cotton, and reducing the expression of 9-LOX-encoding genes can benefit cotton crop vitality.

7.
Front Plant Sci ; 15: 1444195, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39239191

RESUMO

Fusarium wilt, caused by Fusarium oxysporum f. sp. spinaciae, causes a significant challenge on vegetative spinach and seed production. Addressing this issue necessitates continuous research focused on innovative treatments and protocols through comprehensive bioassays. Recent studies have highlighted the potential of plant-based compounds in controlling fungal diseases. The present work aims to conduct a series of experiments, encompassing both in vitro and in planta assessments, to investigate the biocontrol capabilities of different essential oils (EOs) at various application rates, with the ultimate goal of reducing the incidence of Fusarium wilt in spinach. The inhibitory effect of four plant EOs (marjoram, thyme, oregano, and tea tree) was initially assessed on the spore germination of five unknown Fusarium strains. The outcomes revealed diverse sensitivities of Fusarium strains to EOs, with thyme exhibiting the broadest inhibition, followed by oregano at the highest concentration (6.66 µL/mL) in most strains. The tested compounds displayed a diverse range of median effective dose (ED50) values (0.69 to 7.53 µL/mL), with thyme and oregano consistently showing lower ED50 values. The direct and indirect inhibitory impact of these compounds on Fusarium mycelial growth ranged from ~14% to ~100%, wherein thyme and oregano consistently exhibiting the highest effectiveness. Following the results of five distinct inoculation approaches and molecular identification, the highly pathogenic strain F-17536 (F. oxysporum f.sp. spinaciae) was chosen for Fusarium wilt assessment in spinach seedlings, employing two promising EO candidates through seed and soil treatments. Our findings indicate that colonized grain (CG) proved to be a convenient and optimal inoculation method for consistent Fusarium wilt assessment under greenhouse conditions. Seed treatments with thyme and oregano EOs consistently resulted in significantly better disease reduction rates, approximately 54% and 36% respectively, compared to soil treatments (P > 0.05). Notably, thyme, applied at 6.66 µL/mL, exhibited a favorable emergence rate (ERI), exceeding seven, in both treatments, emphasizing its potential for effective disease control in spinach seedlings without inducing phytotoxic effects. This study successfully transitions from in vitro to in planta experiments, highlighting the potential incorporation of EOs into integrated disease management for Fusarium wilt in spinach production.

8.
Int J Mol Sci ; 25(15)2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39126085

RESUMO

Chitinase genes, as a class of cell wall hydrolases, are essential for the development and pathogenesis of Fusarium oxysporum f.sp. vasinfectum (F. ox) in cotton, but related research focused on chitinase genes are limited. This study explored two island cotton root secretions from the highly resistant cultivar Xinhai 41 and sensitive cultivar Xinhai 14 to investigate their interaction with F. ox by a weighted correlation network analysis (WGCNA). As a result, two modules that related to the fungal pathogenicity emerged. Additionally, a total of twenty-five chitinase genes were identified. Finally, host-induced gene silencing (HIGS) of FoChi20 was conducted, and the cotton plants showed noticeably milder disease with a significantly lower disease index than the control. This study illuminated that chitinase genes play crucial roles in the pathogenicity of cotton wilt fungi, and the FoChi20 gene could participate in the pathogenesis of F. ox and host-pathogen interactions, which establishes a theoretical framework for disease control in Sea Island cotton.


Assuntos
Quitinases , Resistência à Doença , Fusarium , Gossypium , Doenças das Plantas , Fusarium/patogenicidade , Fusarium/genética , Gossypium/microbiologia , Quitinases/genética , Quitinases/metabolismo , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Interações Hospedeiro-Patógeno/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/microbiologia
9.
PeerJ ; 12: e17835, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39175747

RESUMO

Background: Commercial/chemical pesticides are available to control Fusarium wilt of chickpea, but these antifungals have numerous environmental and human health hazards. Amongst various organic alternatives, use of antagonistic fungi like Trichoderma, is the most promising option. Although, Trichoderma spp. are known to control Fusarium wilt in chickpea but there are no reports that indicate the biocontrol efficacy of indigenous Trichoderma spp. against the local pathogen, in relation to environmental conditions. Methods: In the present study, biological control activity of Trichoderma species formulations viz., Trichoderma asperellum, Trichoderma harzianum (strain 1), and Trichoderma harzianum (strain 2), either singly or in the form of consortia, was investigated against Fusarium oxysporum f. sp. ciceris, the cause of Fusarium wilt in chickpea, in multiyear pot trials under open field conditions. The antagonistic effect of Trichoderma spp. was first evaluated in in vitro dual culture experiments. Then the effects of Trichoderma as well as F. oxysporum, were investigated on the morphological parameters, disease incidence (DI), and disease severity (DS) of chickpea plants grown in pots. Results: In dual culture experiments, all the Trichoderma species effectively reduced the mycelial growth of F. oxysporum. T. asperellum, T. harzianum (strain 1), and T. harzianum(strain 2) declined the mycelial growth of F. oxysporumby 37.6%, 40%, and 42%. In open field pot trials, the infestation of F. oxysporum in chickpea plants significantly reduced the morphological growth of chickpea. However, the application of T. asperellum, T. harzianum (strain 1), and T. harzianum (strain 2), either singly or in the form of consortia, significantly overcome the deleterious effects of the pathogen, thereby resulted in lower DI (22.2% and 11.1%) and DS (86% and 92%), and ultimately improved the shoot length, shoot fresh weight and shoot dry weight by 69% and 72%, 67% and 73%, 68% and 75%, during the years 1 and 2, respectively, in comparison with infested control. The present study concludes the usefulness and efficacy of Trichoderma species in controlling wilt disease of chickpea plants under variable weather conditions.


Assuntos
Cicer , Fusarium , Doenças das Plantas , Cicer/microbiologia , Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Trichoderma/patogenicidade , Trichoderma/fisiologia , Controle Biológico de Vetores/métodos , Hypocreales/patogenicidade , Hypocreales/fisiologia , Antibiose/fisiologia
10.
J Agric Food Chem ; 72(33): 18478-18488, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39106342

RESUMO

Fusarium crown and root rot (FCRR) has emerged as a highly destructive soil-borne disease, posing a significant threat to the safe cultivation of tomatoes in recent years. The pathogen of tomato FCRR is Fusarium oxysporum f. sp. radicis-lycopersici (Forl). To explore potential phytotoxins from Forl, eight undescribed diterpenoids namely fusariumic acids A-H (1-8) were isolated. Their structures were elucidated by using spectroscopic data analyses, quantum chemical calculations, and X-ray crystallography. Fusariumic acids A (1) and C-H (3-8) were typical isocassadiene-type diterpenoids, while fusariumic acid B (2) contained a cage-like structure with an unusual 7,8-seco-isocassadiene skeleton. A biosynthetic pathway of 2 was proposed. Fusariumic acids A (1) and C-H (3-8) were further assessed for their phytotoxic effects on tomato seedlings at 200 µg/mL. Among them, fusariumic acid F (6) exhibited the strongest inhibition against the hypocotyl and root elongation of tomato seedlings, with inhibitory rates of 61.3 and 45.3%, respectively.


Assuntos
Diterpenos , Fusarium , Doenças das Plantas , Raízes de Plantas , Solanum lycopersicum , Fusarium/efeitos dos fármacos , Solanum lycopersicum/microbiologia , Diterpenos/química , Diterpenos/farmacologia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/química , Estrutura Molecular
11.
Plants (Basel) ; 13(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39124240

RESUMO

Ginkgo biloba is abundant in secondary metabolites, including flavonoids and terpenoids. While the majority of research has focused on the role of these compounds in disease resistance, their specific contribution to pathogen defense has been rarely explored. In this study, we collected root exudates from hydroponically cultivated ginkgo seedlings and conducted a metabolomic analysis. We identified several primary metabolites mainly comprising amino acids and nucleotides, while secondary metabolites consisted of various compounds, including bioactive compounds such as flavonoids and terpenoids. Focusing on the secondary metabolites with relatively higher abundance in the exudates, we selected a mixture of flavonoids and terpenoids for in vitro inhibition experiments against two soil-borne fungal pathogens, Fusarium oxysporum f. sp. cucumerinum that causes cucumber wilt and Rhizoctonia solani AG-8 that causes wheat root rot. The results indicated that the growth rate of both fungus cells was significantly reduced with the increasing concentration of the flavonoid and terpenoid mixture extracted from ginkgo and was completely inhibited at a concentration of 5 mg/mL. Further experiments revealed that this mixture of flavonoids and terpenoids had a destructive effect on the cellular structure of both fungi, thereby reducing cell viability and achieving an antifungal effect. These findings provide a foundation for further research into the use of ginkgo extracts in biological control.

12.
Microbiome ; 12(1): 160, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215347

RESUMO

BACKGROUND: Cabbage Fusarium wilt (CFW) is a devastating disease caused by the soil-borne fungus Fusarium oxysporum f. sp. conglutinans (Foc). One of the optimal measures for managing CFW is the employment of tolerant/resistant cabbage varieties. However, the interplay between plant genotypes and the pathogen Foc in shaping the rhizosphere microbial community, and the consequent influence of these microbial assemblages on biological resistance, remains inadequately understood. RESULTS: Based on amplicon metabarcoding data, we observed distinct differences in the fungal alpha diversity index (Shannon index) and beta diversity index (unweighted Bray-Curtis dissimilarity) within the rhizosphere of the YR (resistant to Foc) and ZG (susceptible to Foc) cabbage varieties, irrespective of Foc inoculation. Notably, the Shannon diversity shifts in the resistant YR variety were more pronounced following Foc inoculation. Disease-resistant plant variety demonstrate a higher propensity for harboring beneficial microorganisms, such as Pseudomonas, and exhibit superior capabilities in evading harmful microorganisms, in contrast to their disease-susceptible counterparts. Furthermore, the network analysis was performed on rhizosphere-associated microorganisms, including both bacteria and fungi. The networks of association recovered from YR exhibited greater complexity, robustness, and density, regardless of Foc inoculation. Following Foc infection in the YR rhizosphere, there was a notable increase in the dominant bacterium NA13, which is also a hub taxon in the microbial network. Reintroducing NA13 into the soil significantly improved disease resistance in the susceptible ZG variety, by directly inhibiting Foc and triggering defense mechanisms in the roots. CONCLUSIONS: The rhizosphere microbial communities of these two cabbage varieties are markedly distinct, with the introduction of the pathogen eliciting significant alterations in their microbial networks which is correlated with susceptibility or resistance to soil-borne pathogens. Furthermore, we identified a rhizobacteria species that significantly boosts disease resistance in susceptible cabbages. Our results indicated that the induction of resistance genes leading to varied responses in microbial communities to pathogens may partly explain the differing susceptibilities of the cabbage varieties tested to CFW. Video Abstract.


Assuntos
Brassica , Resistência à Doença , Fusarium , Microbiota , Doenças das Plantas , Rizosfera , Microbiologia do Solo , Brassica/microbiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Fusarium/genética , Microbiota/genética , Bactérias/classificação , Bactérias/genética , Raízes de Plantas/microbiologia , Fungos/genética , Fungos/classificação
13.
Front Plant Sci ; 15: 1415209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104842

RESUMO

Introduction: Fusarium oxysporum is a significant soil-borne fungal pathogen that affects over 100 plant species, including crucial crops like tomatoes, bananas, cotton, cucumbers, and watermelons, leading to wilting, yellowing, growth inhibition, and ultimately plant death. The root rot disease of A. macrocephala, caused by F. oxysporum, is one of the most serious diseases in continuous cropping, which seriously affects its sustainable development. Methods: In this study, we explored the interaction between A. macrocephala and F. oxysporum through integrated small RNA (sRNA) and degradome sequencing to uncover the microRNA (miRNA)-mediated defense mechanisms. Results: We identified colonization of F. oxysporum in A. macrocephala roots on day 6. Nine sRNA samples were sequenced to examine the dynamic changes in miRNA expression in A. macrocephala infected by F. oxysporum at 0, 6, and 12 days after inoculation. Furthermore, we using degradome sequencing and quantitative real-time PCR (qRT-PCR), validated four miRNA/target regulatory units involved in A. macrocephala-F. oxysporum interactions. Discussion: This study provides new insights into the molecular mechanisms underlying A. macrocephala's early defense against F. oxysporum infection, suggesting directions for enhancing resistance against this pathogen.

14.
Mol Plant Pathol ; 25(8): e13502, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39118198

RESUMO

Banana Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), is a major disease of banana plants worldwide. Effector proteins play critical roles in banana-Foc TR4 interaction. Our previous studies highlighted a ribonuclease protein belonging to the T2 family (named as FocRnt2) in the Foc TR4 secretome, which was predicted to be an effector. However, its biological function in Foc TR4 infection is still unclear. Herein, we observed significant expression of FocRnt2 during the early stage of fungal infection in planta. A yeast signal sequence trap assay showed that FocRnt2 contained a functional signal peptide for secretion. FocRnt2 possessed ribonuclease activity that could degrade the banana total RNA in vitro. Subcellular localization showed that FocRnt2 was localized in the nucleus and cytoplasm of Nicotiana benthamiana leaves. Transient expression of FocRnt2 suppressed the expression of salicylic acid- and jasmonic acid-signalling marker genes, reactive oxygen species accumulation, and BAX-mediated cell death in N. benthamiana. FocRnt2 deletion limited fungal penetration, reduced fusaric acid biosynthesis in Foc TR4, and attenuated fungal virulence against banana plants, but had little effect on Foc TR4 growth and sensitivity to various stresses. Furthermore, FocRnt2 deletion mutants induced higher expression of the defence-related genes in banana plants. These results suggest that FocRnt2 plays an important role in full virulence of Foc TR4, further improving our understanding of effector-mediated Foc TR4 pathogenesis.


Assuntos
Fusarium , Musa , Nicotiana , Doenças das Plantas , Fusarium/patogenicidade , Virulência , Doenças das Plantas/microbiologia , Musa/microbiologia , Nicotiana/microbiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ribonucleases/metabolismo , Ribonucleases/genética , Espécies Reativas de Oxigênio/metabolismo , Endorribonucleases
15.
Sci Rep ; 14(1): 20242, 2024 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215137

RESUMO

Fusarium oxysporum (Schl.) f.sp. melonis, which causes muskmelon wilt disease, is a destructive filamentous fungal pathogen, attracting more attention to the search for effective fungicides against this pathogen. In particular, Silver nanoparticles (AgNPs) have strong antimicrobial properties and they are not easy to develop drug resistance, which provides new ideas for the prevention and control of muskmelon Fusarium wilt (MFW). This paper studied the effects of AgNPs on the growth and development of muskmelon, the control efficacy on Fusarium wilt of muskmelon and the antifungal mechanism of AgNPs to F. oxysporum. The results showed that AgNPs could inhibit the growth of F. oxysporum on the PDA and in the PDB medium at 100-200 mg/L and the low concentration of 25 mg/L AgNPs could promote the seed germination and growth of muskmelon seedlings and reduce the incidence of muskmelon Fusarium wilt. Further studies on the antifungal mechanism showed that AgNPs could impair the development, damage cell structure, and interrupt cellular metabolism pathways of this fungus. TEM observation revealed that AgNPs treatment led to damage to the cell wall and membrane and accumulation of vacuoles and vessels, causing the leakage of intracellular contents. AgNPs treatment significantly hampered the growth of mycelia in the PDB medium, even causing a decrease in biomass. Biochemical properties showed that AgNPs treatment stimulated the generation of reactive oxygen species (ROS) in 6 h, subsequently producing malondialdehyde (MDA) and increasing protective enzyme activity. After 6 h, the protective enzyme activity decreased. These results indicated that AgNPs destroy the cell structure and affect the metabolisms, eventually leading to the death of fungus.


Assuntos
Antifúngicos , Fusarium , Nanopartículas Metálicas , Doenças das Plantas , Prata , Trichoderma , Fusarium/efeitos dos fármacos , Nanopartículas Metálicas/química , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Prata/farmacologia , Prata/química , Trichoderma/fisiologia , Trichoderma/metabolismo , Antifúngicos/farmacologia , Cucumis melo/microbiologia
16.
Int J Biol Macromol ; 279(Pt 2): 135219, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39216573

RESUMO

Late blight, caused by Phytophthora infestans (P. infestans), is among the most devastating diseases affecting tomato and other Solanaceae species. Lipid transfer proteins (LTPs) represent a class of small, basic proteins that play a crucial role in combating biotic stresses. Previous studies have shown that SlLTPg1 most strongly responds after P. infestans infestation among the LTPs family in tomato. However, the function of SlLTPg1 in disease resistance remains unclear. Here, we constructed transient overexpression and VIGS-silenced plants of SlLTPg1. Our results revealed that SlLTPg1 plays a regulatory role in enhancing tomato resistance against P. infestans. This enhancement was attributed to the upregulation of defense-related genes and reactive oxygen species (ROS) scavenging genes, as well as increased enzymatic antioxidant activities. Importantly, we found that the SlLTPg1 protein significantly inhibited the growth of Fusarium oxysporum (F. oxysporum) by observing the zone of inhibition. Interestingly, we found smaller lesion diameters and upregulated expression levels of PR genes in transient overexpression SlLTPg1 of tobacco. Therefore, we further constructed transgenic tobacco lines of SlLTPg1, presenting evidence that overexpression of SlLTPg1 could positively regulate the resistance of tobacco to F. oxysporum. These findings revealed the role of SlLTPg1 in tomato resistance to P. infestans and tobacco resistance to F. oxysporum. Moreover, we propose SlLTPg1 as a potential candidate gene for augmenting broad-spectrum plant resistance against pathogens.

17.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-39073909

RESUMO

The plant microbiome and plant-associated bacteria are known to support plant health, but there are limited studies on seed and seedling microbiome to reveal how seed-associated bacteria may confer disease resistance. In this study, the application of antibiotics on soybean seedlings indicated that seed-associated bacteria were involved in the seed rot resistance against a soil-borne pathogen Calonectria ilicicola, but this resistance cannot be carried to withstand root rot. Using PacBio 16S rRNA gene full-length sequencing and microbiome analyses, 14 amplicon sequence variants (ASVs) including 2 ASVs matching to Bacillus altitudinis were found to be more abundant in the four most resistant varieties versus the four most susceptible varieties. Culture-dependent isolation obtained two B. altitudinis isolates that both exhibit antagonistic capability against six fungal pathogens. Application of B. altitudinis on the most resistant and susceptible soybean varieties revealed different colonization compatibility, and the seed rot resistance was restored in the five varieties showing higher bacterial colonization. Moreover, quantitative PCR confirmed the persistence of B. altitudinis on apical shoots till 21 days post-inoculation (dpi), but 9 dpi on roots of the resistant variety TN5. As for the susceptible variety HC, the persistence of B. altitudinis was only detected before 6 dpi on both shoots and roots. The short-term colonization of B. altitudinis on roots may explain the absence of root rot resistance. Collectively, this study advances the insight of B. altitudinis conferring soybean seed rot resistance and highlights the importance of considering bacterial compatibility with plant varieties and colonization persistence on plant tissues.


Assuntos
Bacillus , Resistência à Doença , Glycine max , Doenças das Plantas , Raízes de Plantas , RNA Ribossômico 16S , Sementes , Glycine max/microbiologia , Bacillus/genética , Bacillus/fisiologia , Bacillus/isolamento & purificação , Doenças das Plantas/microbiologia , Sementes/microbiologia , Resistência à Doença/genética , RNA Ribossômico 16S/genética , Raízes de Plantas/microbiologia , Microbiota , Plântula/microbiologia , Microbiologia do Solo
18.
Microbiol Res ; 286: 127819, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986181

RESUMO

Beauveria bassiana (Bb) is a widespread entomopathogenic fungus widely used in agriculture for crop protection. Other than pest control, fungi belonging to the B. bassiana complex represent an important microbial resource in agroecosystems, considering their multiple interactions with other microorganisms as antagonists of phytopathogens, or with plants as endophytic colonizers and growth promoters. Here, we characterised field collected or commercial isolates of B. bassiana relative to the environmental factors that affect their growth. We further compared the metabolome, the entomopathogenic potential and biocontrol activity of the tested isolates respectively on the insect pest Spodoptera littoralis or against the fungal plant pathogen Fusarium oxysporum. Our analysis revealed that the B. bassiana complex is characterised by a high level of inter-isolate heterogeneity in terms of nutritional requirements, establishment of intra- or inter-kingdom interactions, and the nature of metabolites produced. Interestingly, certain B. bassiana isolates demonstrated a preference for low nutrient plant-derived media, which hints at their adaptation towards an endophytic lifestyle over a saprophytic one. In addition, there was a noticeable variation among different B. bassiana isolates in their capacity to kill S. littoralis larvae in a contact infection test, but not in an intrahaemocoelic injection experiment, suggesting a unique level of adaptability specific to the host. On the other hand, most B. bassiana isolates exhibited similar biocontrol efficacy against the soil-dwelling ascomycete F. oxysporum f. sp. lycopersici, a pathogen responsible for vascular wilt disease in tomato plants, effectively averting wilting. Overall, we show that the effectiveness of B. bassiana isolates can greatly vary, emphasising the importance of isolate selection and nutritional adaptability consideration for their use in sustainable agriculture.


Assuntos
Beauveria , Fusarium , Larva , Controle Biológico de Vetores , Spodoptera , Beauveria/fisiologia , Beauveria/isolamento & purificação , Beauveria/metabolismo , Animais , Spodoptera/microbiologia , Larva/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Agricultura , Metaboloma , Endófitos/isolamento & purificação , Endófitos/metabolismo , Endófitos/fisiologia , Endófitos/classificação
19.
BMC Ecol Evol ; 24(1): 101, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39039497

RESUMO

Epidemic of Cashew Fusarium wilt disease (CFWD) has been a continuous focal challenge in the cashew farming, in Tanzania. Limited to edaphic conditions as a major factor in its epidemic, the current study aimed to assess the habitat-disease relationship. Purposive surveys involving assessment of disease prevalence and habitat compositions were conducted across four landscapes of southeastern zone from 2019 to 2023. Findings revealed a widespread of CFWD across diversified landscapes possessing varying habitat characteristics, mainly cultivated land with mature cashew, brownish sand loamy soils, grassland or shrub vegetation, seasonal river streamlines and natural water wells. The highest disease incidence and severity were noted at Nachingwea/Masasi plain (99.28:88.34%) followed by Liwale inland plain (98.64:89.3%), Coastal zone (72.72:59.83%) and Tunduru dissected plain (62.13:54.54%). The habitat characteristics were strongly similar within the landscape (0.86-Jaccard index) except between villages of the coastal zone (0.71-Jaccard index). Across landscapes, Nachingwea/Masasi plains and the Coastal zone were strongly similar to Tunduru dissected plain (0.63-1.0-Jaccard index), but strongly dissimilar with the Liwale inland plain (0.67-0.70- Jaccard distance). Furthermore, the presence of greater than 0.5 suitability indices across landscapes were revealed, with Liwale inland plain having strongest suitability index of 0.743 followed by Coastal zone (0.681), Tunduru dissected plain (0.617) and Nachingwea/Masasi plain. Significantly, the habitats had an increase of 0.1 suitability index, and positively correlated with disease prevalence by triggering disease incidence of 13.9% and severity of 31.4%. The study for the first time revealed the presence of an association between disease prevalence and landscape habitat characteristics of southeastern, Tanzania; paving the way to inclusive thinking of habitat as one of the drivers in the prevalence of fusarium wilt disease of cashews. Further research on the genetic coevolution of Fusarium oxysporum across landscapes to strengthen disease risk management in the cashew industry is recommended.


Assuntos
Anacardium , Ecossistema , Fusarium , Doenças das Plantas , Tanzânia/epidemiologia , Anacardium/microbiologia , Fusarium/isolamento & purificação , Doenças das Plantas/microbiologia , Doenças das Plantas/estatística & dados numéricos , Produtos Agrícolas/microbiologia , Prevalência
20.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2882-2888, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39041147

RESUMO

This study aims to evaluate the in vivo function of Fusarium oxysporum in Glycyrrhiza uralensis by salt tolerance,indoleacetic acid(IAA) production capacity, phosphate-dissolving capacity, and iron carrier production capacity. The stable genetic transformation system of the F. oxysporum was established by Agrobacterium tumefaciens-mediated genetic transformation( ATMT)technology, and the stability and staining efficiency of transformants were detected by the cloning of the marker gene green fluorescent protein(GFP) and the efficiency of ß-glucuronidase staining(GUS). Efficient and stable transformants were selected for restaining G. uralensis and evaluating its influence on the growth of the G. uralensis seedlings. The results show that F. oxysporum has good salt tolerance and could still grow on potato glucose agar(PDA) medium containing 7% sodium chloride, but the growth rate slows down with the increase in sodium chloride content in PDA medium. F. oxysporum has the function of producing indoleacetic acid, and the concentration of IAA in its fermentation broth is about 3. 32 mg · m L~(-1). In this study, the genetic transformation system of F. oxysporum is successfully constructed, and the ATMT system is efficient and stable. One transformant with both high staining efficiency and genetic stability is selected, and the restaining rate of the transformant in G. uralensis is 76. 92%, which could significantly improve the main root length of one-month-old G. uralensis seedlings and promote the growth and development of G. uralensis seedlings. The results of this study can lay the foundation for the development of biological bacterial fertilizer and the growth regulation of high-quality G. uralensis.


Assuntos
Fusarium , Glycyrrhiza uralensis , Transformação Genética , Fusarium/genética , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Glycyrrhiza uralensis/genética , Glycyrrhiza uralensis/microbiologia , Glycyrrhiza uralensis/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Agrobacterium tumefaciens/genética , Tolerância ao Sal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA