Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1462924, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39345983

RESUMO

GATA transcription factors are an important class of transcription factors in plants, known for their roles in tissue development, signal transduction, and responses to biotic and abiotic stresses. To date, there have been no reports on the GATA gene family in melon (Cucumis melo). In this study, 24 CmGATA genes were identified from the melon genome. These family members exhibit significant differences in protein length, molecular weight, and theoretical isoelectric point and are primarily located in the nucleus. Based on the classification of Arabidopsis thaliana GATA members, the phylogenetic tree divided them into four groups: group I, group II, group III, and group IV, containing 10, 8, 4, and 2 genes, respectively. Notably, CmGATA genes within the same group have highly conserved protein motifs and similar exon-intron structures. The CmGATA family members are unevenly distributed across 10 chromosomes, with six pairs of segmentally duplicated genes and one pair of tandemly duplicated genes, suggesting that gene duplication may be the primary factor in the expansion of the CmGATA family. Melon shares 21, 4, 38, and 34 pairs of homologous genes with A. thaliana, Oryza sativa, Cucumis sativus, and Citrullus lanatus, respectively. The promoter regions are enriched with various cis-acting elements related to growth and development (eight types), hormone regulation (nine types), and stress responses (six types). Expression patterns indicate that different CmGATA family members are significantly expressed in seeds, roots, stems, leaves, tendrils, mesocarp, and epicarp, exhibiting distinct tissue-specific expression characteristics. Quantitative fluorescence analysis revealed that five genes, CmGATA3, CmGATA7, CmGATA16, CmGATA22, and CmGATA24, may be highly active under 48-h drought stress, while CmGATA1 and CmGATA22 may enhance melon resistance to heavy metal lead stress. Additionally, CmGATA22 and CmGATA24 are suggested to regulate melon resistance to Fusarium wilt infection. CmGATA22 appears to comprehensively regulate melon responses to both biotic and abiotic stresses. Lastly, potential protein interaction networks were predicted for the CmGATA family members, identifying CmGATA8 as a potential hub gene and predicting 2,230 target genes with enriched GO functions. This study preliminarily explores the expression characteristics of CmGATA genes under drought stress, heavy metal lead stress, and Fusarium wilt infection, providing a theoretical foundation for molecular mechanisms in melon improvement and stress resistance.

2.
Genes (Basel) ; 14(10)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37895292

RESUMO

GATA proteins are a class of zinc-finger DNA-binding proteins that participate in diverse regulatory processes in plants, including the development processes and responses to environmental stresses. However, a comprehensive analysis of the GATA gene family has not been performed in a wolfberry (Lycium barbarum L.) or other Solanaceae species. There are 156 GATA genes identified in five Solanaceae species (Lycium barbarum L., Solanum lycopersicum L., Capsicum annuum L., Solanum tuberosum L., and Solanum melongena L.) in this study. Based on their phylogeny, they can be categorized into four subfamilies (I-IV). Noticeably, synteny analysis revealed that dispersed- and whole-genome duplication contributed to the expansion of the GATA gene family. Purifying selection was a major force driving the evolution of GATA genes. Moreover, the predicted cis-elements revealed the potential roles of wolfberry GATA genes in phytohormone, development, and stress responses. Furthermore, the RNA-seq analysis identified 31 LbaGATA genes with different transcript profiling under salt stress. Nine candidate genes were then selected for further verification using quantitative real-time PCR. The results revealed that four candidate LbaGATA genes (LbaGATA8, LbaGATA19, LbaGATA20, and LbaGATA24) are potentially involved in salt-stress responses. In conclusion, this study contributes significantly to our understanding of the evolution and function of GATA genes among the Solanaceae species, including wolfberry.


Assuntos
Lycium , Solanum tuberosum , Lycium/genética , Fatores de Transcrição GATA/genética , Estresse Salino/genética , Estresse Fisiológico/genética , Solanum tuberosum/genética
3.
Front Plant Sci ; 14: 1163357, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600205

RESUMO

The GATA family of transcription factors is zinc finger DNA binding proteins involved in a variety of biological processes, including plant growth and development and response to biotic/abiotic stresses, and thus play an essential role in plant response to environmental changes. However, the GATA gene family of Sorghum (SbGATA) has not been systematically analyzed and reported yet. Herein, we used a variety of bioinformatics methods and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) to explore the evolution and function of the 33 SbGATA genes identified. These SbGATA genes, distributed on 10 chromosomes, are classified into four subfamilies (I-IV) containing one pair of tandem duplications and nine pairs of segment duplications, which are more closely related to the monocot Brachypodium distachyon and Oryza sativa GATA genes. The physicochemical properties of the SbGATAs are significantly different among the subfamilies, while the protein structure and conserved protein motifs are highly conserved in the subfamilies. In addition, the transcription of SbGATAs is tissue-specific during Sorghum growth and development, which allows for functional diversity in response to stress and hormones. Collectively, our study lays a theoretical foundation for an in-depth analysis of the functions, mechanisms and evolutionary relationships of SbGATA during plant growth and development.

4.
Genes (Basel) ; 13(5)2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35627207

RESUMO

Salvia miltiorrhiza is an important medicinal plant, which is mainly used for treatment of cardiovascular and cerebrovascular diseases. GATA transcription factors are evolutionarily conser-ved proteins that play essential roles in biological process of plants. In this study, we systematically characterized the GATA transcription factors in S. miltiorrhiza. A total 28 SmGATA genes were identified and divided into four subfamilies based on phylogenetic analysis and domain. SmGATA genes being clustered into a subfamily have similar conserved motifs and exon-intron patterns, and unevenly distribute on eight chromosomes of S. miltiorrhiza. Tissue-specific expression analysis based on transcriptome datasets showed that the majority of SmGATA genes were preferentially expressed in roots. Under methyl jasmonate (MeJA) treatment, the quantitative real-time PCR (qRT-PCR) analysis indicated that several SmGATA genes in roots showed distinct upregulation post-MeJA treatment, especially SmGATA08, which was highly responsive to MeJA, and might be involved in the jasmonate signal, thereby affecting root growth, development, tolerance to various stresses, or secondary metabolites biosynthesis. The study found that several SmGATAs, like SmGATA08, are highly responsive to MeJA, indicating that these SmGATAs might be vital in the biosynthesis of tanshinones and phenolic acids by regulating the response to MeJA in S. miltiorrhiza. Our results laid the foundation for understanding their biological roles and quality improvement in S. miltiorrhiza.


Assuntos
Salvia miltiorrhiza , Acetatos , Ciclopentanos , Fatores de Transcrição GATA/genética , Regulação da Expressão Gênica de Plantas , Oxilipinas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salvia miltiorrhiza/genética
5.
J Appl Genet ; 62(2): 265-280, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33624251

RESUMO

Pepper (Capsicum annuum L.) is an economically important vegetable crop whose production and quality are severely reduced under adverse environmental stress conditions. The GATA transcription factors belonging to type IV zinc-finger proteins, play a significant role in regulating light morphogenesis, nitrate assimilation, and organ development in plants. However, the functional characteristics of GATA gene family during development and in response to environmental stresses have not yet been investigated in pepper. In this study, a total of 28 pepper GATA (CaGATA) genes were identified. To gain an overview of the CaGATAs, we analyzed their chromosomal distribution, gene structure, conservative domains, cis-elements, phylogeny, and evolutionary relationship. We divided 28 CaGATAs into four groups distributed on 10 chromosomes, and identified 7 paralogs in CaGATA family of pepper and 35 orthologous gene pairs between CaGATAs and Arabidopsis GATAs (AtGATAs). The results of promoter cis-element analysis and the quantitative real-time PCR (qRT-PCR) analysis revealed that CaGATA genes were involved in regulating the plant growth and development and the responses to various abiotic stresses and hormone treatments in pepper. Tissue-specific expression analysis showed that most CaGATA genes were preferentially expressed in flower buds, flowers, and leaves. Several CaGATA genes, especially CaGATA14, were significantly regulated under multiple abiotic stresses, and CaGATA21 and CaGATA27 were highly responsive to phytohormone treatments. Taken together, our results lay a foundation for the biological function analysis of GATA gene family in pepper.


Assuntos
Capsicum/genética , Fatores de Transcrição GATA , Hormônios/farmacologia , Proteínas de Plantas , Estresse Fisiológico , Fatores de Transcrição GATA/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Verduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA