Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; : e202400591, 2024 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-39487698

RESUMO

Novel 1,10-phenanthroline-2,9-bistriazoles derivatives have been synthesized by copper-catalyzed azide/alkyne cycloaddition reactions and assessed for their ability to bind and stabilize G-quadruplex (G4) structures. Ten novel compounds were evaluated using Förster resonance energy transfer (FRET) melting, circular dichroism (CD), and fluorescence spectroscopy on several G4 sequences. Biophysical characterization led to the identification of compounds 4a, 4b, and 5b as good G4 ligands of KRAS G4 sequences. The cell viability of all derivatives was also assessed, revealing weak effects. However, compound 2a exhibited cytotoxicity activity on A549 and H1299 cancer cells and low cytotoxicity towards non-malignant cells MRC-5 not connected with its G4-binding ability. Flow cytometry showed that 2a induced a cell viability decrease in S and G2/M phases for A549 and H1299; thus, more studies should be performed to explore the proteins involved in cell cycle regulation.

2.
Int J Biol Macromol ; 278(Pt 4): 134946, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39187110

RESUMO

Long non-coding RNAs (lncRNAs) have emerged as crucial regulators of cellular processes, with their dysregulation linked to various disease states. Among the structural motifs in lncRNAs, RNA G-quadruplexes (rG4s) have gained increasing attention due to their diverse roles in cellular function and disease pathogenesis. This review provides an updated and comprehensive overview of rG4s in lncRNAs, elucidating their formation, interaction with proteins, and distinctive roles in cellular processes. We discuss current methodologies for experimentally probing RNA G4s, including the use of specific small molecules, biomolecular ligands and fluorescent probes. The commonly found RNA G4-interacting protein domains are summarised along with potential strategies for disrupting lncRNA G4-protein interactions from a therapeutic perspective.


Assuntos
Quadruplex G , Ligação Proteica , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/química , Humanos , Animais , Proteínas/química , Proteínas/metabolismo , Proteínas/genética
3.
Chembiochem ; 25(12): e202400210, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38619969

RESUMO

G-quadruplex DNA structures (G4) are proven to interfere with most genetic and epigenetic processes. Small molecules binding these structures (G4 ligands) are invaluable tools to probe G4-biology and address G4-druggability in various diseases (cancer, viral infections). However, the large number of reported G4 ligands (>1000) could lead to confusion while selecting one for a given application. Herein we conducted a systematic affinity ranking of 11 popular G4 ligands vs 5 classical G4 sequences using FRET-melting, G4-FID assays and SPR. Interestingly SPR data globally align with the rankings obtained from the two semi-quantitative assays despite discrepancies due to limits and characteristics of each assay. In the whole, PhenDC3 emerges as the most potent binder irrespective of the G4 sequence. Immediately below PDS, PDC-360A, BRACO19, TMPyP4 and RHPS4 feature strong to medium binding again with poor G4 topology discrimination. More strikingly, the G4 drugs Quarfloxin, CX5461 and c-PDS exhibit weak affinity with all G4s studied. Finally, NMM and Cu-ttpy showed heterogeneous behaviors due, in part, to their physicochemical particularities poorly compatible with screening conditions. The remarkable properties of PhenDC3 led us to propose its use for benchmarking FRET-melting and G4-FID assays for rapid G4-affinity evaluation of newly developed ligands.


Assuntos
Quadruplex G , Ligantes , Humanos , Transferência Ressonante de Energia de Fluorescência , DNA/química , DNA/metabolismo , Ressonância de Plasmônio de Superfície , Sítios de Ligação , Estrutura Molecular
4.
Viruses ; 15(11)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-38005893

RESUMO

G-quadruplexes (G4s) are unique non-canonical four-stranded nucleic acid secondary structures formed by guanine-rich DNA or RNA sequences. Sequences with the potential to form quadruplex motifs (pG4s) are prevalent throughout the genomes of all organisms, spanning from prokaryotes to eukaryotes, and are enriched within regions of biological significance. In the past few years, the identification of pG4s within most of the Baltimore group viruses has attracted increasing attention due to their occurrence in regulatory regions of the genome and the subsequent implications for regulating critical stages of viral life cycles. In this context, the employment of specific G4 ligands has aided in comprehending the intricate G4-mediated regulatory mechanisms in the viral life cycle, showcasing the potential of targeting viral G4s as a novel antiviral strategy. This review offers a thorough update on the literature concerning G4s in viruses, including their identification and functional significance across most of the human-infecting viruses. Furthermore, it delves into potential therapeutic avenues targeting G4s, encompassing various G4-binding ligands, G4-interacting proteins, and oligonucleotide-based strategies. Finally, the article highlights both progress and challenges in the field, providing valuable insights into leveraging this unusual nucleic acid structure for therapeutic purposes.


Assuntos
Quadruplex G , Vírus , Humanos , DNA/química , Sequências Reguladoras de Ácido Nucleico , Genoma Viral , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química
5.
Expert Opin Ther Pat ; 33(11): 745-773, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37855085

RESUMO

INTRODUCTION: Guanine-rich DNA sequences can fold into four-stranded noncanonical secondary structures called G-quadruplexes (G4s) which are widely distributed in functional regions of the human genome, such as telomeres and gene promoter regions. Compelling evidence suggests their involvement in key genome functions such as gene expression and genome stability. Notably, the abundance of G4-forming sequences near transcription start sites suggests their potential involvement in regulating oncogenes. AREAS COVERED: This review provides an overview of current knowledge on G4s in human oncogene promoters. The most representative G4-binding ligands have also been documented. The objective of this work is to present a comprehensive overview of the most promising targets for the development of novel and highly specific anticancer drugs capable of selectively impacting the expression of individual or a limited number of genes. EXPERT OPINION: Modulation of G4 formation by specific ligands has been proposed as a powerful new tool to treat cancer through the control of oncogene expression. Actually, most of G4-binding small molecules seem to simultaneously target a range of gene promoter G4s, potentially influencing several critical driver genes in cancer, thus producing significant therapeutic benefits.


Assuntos
Antineoplásicos , Quadruplex G , Neoplasias , Humanos , DNA/química , DNA/genética , DNA/metabolismo , Patentes como Assunto , Regiões Promotoras Genéticas , Antineoplásicos/farmacologia , Ligantes , Neoplasias/tratamento farmacológico , Neoplasias/genética
6.
Heliyon ; 9(3): e13959, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36879969

RESUMO

G-quadruplex, a structurally unique structure in nucleic acids present all throughout the human genome, has sparked great attention in therapeutic investigations. Targeting G-quadruplex structure is a new strategy for the drug development. Flavonoids are found in almost all dietary plant-based beverages and food products; therefore, they are ingested in significant proportions through the human diet. Although synthetically developed drug molecules are used vigorously but they have various adverse effects. While on the other hand, nature supplies chemically unique scaffolds in the form of distinct dietary flavonoids that are easily accessible, less poisonous, and have higher bioavailability. Because of their great pharmacological effectiveness and minimal cytotoxicity, such low molecular weight compounds are feasible alternatives to synthetic therapeutic medicines. Therefore, from a drug-development point of view, investigation on screening the binding capabilities of quadruplex-interactive small natural compounds like dietary flavonoids are expected to be highly effective, with a particular emphasis on the selectivity towards polymorphic G-quadruplex structures. In this respect, quadruplexes have scintillated research into their potential interaction with these dietary flavonoids. The purpose of this review is to offer an up-to-date close-up look at the research on their interaction with structurally varied dietary flavonoids with the goal of providing newer perspectives to construct novel therapeutic agents for next-generation disease managements.

7.
Drug Discov Today ; 28(12): 103808, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38414431

RESUMO

Lung cancer (LC) remains a leading cause of mortality worldwide, and new therapeutic strategies are urgently needed. One such approach revolves around the utilization of four-stranded nucleic acid secondary structures, known as G-quadruplexes (G4), which are formed by G-rich sequences. Ligands that bind selectively to G4 structures present a promising strategy for regulating crucial cellular processes involved in the progression of LC, rendering them potent agents for lung cancer treatment. In this review, we offer a summary of recent advancements in the development of G4 ligands capable of targeting specific genes associated with the development and progression of lung cancer.


Assuntos
Quadruplex G , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Ligantes
8.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35409143

RESUMO

Telomeres are crucial structures that preserve genome stability. Their progressive erosion over numerous DNA duplications determines the senescence of cells and organisms. As telomere length homeostasis is critical for cancer development, nowadays, telomere maintenance mechanisms are established targets in cancer treatment. Besides telomere elongation, telomere dysfunction impinges on intracellular signaling pathways, in particular DNA damage signaling and repair, affecting cancer cell survival and proliferation. This review summarizes and discusses recent findings in anticancer drug development targeting different "telosome" components.


Assuntos
Neoplasias , Telomerase , Senescência Celular , DNA/metabolismo , Dano ao DNA , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Homeostase do Telômero
9.
EMBO Mol Med ; 14(3): e14501, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35107878

RESUMO

The cells with compromised BRCA1 or BRCA2 (BRCA1/2) function accumulate stalled replication forks, which leads to replication-associated DNA damage and genomic instability, a signature of BRCA1/2-mutated tumours. Targeted therapies against BRCA1/2-mutated tumours exploit this vulnerability by introducing additional DNA lesions. Because homologous recombination (HR) repair is abrogated in the absence of BRCA1 or BRCA2, these lesions are specifically lethal to tumour cells, but not to the healthy tissue. Ligands that bind and stabilise G-quadruplexes (G4s) have recently emerged as a class of compounds that selectively eliminate the cells and tumours lacking BRCA1 or BRCA2. Pyridostatin is a small molecule that binds G4s and is specifically toxic to BRCA1/2-deficient cells in vitro. However, its in vivo potential has not yet been evaluated. Here, we demonstrate that pyridostatin exhibits a high specific activity against BRCA1/2-deficient tumours, including patient-derived xenograft tumours that have acquired PARP inhibitor (PARPi) resistance. Mechanistically, we demonstrate that pyridostatin disrupts replication leading to DNA double-stranded breaks (DSBs) that can be repaired in the absence of BRCA1/2 by canonical non-homologous end joining (C-NHEJ). Consistent with this, chemical inhibitors of DNA-PKcs, a core component of C-NHEJ kinase activity, act synergistically with pyridostatin in eliminating BRCA1/2-deficient cells and tumours. Furthermore, we demonstrate that pyridostatin triggers cGAS/STING-dependent innate immune responses when BRCA1 or BRCA2 is abrogated. Paclitaxel, a drug routinely used in cancer chemotherapy, potentiates the in vivo toxicity of pyridostatin. Overall, our results demonstrate that pyridostatin is a compound suitable for further therapeutic development, alone or in combination with paclitaxel and DNA-PKcs inhibitors, for the benefit of cancer patients carrying BRCA1/2 mutations.


Assuntos
Quadruplex G , Neoplasias , Aminoquinolinas/farmacologia , Aminoquinolinas/uso terapêutico , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2 , Reparo do DNA , Humanos , Ligantes , Neoplasias/tratamento farmacológico , Ácidos Picolínicos
10.
Eur J Pharm Sci ; 169: 106093, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34922315

RESUMO

One of the most significant challenges in capturing and detecting biomarkers is the choice of an appropriate biomolecular receptor. Recently, RNA G-quadruplexes emerged as plausible receptors due to their ability to recognize with high-affinity proteins. Herein, we have unveiled and characterized the capability of the precursor microRNA 149 to form a G-quadruplex structure and determined the role that some ligands may have in its folding and binding capacity to nucleolin. The G-quadruplex formation was induced by K+ ions and stabilized by ligands, as demonstrated by nuclear magnetic resonance and circular dichroism experiments. Surface plasmon resonance measurements showed a binding affinity of precursor microRNA 149 towards ligands in the micromolar range (10-5-10-6 M) and a strong binding affinity to nucleolin RNA-binding domains 1 and 2 (8.38 × 10-10 M). Even in the presence of the ligand PhenDC3, the binding remains almost identical and in the same order of magnitude (4.46 × 10-10 M). The molecular interactions of the RNA G-quadruplex motif found in precursor miRNA 149 (5'-GGGAGGGAGGGACGGG- 3') and nucleolin RNA-binding domains 1 and 2 were explored by means of molecular docking and molecular dynamics studies. The results showed that RNA G-quadruplex binds to a cavity between domains 1 and 2 of the protein. Then, complex formation was also evaluated through polyacrylamide gel electrophoresis. The results suggest that precursor microRNA 149/ligands and precursor microRNA 149/nucleolin RNA-binding domains 1 and 2 form stable molecular complexes. The in vitro co-localization of precursor microRNA 149 and nucleolin in PC3 cells was demonstrated using confocal microscopy. Finally, a rapid and straightforward microfluidic strategy was employed to check the ability of precursor microRNA 149 to capture nucleolin RNA-binding domains 1 and 2. The results revealed that precursor microRNA 149 can capture nucleolin RNA-binding domains 1 and 2 labeled with Fluorescein 5-isothiocyanate in a concentration-dependent manner, but PhenDC3 complexation seems to decrease the ability of precursor microRNA 149 to capture the protein. Overall, our results proved the formation of the G-quadruplex structure in the precursor microRNA 149 and the ability to recognize and detect nucleolin. This proof-of-concept study could open up a new framework for developing new strategies to design improved molecular receptors for capture and detection of nucleolin in complex biological samples.


Assuntos
Quadruplex G , MicroRNAs , Fosfoproteínas , Proteínas de Ligação a RNA , Linhagem Celular , Humanos , MicroRNAs/genética , Simulação de Acoplamento Molecular , Fosfoproteínas/genética , Proteínas de Ligação a RNA/genética , Nucleolina
11.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34681641

RESUMO

G-quadruplexes (G4s) are noncanonical nucleic acid structures involved in the regulation of key cellular processes, such as transcription and replication. Since their discovery, G4s have been mainly investigated for their role in cancer and as targets in anticancer therapy. More recently, exploration of the presence and role of G4s in viral genomes has led to the discovery of G4-regulated key viral pathways. In this context, employment of selective G4 ligands has helped to understand the complexity of G4-mediated mechanisms in the viral life cycle, and highlighted the possibility to target viral G4s as an emerging antiviral approach. Research in this field is growing at a fast pace, providing increasing evidence of the antiviral activity of old and new G4 ligands. This review aims to provide a punctual update on the literature on G4 ligands exploited in virology. Different classes of G4 binders are described, with emphasis on possible antiviral applications in emerging diseases, such as the current COVID-19 pandemic. Strengths and weaknesses of G4 targeting in viruses are discussed.


Assuntos
Antivirais/química , Quadruplex G , Antivirais/uso terapêutico , COVID-19/virologia , DNA Viral/química , DNA Viral/metabolismo , Humanos , Ligantes , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , RNA Viral/química , RNA Viral/metabolismo , SARS-CoV-2/isolamento & purificação , Viroses/tratamento farmacológico , Viroses/patologia , Tratamento Farmacológico da COVID-19
12.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34358095

RESUMO

G-quadruplex (G4)-interactive small molecules have a wide range of potential applications, not only as drugs, but also as sensors of quadruplex structures. The purpose of this work is the synthesis of analogues of the bis-methylquinolinium-pyridine-2,6-dicarboxamide G4 ligand 360A, to identify relevant structure-activity relationships to apply to the design of other G4-interactive small molecules bearing bis-quinoline or bis-isoquinoline moieties. Thermal denaturation experiments revealed that non-methylated derivatives with a relative 1,4 position between the amide linker and the nitrogen of the quinoline ring are moderate G4 stabilizers, with a preference for the hybrid h-Telo G4, a 21-nt sequence present in human telomeres. Insertion of a positive charge upon methylation of quinoline/isoquinoline nitrogen increases compounds' ability to selectively stabilize G4s compared to duplex DNA, with a preference for parallel structures. Among these, compounds having a relative 1,3-position between the charged methylquinolinium/isoquinolinium nitrogen and the amide linker are the best G4 stabilizers. More interestingly, these ligands showed different capacities to selectively block DNA polymerization in a PCR-stop assay and to induce G4 conformation switches of hybrid h-Telo G4. Molecular dynamic simulations with the parallel G4 formed by a 21-nt sequence present in k-RAS gene promoter, showed that the relative spatial orientation of the two methylated quinoline/isoquinoline rings determines the ligands mode and strength of binding to G4s.

13.
Viruses ; 13(2)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525505

RESUMO

The herpes simplex virus 1 (HSV-1) genome is extremely rich in guanine tracts that fold into G-quadruplexes (G4s), nucleic acid secondary structures implicated in key biological functions. Viral G4s were visualized in HSV-1 infected cells, with massive virus cycle-dependent G4-formation peaking during viral DNA replication. Small molecules that specifically interact with G4s have been shown to inhibit HSV-1 DNA replication. We here investigated the antiviral activity of TMPyP4, a porphyrin known to interact with G4s. The analogue TMPyP2, with lower G4 affinity, was used as control. We showed by biophysical analysis that TMPyP4 interacts with HSV-1 G4s, and inhibits polymerase progression in vitro; in infected cells, it displayed good antiviral activity which, however, was independent of inhibition of virus DNA replication or entry. At low TMPyP4 concentration, the virus released by the cells was almost null, while inside the cell virus amounts were at control levels. TEM analysis showed that virus particles were trapped inside cytoplasmatic vesicles, which could not be ascribed to autophagy, as proven by RT-qPCR, western blot, and immunofluorescence analysis. Our data indicate a unique mechanism of action of TMPyP4 against HSV-1, and suggest the unprecedented involvement of currently unknown G4s in viral or antiviral cellular defense pathways.


Assuntos
Antivirais/farmacologia , Quadruplex G/efeitos dos fármacos , Herpesvirus Humano 1/efeitos dos fármacos , Porfirinas/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/química , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Vesículas Citoplasmáticas/efeitos dos fármacos , Vesículas Citoplasmáticas/metabolismo , DNA Viral/química , DNA Viral/efeitos dos fármacos , Herpesvirus Humano 1/fisiologia , Ligantes , Estrutura Molecular , Porfirinas/química , Células Vero , Vírion/efeitos dos fármacos , Vírion/metabolismo
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 249: 119318, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33360205

RESUMO

Fifteen new 1,10-phenanthrolines disubstituted at positions 2 and 9 via amide bonds with different heterocycles have been designed and synthesized as G-quadruplex DNA stabilizers. Ten compounds were evaluated for the in vitro anticancer activity against 60 human tumor cell lines panel, four of them showing a very good inhibitory activity on several cell lines. To assess the ability of the most active compounds to interact with G-quadruplex DNA (G4-DNA), circular dichroism experiments were performed. The potency of the compounds to stabilize the G4-DNA has been shown from the thermal denaturation experiments. The mechanism of compounds binding to DNA and to G4-DNA was theoretically investigated by molecular docking studies. The experimental results demonstrated excellent capacity of the two compounds bearing two pyridin-3-yl residues (methylated and non-methylated) to act as selective G-quadruplex binders with promising anticancer activity.


Assuntos
Quadruplex G , Dicroísmo Circular , DNA , Humanos , Ligantes , Simulação de Acoplamento Molecular , Fenantrolinas/farmacologia , Telômero
15.
Cancer Lett ; 469: 468-480, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31734352

RESUMO

Although tyrosine kinase inhibitors (TKIs) revolutionized the management of chronic myeloid leukemia (CML), resistance against TKIs and leukemia stem cell (LSC) persistence remain a clinical concern. Therefore, new therapeutic strategies combining conventional and novel therapies are urgently needed. Since telomerase is involved in oncogenesis and tumor progression but is silent in most human normal somatic cells, it may be an interesting target for CML therapy by selectively targeting cancer cells while minimizing effects on normal cells. Here, we report that hTERT expression is associated with CML disease progression. We also provide evidence that hTERT-deficient K-562 cells do not display telomere shortening and that telomere length is maintained through the ALT pathway. Furthermore, we show that hTERT depletion exerts a growth-inhibitory effect in K-562 cells and potentiates imatinib through alteration of cell cycle progression leading to a senescence-like phenotype. Finally, we demonstrate that hTERT depletion potentiates the imatinib-induced reduction of the ALDH+-LSC population. Altogether, our results suggest that the combination of telomerase and TKI should be considered as an attractive strategy to treat CML patients to eradicate cancer cells and prevent relapse by targeting LSCs.


Assuntos
Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Telomerase/genética , Família Aldeído Desidrogenase 1/genética , Apoptose/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Linhagem da Célula/genética , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Proteínas de Fusão bcr-abl/genética , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Células-Tronco Neoplásicas/patologia , Inibidores de Proteínas Quinases/farmacologia
16.
Methods Mol Biol ; 2035: 383-395, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31444764

RESUMO

G-quadruplexes (G4s) are noncanonical nucleic acids structures involved in key regulatory and pathological roles in eukaryotes, prokaryotes, and viruses: the development of specific antibodies and fluorescent probes represent an invaluable tool to understand their biological relevance. We here present three protocols for the visualization of G4s in cells, both uninfected and HSV-1 infected, using a specific antibody and a fluorescent G4 ligand, and the effect of the fluorescent ligand on a G4 binding protein, nucleolin, upon binding of the molecule to the nucleic acids structure.


Assuntos
Quadruplex G , Animais , Corantes Fluorescentes/química , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/patogenicidade , Humanos , Microscopia Confocal
17.
Elife ; 82019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31287417

RESUMO

G-quadruplexes (G4) are alternative nucleic acid structures involved in transcription, translation and replication. Aberrant G4 formation and stabilisation is linked to genome instability and cancer. G4 ligand treatment disrupts key biological processes leading to cell death. To discover genes and pathways involved with G4s and gain mechanistic insights into G4 biology, we present the first unbiased genome-wide study to systematically identify human genes that promote cell death when silenced by shRNA in the presence of G4-stabilising small molecules. Many novel genetic vulnerabilities were revealed opening up new therapeutic possibilities in cancer, which we exemplified by an orthogonal pharmacological inhibition approach that phenocopies gene silencing. We find that targeting the WEE1 cell cycle kinase or USP1 deubiquitinase in combination with G4 ligand treatment enhances cell killing. We also identify new genes and pathways regulating or interacting with G4s and demonstrate that the DDX42 DEAD-box helicase is a newly discovered G4-binding protein.


Assuntos
Quadruplex G , Testes Genéticos , Apoptose , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Genes Neoplásicos , Genoma Humano , Humanos , Ligantes , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/genética
18.
Eur J Med Chem ; 178: 13-29, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31173968

RESUMO

The oncogenic Epstein-Barr virus (EBV) evades the immune system through limiting the expression of its highly antigenic and essential genome maintenance protein, EBNA1, to the minimal level to ensure viral genome replication, thereby also minimizing the production of EBNA1-derived antigenic peptides. This regulation is based on inhibition of translation of the virally-encoded EBNA1 mRNA, and involves the interaction of host protein nucleolin (NCL) with G-quadruplex (G4) structures that form in the glycine-alanine repeat (GAr)-encoding sequence of the EBNA1 mRNA. Ligands that bind to these G4-RNA can prevent their interaction with NCL, leading to disinhibition of EBNA1 expression and antigen presentation, thereby interfering with the immune evasion of EBNA1 and therefore of EBV (M.J. Lista et al., Nature Commun., 2017, 8, 16043). In this work, we synthesized and studied a series of 20 cationic bis(acylhydrazone) derivatives designed as G4 ligands. The in vitro evaluation showed that most derivatives based on central pyridine (Py), naphthyridine (Naph) or phenanthroline (Phen) units were efficient G4 binders, in contrast to their pyrimidine (Pym) counterparts, which were poor G4 binders due to a significantly different molecular geometry. The influence of lateral heterocyclic units (N-substituted pyridinium or quinolinium residues) on G4-binding properties was also investigated. Two novel compounds, namely PyDH2 and PhenDH2, used at a 5 µM concentration, were able to significantly enhance EBNA1 expression in H1299 cells in a GAr-dependent manner, while being significantly less toxic than the prototype drug PhenDC3 (GI50 > 50 µM). Antigen presentation, RNA pull-down and proximity ligation assays confirmed that the effect of both drugs was related to the disruption of NCL-EBNA1 mRNA interaction and the subsequent promotion of GAr-restricted antigen presentation. Our work provides a novel modular scaffold for the development of G-quadruplex-targeting drugs acting through interference with G4-protein interaction.


Assuntos
Hidrazonas/farmacologia , Evasão da Resposta Imune/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Fosfoproteínas/metabolismo , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular Tumoral , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Quadruplex G , Herpesvirus Humano 4/genética , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Fatores Imunológicos/síntese química , Fatores Imunológicos/química , Ligantes , Camundongos , RNA Mensageiro/genética , Nucleolina
19.
Molecules ; 24(5)2019 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-30857275

RESUMO

Microwave formylation of carbazole derivatives was investigated and 3-monoaldehydes were obtained in high yield. A potential DNA-binding ligand, 3-[(3-ethyl)-2-vinylbenzothiazolium]-9-N-ethyl carbazole iodide, was synthesized and characterized including spectral properties (UV-Vis absorption and fluorescence spectra). The binding selectivity and affinity of three carbazole ligands for double-stranded and G-quadruplex DNA structures were studied using a competitive dialysis method in sodium- and potassium-containing buffer solutions.


Assuntos
Aldeídos/química , Aldeídos/síntese química , DNA/química , Micro-Ondas , Quadruplex G
20.
Molecules ; 24(3)2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30736276

RESUMO

Telomeres are nucleoprotein structures that cap and protect the natural ends of chromosomes. Telomeric DNA G-rich strands can form G-quadruplex (or G4) structures. Ligands that bind to and stabilize G4 structures can lead to telomere dysfunctions by displacing shelterin proteins and/or by interfering with the replication of telomeres. We previously reported that two pyridine dicarboxamide G4 ligands, 360A and its dimeric analogue (360A)2A, were able to displace in vitro hRPA (a single-stranded DNA-binding protein of the replication machinery) from telomeric DNA by stabilizing the G4 structures. In this paper, we perform for the first time single telomere length analysis (STELA) to investigate the effect of G4 ligands on telomere length and stability. We used the unique ability of STELA to reveal the full spectrum of telomere lengths at a chromosome terminus in cancer cells treated with 360A and (360A)2A. Upon treatment with these ligands, we readily detected an increase of ultrashort telomeres, whose lengths are significantly shorter than the mean telomere length, and that could not have been detected by other methods.


Assuntos
Quadruplex G , Ligantes , Homeostase do Telômero , Telômero/química , Telômero/genética , Linhagem Celular Tumoral , Proliferação de Células , Instabilidade Genômica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA