Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.439
Filtrar
1.
J Agric Food Chem ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984968

RESUMO

The term type 3 diabetes mellitus (T3DM) has been considered for Alzheimer's disease (AD) due to the common molecular and cellular characteristics found between type 2 diabetes mellitus (T2DM) and cognitive deficits. However, the specific mechanism of T3DM remains elusive, especially the neuroprotective effects of dietary components in hyperglycemic individuals. In this study, a peptide, Leu-Val-Arg-Leu (LVRL), found in walnuts significantly improved memory decline in streptozotocin (STZ)- and high-fat-diet (HFD)-stimulated T2DM mouse models (p < 0.05). The LVRL peptide also mitigated hyperglycemia, enhanced synaptic plasticity, and ameliorated mitochondrial dysfunction, as demonstrated by Morris water maze tests, immunoblotting, immunofluorescence, immunohistochemistry, transmission electron microscopy, and cellular staining. A Wnt3a inhibitor, DKK1, was subsequently used to verify the possible role of the Wnt3a/ß-Catenin/GSK-3ß pathway in glucose-induced insulin resistance in PC12 cells. In vitro LVRL treatment dramatically modulated the protein expression of p-Tau (Ser404), Synapsin-1, and PSD95, elevated the insulin level, increased glucose consumption, and relieved the mitochondrial membrane potential, and MitoSOX (p < 0.05). These data suggested that peptides like LVRL could modulate the relationship between brain insulin and altered cognition status via the Wnt3a/ß-Catenin/GSK-3ß pathway.

2.
Comput Biol Chem ; 112: 108144, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39004026

RESUMO

Alzheimer's disease (AD) is characterized by neuronal loss due to hyperphosphorylated proteins induced by oxidative stress. AD remains a formidable challenge in the medical field, as current treatments focusing on single biomarkers have yielded limited success. Hence, there's a burgeoning interest in investigating novel compounds that can target mechanisms, offering alternative therapeutic approaches. The aim of this study is to investigate the effects of allocryptopine, an isoquinoline alkaloid, on mechanisms related to AD in order to develop alternative treatment strategies. In this study, the in vitro AD cell model was obtained by inducing nerve growth factor (NGF)-differentiated PC12 (dPC12) cells to oxidative stress with H2O2, and also the effect mechanism of different allocryptopine concentrations on the in vitro AD cell model was studied. The treatments' antioxidative effects at the ROS level and their regulation of the cell cycle were assessed through flow cytometry, while their anti-apoptotic effects were evaluated using both flow cytometry and qRT-PCR. Additionally, the phosphorylation levels of Akt, GSK-3ß, and tau proteins were analyzed via western blot, and the interactions between Akt, GSK-3ß, CDK5 proteins, and allocryptopine were demonstrated through molecular docking. Our study's conclusive results revealed that allocryptopine effectively suppressed intracellular ROS levels, while simultaneously enhancing the Akt/GSK-3ß signaling pathway by increasing p-Akt and p-GSK-3ß proteins. This mechanism played a critical role in inhibiting neural cell apoptosis and preventing tau hyperphosphorylation. Moreover, allocryptopine demonstrated its ability to regulate the G1/S cell cycle progression, leading to cell cycle arrest in the G1 phase, and facilitating cellular repair mechanisms, potentially contributing to the suppression of neural apoptosis. The in silico results of allocryptopine were shown to docking with the cyclin-dependent kinase 5 (CDK 5) playing a role in tau phosphorylation Akt and GSK-3ß from target proteins. Therefore, the in silico study results supported the in vitro results. The results showed that allocryptopine can protect dPC12 cells from oxidative stress-induced apoptosis and hyperphosphorylation of the tau protein by regulating the Akt/GSK-3ß signaling pathway. Based on these findings, it can be suggested that allocryptopine, with its ability to target biomarkers and its significant effects on AD-associated mechanisms, holds promise as a potential candidate for drug development in the treatment of AD. Further research and clinical trials are recommended in the future.

3.
J Cell Commun Signal ; 18(2): e12023, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38946727

RESUMO

Microglia are resident immune cells in the central nervous system that are rapidly activated to mediate neuroinflammation and apoptosis, thereby aggravating brain tissue damage after ischemic stroke (IS). Although scutellarin has a specific therapeutic effect on IS, the potential target mechanism of its treatment has not been fully elucidated. In this study, we explored the potential mechanism of scutellarin in treating IS using network pharmacology. Lipopolysaccharide (LPS) was used to induce an in vitro BV-2 microglial cell model, while middle cerebral artery occlusion (MCAO) was used to induce an in vivo animal model. Our findings indicated that scutellarin promoted the recovery of cerebral blood flow in MCAO rats at 3 days, significantly different from that in the MCAO group. Western blotting and immunofluorescence revealed that scutellarin treatment of BV-2 microglial cells resulted in a significant reduction in the protein expression levels and incidence of cells immunopositive for p-NF-κB, TNF-α, IL-1ß, Bax, and C-caspase-3. In contrast, the expression levels of p-PI3K, p-AKT, p-GSK3ß, and Bcl-2 were further increased, significantly different from those in the LPS group. The PI3K inhibitor LY294002 had similar effects to scutellarin by inhibiting neuroinflammation and apoptosis in activated microglia. The results of the PI3K/AKT/GSK3ß signaling pathway and NF-κB pathway in vivo in MCAO models induced microglia at 3 days were consistent with those obtained from in vitro cells. These findings indicate that scutellarin plays a neuroprotective role by reducing microglial neuroinflammation and apoptosis mediated by the activated PI3K/AKT/GSK3ß/NF-κB signaling pathway.

4.
J Ethnopharmacol ; 334: 118518, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964628

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Salvia miltiorrhiza Bunge (S. miltiorrhiza) is an important Traditional Chinese herbal Medicine (TCM) used to treat cardio-cerebrovascular diseases. Based on the pharmacodynamic substance of S. miltiorrhiza, the aim of present study was to investigate the underlying mechanism of S. miltiorrhiza against cardiac fibrosis (CF) through a systematic network pharmacology approach, molecular docking and dynamics simulation as well as experimental investigation in vitro. MATERIALS AND METHODS: A systematic pharmacological analysis was conducted using the Traditional Chinese Medicine Pharmacology (TCMSP) database to screen the effective chemical components of S. miltiorrhiza, then the corresponding potential target genes of the compounds were obtained by the Swiss Target Prediction and TCMSP databases. Meanwhile, GeneCards, DisGeNET, OMIM, and TTD disease databases were used to screen CF targets, and a protein-protein interaction (PPI) network of drug-disease targets was constructed on S. miltiorrhiza/CF targets by Search Tool for the Retrieval of Interacting Genes/Proteins (STING) database. After that, the component-disease-target network was constructed by software Cytoscape 3.7. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed for the intersection targets between drug and disease. The relationship between active ingredient of S. miltiorrhiza and disease targets of CF was assessed via molecular docking and molecular dynamics simulation. Subsequently, the underlying mechanism of the hub compound on CF was experimentally investigated in vitro. RESULTS: 206 corresponding targets to effective chemical components from S. miltiorrhiza were determined, and among them, there were 82 targets that overlapped with targets of CF. Further, through PPI analysis, AKT1 and GSK3ß were the hub targets, and which were both enriched in the PI3K/AKT signaling pathway, it was the sub-pathways of the lipid and atherosclerosis pathway. Subsequently, compound-disease-genes-pathways diagram is constructed, apigenin (APi) was a top ingredients and AKT1 (51) and GSK3ß (22) were the hub genes according to the degree value. The results of molecular docking and dynamics simulation showed that APi has strong affinities with AKT and GSK3ß. The results of cell experiments showed that APi inhibited cells viability, proliferation, proteins expression of α-SMA and collagen I/III, phosphorylation of AKT1 and GSK3ß in MCFs induced by TGFß1. CONCLUSION: Through a systematic network pharmacology approach, molecular docking and dynamics simulation, and confirmed by in vitro cell experiments, these results indicated that APi interacts with AKT and GSK3ß to disrupt the phosphorylation of AKT and GSK3ß, thereby inhibiting the proliferation and differentiation of MCFs induced by TGFß1, which providing new insights into the pharmacological mechanism of S. miltiorrhiza in the treatment of CF.

5.
Cell Mol Biol Lett ; 29(1): 100, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977961

RESUMO

OBJECTIVE: Osteoporosis is a global health issue characterized by decreased bone mass and microstructural degradation, leading to an increased risk of fractures. This study aims to explore the molecular mechanism by which P2X7 receptors influence osteoclast formation and bone resorption through the PI3K-Akt-GSK3ß signaling pathway. METHODS: An osteoporosis mouse model was generated through ovariectomy (OVX) in normal C57BL/6 and P2X7f/f; LysM-cre mice. Osteoclasts were isolated for transcriptomic analysis, and differentially expressed genes were selected for functional enrichment analysis. Metabolite analysis was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and multivariate statistical analysis and pattern recognition were used to identify differential lipid metabolism markers and their distribution. Bioinformatics analyses were conducted using the Encyclopedia of Genes and Genomes database and the MetaboAnalyst database to assess potential biomarkers and create a metabolic pathway map. Osteoclast precursor cells were used for in vitro cell experiments, evaluating cell viability and proliferation using the Cell Counting Kit 8 (CCK-8) assay. Osteoclast precursor cells were induced to differentiate into osteoclasts using macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-beta ligand (RANKL), and tartrate-resistant acid phosphatase (TRAP) staining was performed to compare differentiation morphology, size, and quantity between different groups. Western blot analysis was used to assess the expression of differentiation markers, fusion gene markers, and bone resorption ability markers in osteoclasts. Immunofluorescence staining was employed to examine the spatial distribution and quantity of osteoclast cell skeletons, P2X7 protein, and cell nuclei, while pit assay was used to evaluate osteoclast bone resorption ability. Finally, in vivo animal experiments, including micro computed tomography (micro-CT), hematoxylin and eosin (HE) staining, TRAP staining, and immunohistochemistry, were conducted to observe bone tissue morphology, osteoclast differentiation, and the phosphorylation level of the PI3K-Akt-GSK3ß signaling pathway. RESULTS: Transcriptomic and metabolomic data collectively reveal that the P2X7 receptor can impact the pathogenesis of osteoporosis through the PI3K-Akt-GSK3ß signaling pathway. Subsequent in vitro experiments showed that cells in the Sh-P2X7 + Recilisib group exhibited increased proliferative activity (1.15 versus 0.59), higher absorbance levels (0.68 versus 0.34), and a significant increase in resorption pit area (13.94 versus 3.50). Expression levels of osteoclast differentiation-related proteins MMP-9, CK, and NFATc1 were markedly elevated (MMP-9: 1.72 versus 0.96; CK: 2.54 versus 0.95; NFATc1: 3.05 versus 0.95), along with increased fluorescent intensity of F-actin rings. In contrast, the OE-P2X7 + LY294002 group showed decreased proliferative activity (0.64 versus 1.29), reduced absorbance (0.34 versus 0.82), and a significant decrease in resorption pit area (5.01 versus 14.96), accompanied by weakened expression of MMP-9, CK, and NFATc1 (MMP-9: 1.14 versus 1.79; CK: 1.26 versus 2.75; NFATc1: 1.17 versus 2.90) and decreased F-actin fluorescent intensity. Furthermore, in vivo animal experiments demonstrated that compared with the wild type (WT) + Sham group, mice in the WT + OVX group exhibited significantly increased levels of CTX and NTX in serum (CTX: 587.17 versus 129.33; NTX: 386.00 versus 98.83), a notable decrease in calcium deposition (19.67 versus 53.83), significant reduction in bone density, increased trabecular separation, and lowered bone mineral density (BMD). When compared with the KO + OVX group, mice in the KO + OVX + recilisib group showed a substantial increase in CTX and NTX levels in serum (CTX: 503.50 versus 209.83; NTX: 339.83 versus 127.00), further reduction in calcium deposition (29.67 versus 45.33), as well as decreased bone density, increased trabecular separation, and reduced BMD. CONCLUSION: P2X7 receptors positively regulate osteoclast formation and bone resorption by activating the PI3K-Akt-GSK3ß signaling pathway.


Assuntos
Reabsorção Óssea , Diferenciação Celular , Glicogênio Sintase Quinase 3 beta , Camundongos Endogâmicos C57BL , Osteoclastos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptores Purinérgicos P2X7 , Transdução de Sinais , Animais , Osteoclastos/metabolismo , Reabsorção Óssea/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Diferenciação Celular/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/genética , Feminino , Osteoporose/metabolismo , Osteoporose/genética , Osteoporose/patologia , Ligante RANK/metabolismo , Ligante RANK/genética
6.
Toxicol Appl Pharmacol ; 490: 117038, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019095

RESUMO

Cholestasis is a hepatobiliary disorder characterized by the excessive accumulation of toxic bile acids in hepatocytes, leading to cholestatic liver injury (CLI) through multiple pathogenic inflammatory pathways. Currently, there are limited therapeutic options for the management of cholestasis and associated CLI; therefore, new options are urgently needed. Pirfenidone (PF), an oral bioavailable pyridone analog, is used for the treatment of idiopathic pulmonary fibrosis. PF has recently demonstrated diverse potential therapeutic activities against different pathologies. Accordingly, the present study adopted the α-naphthyl isothiocyanate (ANIT)-induced CLI model in mice to explore the potential protective impact of PF and investigate the underlying mechanisms of action. PF intervention markedly reduced the serum levels of ALT, AST, LDH, total bilirubin, and total bile acids, which was accompanied by a remarkable amelioration of histopathological lesions induced by ANIT. PF also protected the mice against ANIT-induced redox imbalance in the liver, represented by reduced MDA levels and elevated GSH and SOD activities. Mechanistically, PF inhibited ANIT-induced downregulated expressions of the farnesoid X receptor (FXR), as well as the bile salt export pump (BSEP) and the multidrug resistance-associated protein 2 (MRP2) bile acid efflux channels. PF further repressed ANIT-induced NF-κB activation and TNF-α and IL-6 production. These beneficial effects were associated with its ability to dose-dependently inhibit Wnt/GSK-3ß/ß-catenin/cyclin D1 signaling. Collectively, PF protects against ANIT-induced CLI in mice, demonstrating powerful antioxidant and anti-inflammatory activities as well as an ability to oppose BA homeostasis disorder. These protective effects are primarily mediated by modulating the interplay between FXR, NF-κB/TNF-α/IL-6, and Wnt/ß-catenin signaling pathways.

7.
JHEP Rep ; 6(6): 101073, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38882600

RESUMO

Background & Aims: Metabolic dysfunction-associated steatohepatitis (MASH) is characterized by excessive circulating toxic lipids, hepatic steatosis, and liver inflammation. Monocyte adhesion to liver sinusoidal endothelial cells (LSECs) and transendothelial migration (TEM) are crucial in the inflammatory process. Under lipotoxic stress, LSECs develop a proinflammatory phenotype known as endotheliopathy. However, mediators of endotheliopathy remain unclear. Methods: Primary mouse LSECs isolated from C57BL/6J mice fed chow or MASH-inducing diets rich in fat, fructose, and cholesterol (FFC) were subjected to multi-omics profiling. Mice with established MASH resulting from a choline-deficient high-fat diet (CDHFD) or FFC diet were also treated with two structurally distinct GSK3 inhibitors (LY2090314 and elraglusib [9-ING-41]). Results: Integrated pathway analysis of the mouse LSEC proteome and transcriptome indicated that leukocyte TEM and focal adhesion were the major pathways altered in MASH. Kinome profiling of the LSEC phosphoproteome identified glycogen synthase kinase (GSK)-3ß as the major kinase hub in MASH. GSK3ß-activating phosphorylation was increased in primary human LSECs treated with the toxic lipid palmitate and in human MASH. Palmitate upregulated the expression of C-X-C motif chemokine ligand 2, intracellular adhesion molecule 1, and phosphorylated focal adhesion kinase, via a GSK3-dependent mechanism. Congruently, the adhesive and transendothelial migratory capacities of primary human neutrophils and THP-1 monocytes through the LSEC monolayer under lipotoxic stress were reduced by GSK3 inhibition. Treatment with the GSK3 inhibitors LY2090314 and elraglusib ameliorated liver inflammation, injury, and fibrosis in FFC- and CDHFD-fed mice, respectively. Immunophenotyping using cytometry by mass cytometry by time of flight of intrahepatic leukocytes from CDHFD-fed mice treated with elraglusib showed reduced infiltration of proinflammatory monocyte-derived macrophages and monocyte-derived dendritic cells. Conclusion: GSK3 inhibition attenuates lipotoxicity-induced LSEC endotheliopathy and could serve as a potential therapeutic strategy for treating human MASH. Impact and Implications: LSECs under lipotoxic stress in MASH develop a proinflammatory phenotype known as endotheliopathy, with obscure mediators and functional outcomes. The current study identified GSK3 as the major driver of LSEC endotheliopathy, examined its pathogenic role in myeloid cell-associated liver inflammation, and defined the therapeutic efficacy of pharmacological GSK3 inhibitors in murine MASH. This study provides preclinical data for the future investigation of GSK3 pharmacological inhibitors in human MASH. The results of this study are important to hepatologists, vascular biologists, and investigators studying the mechanisms of inflammatory liver disease and MASH, as well as those interested in drug development.

8.
J Ethnopharmacol ; 333: 118420, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38838925

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese herbal remedy Atractylodes macrocephala Koidz is renowned for its purported gastrointestinal regulatory properties and immune-enhancing capabilities. Atractylenolide III (ATL III), a prominent bioactive compound in Atractylodes macrocephala Koidz, has demonstrated significant pharmacological activities. However, its impact on neuroinflammation, oxidative stress, and therapeutic potential concerning Alzheimer's disease (AD) remain inadequately investigated. AIM OF THE STUDY: This study aims to assess the plasma pharmacokinetics of ATL III in Sprague-Dawley (SD) rats and elucidate its neuropharmacological effects on AD via the PI3K/AKT/GSK3ß pathway. Through this research, we endeavor to furnish experimental substantiation for the advancement of novel therapeutics centered on ATL III. MATERIALS AND METHODS: The pharmacokinetic profile of ATL III in SD rat plasma was analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). AD models were induced in SD rats through bilateral intracerebroventricular (ICV) administration of streptozotocin (STZ). ATL III was administered at doses of 0.6 mg/kg, 1.2 mg/kg, and 2.4 mg/kg, while donepezil (1 mg/kg) served as control. Cognitive function assessments were conducted employing behavioral tests including the Morris Water Maze and Novel Object Recognition. Neuronal pathology and histological changes were evaluated through Nissl staining and Hematoxylin-Eosin (HE) staining, respectively. Oxidative stress levels were determined by quantifying malondialdehyde (MDA) content and total superoxide dismutase (T-SOD) activity. Molecular docking analysis was employed to explore the direct binding between ATL III and its relevant targets, followed by validation using Western blot (WB) experiments to assess the expression of p-Tau, PI3K, AKT, GSK3ß, and their phosphorylated forms. RESULTS: Within the concentration range of 5-500 ng/mL, ATL III demonstrated exceptional linearity (R2 = 0.9991), with a quantification limit of 5 ng/mL. In male SD rats, ATL III exhibited a Tmax of 45 min, a t1/2 of 172.1 min, a Cmax of 1211 ng/L, and an AUC(0-t) of 156031 ng/L*min. Treatment with ATL III significantly attenuated Tau hyperphosphorylation in intracerebroventricular-streptozotocin (ICV-STZ) rats. Furthermore, ATL III administration mitigated neuroinflammation and oxidative stress, as evidenced by reduced Nissl body loss, alleviated histological alterations, decreased MDA content, and enhanced T-SOD activity. Molecular docking analyses revealed strong binding affinity between ATL III and the target genes PI3K, AKT, and GSK3ß. Experimental validation corroborated that ATL III stimulated the phosphorylation of PI3K and AKT while reducing the phosphorylation of GSK3ß. CONCLUSIONS: Our results indicate that ATL III can mitigate Tau protein phosphorylation through modulation of the PI3K/AKT/GSK3ß pathway. This attenuation consequently ameliorates neuroinflammation and oxidative stress, leading to enhanced learning and memory abilities in ICV-STZ rats.


Assuntos
Disfunção Cognitiva , Glicogênio Sintase Quinase 3 beta , Lactonas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Sesquiterpenos , Estreptozocina , Animais , Sesquiterpenos/farmacologia , Sesquiterpenos/farmacocinética , Sesquiterpenos/administração & dosagem , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Lactonas/farmacologia , Lactonas/farmacocinética , Lactonas/administração & dosagem , Ratos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Modelos Animais de Doenças , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/farmacocinética , Fármacos Neuroprotetores/administração & dosagem
9.
J Ethnopharmacol ; 333: 118498, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38944357

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Lindera aggregata (Sims) Kosterm is a common traditional herb that has multiple bioactivities. Radix Linderae (LR), the dry roots of Lindera aggregata (Sims) Kosterm, is a traditional Chinese herbal medicine with antioxidant, anti-inflammatory and immunomodulatory properties, first found in Kaibao Era. Norboldine (Nor) is an alkaloid extracted from LR and is one of the primary active ingredients of LR. However, the pharmacological functions and mechanism of Nor in Alzheimer's disease (AD) are still unknown. AIM OF THE STUDY: This study aims to investigate the effect and mechanism of Nor therapy in improving the cognitive impairment and pathological features of 3 × Tg mice. MATERIALS AND METHODS: 3 × Tg mice were treated with two concentrations of Nor for one month and then the memory and cognitive abilities of mice were assessed by novel object recognition experiment and Morris water maze. The impact of Nor on the pathology of ADwere examined in PC12 cells and animal tissues using western blotting and immunofluorescence. Finally, western blotting was used to verify the anti-apoptotic effect of Nor by activating AMPK/GSK3ß/Nrf2 signaling pathway at animal and cellular levels. RESULTS: In this study, we showed that Nor treatment improved the capacity of the learning and memory of 3 × Tg mice and alleviated AD pathology such as Aß deposition. In addition, Nor restored the abnormalities of mitochondrial membrane potential, significantly reduced the production of intracellular ROS and neuronal cell apoptosis. Mechanistically, we combined network pharmacology and experimental verification to show that Nor may exert antioxidant stress and anti-apoptotic through the AMPK/GSK3ß/Nrf2 signaling pathway. CONCLUSION: Our data provide some evidence that Nor exerts a neuroprotective effect through the AMPK/GSK3ß/Nrf2 pathway, thereby improving cognitive impairment in AD model mice. Natural products derived from traditional Chinese medicines are becoming increasingly popular in the process of new drug development and discovery, and our findings provide new perspectives for the discovery of improved treatment strategies for AD.


Assuntos
Proteínas Quinases Ativadas por AMP , Doença de Alzheimer , Disfunção Cognitiva , Glicogênio Sintase Quinase 3 beta , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Células PC12 , Masculino , Ratos , Camundongos Transgênicos , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
10.
Neurochem Res ; 49(8): 2148-2164, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38822986

RESUMO

Carbon monoxide poisoning (COP) represents a significant global health burden, characterized by its morbidity and high mortality rates. The pathogenesis of COP-induced brain injury is complex, and effective treatment modalities are currently lacking. In this study, we employed network pharmacology to identify therapeutic targets and associated signaling pathways of Zhuli Decoction (ZLD) for COP. Subsequently, we conducted both in vitro and in vivo experiments to validate the therapeutic efficacy of ZLD in combination with N-butylphthalide (NBP) for acute COP-induced injury. Our network pharmacology analysis revealed that the primary components of ZLD exerted therapeutic effects through the modulation of multiple targets and pathways. The in vitro and in vivo experiments demonstrated that the combination of NBP and ZLD effectively inhibited apoptosis and up-regulated the activities of P-PI3K (Tyr458), P-AKT (Ser473), P-GSK-3ß (Ser9), and Bcl-2, thus leading to the protection of neuronal cells and improvement in cognitive function in rats following COP, which was better than the effects observed with NBP or ZLD alone. The rescue experiment further showed that LY294002, a PI3K inhibitor, significantly attenuated the therapeutic efficacy of NBP + ZLD. The neuroprotection effects of NBP and ZLD against COP-induced brain injury are closely linked to the activation of the PI3K/AKT/GSK-3ß signaling pathway.


Assuntos
Apoptose , Benzofuranos , Glicogênio Sintase Quinase 3 beta , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Benzofuranos/farmacologia , Benzofuranos/uso terapêutico , Apoptose/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Masculino , Ratos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Quimioterapia Combinada
11.
Future Med Chem ; : 1-17, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864182

RESUMO

Aim: A new series of 1,2,3-triazole-hydrazone derivatives were developed to evaluate their anti-Alzheimer's activity. Materials & methods: All compounds were screened toward cholinesterases via the modified Ellman's method. The toxicity assay on SH-SY5Y cells was performed using the MTT assay, and the expression levels of GSK-3α, GSK-3ß, DYRK1 and CDK5 were assessed in the presence of compounds 6m and 6p. Results: 6m and 6p; acting as mixed-type inhibitors, exhibited promising acetylcholinesterase and butyrylcholinesterase inhibitory activity, respectively. 6m demonstrated no toxicity under tested concentrations on the SH-SY5Y cells and positively impacted neurodegenerative pathways. Notably, 6m displayed a significant downregulation in mRNA levels of GSK-3α, GSK-3ß and CDK5. Conclusion: The target compounds could be considered in developing anti-Alzheimer's disease agents.


[Box: see text].

12.
Toxicol In Vitro ; 99: 105867, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38848824

RESUMO

Pristimerin (Pris), a bioactive triterpenoid compound extracted from the Celastraceae and Hippocrateaceae families, has been reported to exhibit an anti-cancer property on various cancers. However, the effects of Pris on esophageal cancer are poorly investigated. This current study sought to explore the activity and underlying mechanism of Pris against human esophageal squamous cell carcinoma (ESCC) cells. We demonstrated that Pris showed cytotoxicity in TE-1 and TE-10 ESCC cell lines, and significantly inhibited cell viability in a concentration dependent manner. Pris induced G0/G1 phase arrest and triggered apoptosis. It was also observed that the intracellular ROS level was remarkedly increased by Pris treatment. Besides, the function of Pris mediating the activation of ER stress and the inhibition of AKT/GSK3ß signaling pathway in TE-1 and TE-10 cells was further confirmed, which resulted in cell growth inhibition. And moreover, we revealed that all of the above pathways were regulated through ROS generation. In conclusion, our findings suggested that Pris might be considered as a novel natural compound for the developing anti-cancer drug candidate for human esophageal cancer.

13.
J Pharm Bioallied Sci ; 16(Suppl 2): S1291-S1294, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38882866

RESUMO

Diabetes mellitus is a persistent metabolic condition marked by elevated blood glucose levels due to compromised insulin secretion or functionality. The search for natural antidiabetic agents has gained attention due to their potential effectiveness and safety profiles. Sessuvium portulacastrum, a coastal plant, has been traditionally used for various medicinal purposes. This study investigates the antidiabetic potential of Sessuvium portulacastrum aqueous extract by analyzing its inhibitory effects on key enzymes involved in carbohydrate metabolism and exploring its molecular interactions with critical target proteins. The aqueous extract of Sessuvium portulacastrum was prepared and used for in vitro analysis. The reduced activity of the extract against α-amylase and α-glucosidase enzymes, crucial in glucose absorption and postprandial hyperglycemia, was assessed. Molecular docking techniques were employed to explore the potential interactions between active compounds in the extract and diabetes-related proteins, including BAX, GSK3ß, and CADH. The study revealed significant inhibition of both alpha-amylase and alpha-glucosidase enzymes by Sessuvium portulacastrum aqueous extract, indicating its potential to reduce glucose absorption and postprandial hyperglycemia. Moreover, the molecular docking analysis demonstrated strong binding interactions between active compounds in the extract and key proteins involved in diabetes-related pathways, namely apoptotic pathways, glycogen synthesis, and cell adhesion. The findings of this study highlight the promising antidiabetic potential of Sessuvium portulacastrum aqueous extract. Upcoming research should get an attention on isolating and characterizing the active compounds responsible for these effects on antidiabetic therapies from natural sources.

14.
Drug Dev Res ; 85(4): e22225, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879781

RESUMO

Schizophrenia (SZ) is a serious, destructive neurodevelopmental disorder. Antipsychotic medications are the primary therapy approach for this illness, but it's important to pay attention to the adverse effects as well. Clinical studies for SZ are currently in phase ΙΙΙ for SEP-363856 (SEP-856)-a new antipsychotic that doesn't work on dopamine D2 receptors. However, the underlying action mechanism of SEP-856 remains unknown. This study aimed to evaluate the impact and underlying mechanisms of SEP-856 on SZ-like behavior in a perinatal MK-801 treatment combined with social isolation from the weaning to adulthood model (MK-SI). First, we created an animal model that resembles SZ that combines the perinatal MK-801 with social isolation from weaning to adulthood. Then, different classical behavioral tests were used to evaluate the antipsychotic properties of SEP-856. The levels of proinflammatory cytokines (tumor necrosis factor-α, interleukin-6, and interleukin-1ß), apoptosis-related genes (Bax and Bcl-2), and synaptic plasticity-related genes (brain-derived neurotrophic factor [BDNF] and PSD-95) in the hippocampus were analyzed by quantitative real-time PCR. Hematoxylin and eosin staining were used to observe the morphology of neurons in the hippocampal DG subregions. Western blot was performed to detect the protein expression levels of BDNF, PSD-95, Bax, Bcl-2, PI3K, p-PI3K, AKT, p-AKT, GSK-3ß, p-GSK-3ß in the hippocampus. MK-SI neurodevelopmental disease model studies have shown that compared with sham group, MK-SI group exhibit higher levels of autonomic activity, stereotyped behaviors, withdrawal from social interactions, dysregulated sensorimotor gating, and impaired recognition and spatial memory. These findings imply that the MK-SI model can mimic symptoms similar to those of SZ. Compared with the MK-SI model, high doses of SEP-856 all significantly reduced increased activity, improved social interaction, reduced stereotyping behavior, reversed sensorimotor gating dysregulation, and improved recognition memory and spatial memory impairment in MK-SI mice. In addition, SEP-856 can reduce the release of proinflammatory factors in the MK-SI model, promote the expression of BDNF and PSD-95 in the hippocampus, correct the Bax/Bcl-2 imbalance, turn on the PI3K/AKT/GSK-3ß signaling pathway, and ultimately help the MK-SI mice's behavioral abnormalities. SEP-856 may play an antipsychotic role in MK-SI "dual-hit" model-induced SZ-like behavior mice by promoting synaptic plasticity recovery, decreasing death of hippocampal neurons, lowering the production of pro-inflammatory substances in the hippocampal region, and subsequently initiating the PI3K/AKT/GSK-3ß signaling cascade.


Assuntos
Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Esquizofrenia , Transdução de Sinais , Animais , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Fármacos Neuroprotetores/farmacologia , Antipsicóticos/farmacologia , Feminino , Maleato de Dizocilpina/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Comportamento Animal/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Isolamento Social
15.
bioRxiv ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38854111

RESUMO

Tau is an intracellular protein but also known to be released into the extracellular fluid. Tau release mechanisms have drawn intense attention as these are known to play a key role in Alzheimer's disease (AD) pathology. However, tau can also be released under physiological conditions although its physiological function and release mechanisms have been poorly characterized, especially in human neuronal cells. We investigated endogenous tau release in ReNCell VM, a human neuroprogenitor cell line, under physiological conditions and found that tau is spontaneously released from cells. To study activity-dependent release of endogenous tau, human ReNCell VM culture was stimulated by 100µM AMPA or 50mM KCl for one-hour, tau was actively released to the culture medium. The released tau was highly phosphorylated at nine phosphorylation sites (pSites) detected by phospho-specific tau antibodies including AT270 (T175/T181), AT8 (S202/T205), AT100 (T212/S214), AT180 (T231), and PHF-1 (S396/S404), showing that these pSites are important for activity-dependent tau release from human ReNCell VM. Intracellular tau showed various phosphorylation status across these sites, with AT270 and PHF-1 highly phosphorylated while AT8 and AT180 were minimally phosphorylated, suggesting that AT8 and AT180 pSites exhibit a propensity for secretion rather than being retained intracellularly. This activity-dependent tau release was significantly decreased by inhibition of GSK-3ß, demonstrating that GSK3ß-dependent phosphorylation of tau plays an important role in its release by neuronal activity. In this study, we showed that ReNCell VM serves as a valuable model for studying endogenous physiological tau release. Further, ReNCell model can be also used to study pathological release of human tau that will contribute to our understanding of the progression of AD and related dementias.

16.
Int J Bipolar Disord ; 12(1): 23, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914810

RESUMO

BACKGROUND: Decades of clinical research have demonstrated the efficacy of lithium in treating acute episodes (both manic and depressive), as well as in preventing recurrences of bipolar disorder (BD). Specific to lithium is its antisuicidal effect, which appears to extend beyond its mood-stabilizing properties. Lithium's clinical effectiveness is, to some extent, counterbalanced by its safety and tolerability profile. Indeed, monitoring of lithium levels is required by its narrow therapeutic index. There is consensus that adequate serum levels should be above 0.6 mEq/L to achieve clinical effectiveness. However, few data support the choice of this threshold, and increasing evidence suggests that lithium might have clinical and molecular effects at much lower concentrations. CONTENT: This narrative review is aimed at: (1) reviewing and critically interpreting the clinical evidence supporting the use of the 0.6 mEq/L threshold, (2) reporting a narrative synthesis of the evidence supporting the notion that lithium might be effective in much lower doses. Among these are epidemiological studies of lithium in water, evidence on the antisuicidal, anti-aggressive, and neuroprotective effects, including efficacy in preventing cognitive impairment progression, Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS), of lithium; and (3) revieweing biological data supporting clinically viable uses of lithium at low levels with the delineation of a mechanistic hypothesis surrounding its purported mechanism of action. The study selection was based on the authors' preference, reflecting the varied and extensive expertise on the review subject, further enriched with an extensive pearl-growing strategy for relevant reviews and book sections. CONCLUSIONS: Clinical and molecular effects of lithium are numerous, and its effects also appear to have a certain degree of specificity related to the dose administered. In sum, the clinical effects of lithium are maximal for mood stabilisation at concentrations higher than 0.6 mEq/l. However, lower levels may be sufficient for preventing depressive recurrences in older populations of patients, and microdoses could be effective in decreasing suicide risk, especially in patients with BD. Conversely, lithium's ability to counteract cognitive decline appears to be exerted at subtherapeutic doses, possibly corresponding to its molecular neuroprotective effects. Indeed, lithium may reduce inflammation and induce neuroprotection even at doses several folds lower than those commonly used in clinical settings. Nevertheless, findings surrounding its purported mechanism of action are missing, and more research is needed to investigate the molecular targets of low-dose lithium adequately.

17.
Bioorg Med Chem ; 108: 117786, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38843656

RESUMO

An efficient protocol for direct coupling of maleimides and indolines at the C7-position was achieved under Rh(III) catalysis. Thirty four novel indoline-maleimide conjugates were prepared in good to excellent yields using this method. All compounds were evaluated for their anti-proliferative effect against colorectal cell lines. Among them, compound 3ab showed the most potent anti-proliferative activity against the CRC cells, and displayed low toxicity in the normal cell. Further investigation indicated that 3ab could effectively suppress the proliferation and migration of CRC cells, along with inducing cell cycle arrest and apoptosis. Mechanistic studies revealed that compound 3ab inhibited the proliferation of CRC cells via suppressing the AKT/GSK-3ß pathway. In vivo evaluation demonstrated remarkable antitumor effect of 3ab (10 mg/kg) in the HCT116 xenograft model with no obvious toxicity, which is superior to that of 5-Fluorouracil (20 mg/kg). Therefore, conjugate 3ab could be considered as a potential CRC therapy agent for further development.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Neoplasias Colorretais , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Indóis , Maleimidas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Indóis/química , Indóis/farmacologia , Indóis/síntese química , Maleimidas/química , Maleimidas/síntese química , Maleimidas/farmacologia , Proliferação de Células/efeitos dos fármacos , Animais , Relação Estrutura-Atividade , Apoptose/efeitos dos fármacos , Estrutura Molecular , Camundongos , Relação Dose-Resposta a Droga , Camundongos Nus , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Movimento Celular/efeitos dos fármacos
18.
Biochimie ; 225: 68-80, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723940

RESUMO

Glycogen synthase kinase-3 (GSK-3) plays important roles in the pathogenesis of cardiovascular, metabolic, neurological disorders and cancer. Isoform-specific loss of either GSK-3α or GSK-3ß often provides cytoprotective effects under such clinical conditions. However, available synthetic small molecule inhibitors are relatively non-specific, and their chronic use may lead to adverse effects. Therefore, screening for natural compound inhibitors to identify the isoform-specific inhibitors may provide improved clinical utility. Here, we screened 70 natural compounds to identify novel natural GSK-3 inhibitors employing comprehensive in silico and biochemical approaches. Molecular docking and pharmacokinetics analysis identified two natural compounds Psoralidin and Rosmarinic acid as potential GSK-3 inhibitors. Specifically, Psoralidin and Rosmarinic acid exhibited the highest binding affinities for GSK-3α and GSK-3ß, respectively. Consistent with in silico findings, the kinase assay-driven IC50 revealed superior inhibitory effects of Psoralidin against GSK-3α (IC50 = 2.26 µM) vs. GSK-3ß (IC50 = 4.23 µM) while Rosmarinic acid was found to be more potent against GSK-3ß (IC50 = 2.24 µM) than GSK-3α (IC50 = 5.14 µM). Taken together, these studies show that the identified natural compounds may serve as GSK-3 inhibitors with Psoralidin serving as a better inhibitor for GSK-3α and Rosmarinic for GSK-3ß isoform, respectively. Further characterization employing in vitro and preclinical models will be required to test the utility of these compounds as GSK-3 inhibitors for cardiometabolic and neurological disorders and cancers.

19.
J Cancer ; 15(11): 3297-3312, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817856

RESUMO

Acetyl-CoA acetyltransferase 1 (ACAT1) plays a significant role in the regulation of gene expression and tumorigenesis. However, the biological role of ACAT1 in bladder cancer (BLCA) has yet to be elucidated. This research aimed to elucidate the bioinformatics features and biological functions of ACAT1 in BLCA. Here, we demonstrate that ACAT1 is elevated in BLCA tissues and is correlated with specific clinicopathological features and an unfavorable prognosis for survival in BLCA patients. ACAT1 was identified as an independent risk factor in BLCA. Phenotypically, both in vitro and in vivo, ACAT1 knockdown suppressed BLCA cell proliferation and migration, while ACAT1 overexpression had the opposite effect. Mechanistic assays revealed that ACAT1 enhances BLCA cell proliferation and metastasis through the AKT/GSK3ß/c-Myc signaling pathway by modulating the cell cycle and EMT. Taken together, the results of our study reveal that ACAT1 is an oncogenic driver in BLCA that enhances tumor proliferation and metastasis, indicating its potential as a diagnostic and therapeutic target for this disease.

20.
Front Pharmacol ; 15: 1396023, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808258

RESUMO

Salidroside (SAL), a phenylpropanoid bioactive compound, has various pharmacological properties, including antioxidant, anti-inflammatory, and hepatoprotective effects. However, the pharmacological effects and mechanisms of action of SAL on cholestatic liver injury are unclear. This study investigated the mechanism and effects of salidroside (SAL) on intestinal flora distribution and hepatic stellate cell (HSC) activation in cholestatic hepatic fibrosis. Bile duct ligation was used to cause cholestasis BALB/c mice. The therapeutic efficacy of SAL in liver fibrosis was assessed via serum/tissue biochemical analyses and liver tissue hematoxylin and eosin and Masson staining. Inflammation and oxidative stress were analyzed using enzyme-linked immunosorbent assay and western blotting. HSC were activated in vitro using lipopolysaccharide, and the effects of SAL on HSC migration and inflammatory factor expression were detected via scratch, transwell, and western blotting assays. The effects of SAL on the PI3K/AKT/GSK-3ß pathway in vivo and in vitro were detected using western blotting. 16sRNA sequencing was used to detect the effect of SAL on the diversity of the intestinal flora. Ileal histopathology and western blotting were used to detect the protective effect of SAL on the intestinal mucosal barrier. SAL reduces liver inflammation and oxidative stress and protects against liver fibrosis with cholestasis. It inhibits HSC activation and activates the PI3K/AKT/GSK-3ß pathway in vitro and in vivo. Additionally, SAL restores the abundance of intestinal flora, which contributes to the repair of the intestinal mucosal barrier, inhibits endotoxin translocation, and indirectly inhibits HSC activation, reversing the course of cholestatic liver fibrosis. SAL inhibits HSC activation through the PI3K/AKT/GSK-3ß pathway and improves intestinal flora distribution, thereby protecting and reversing the progression of hepatic fibrosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA