Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Heliyon ; 10(13): e34116, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39091952

RESUMO

To explore the spatiotemporal evolution characteristics of heat vulnerability in the Pearl River Delta urban agglomeration during heatwave disasters, this research employs the Entropy Weight Method (EWM) to calculate the heat vulnerability assessment results for nine cities in the region spanning from 2001 to 2022. Through the application of kernel density estimation, Moran's I, and the Geographically and Temporally Weighted Regression (GTWR) model, which is proven to be superior to traditional model such as OLS, this study analyzes the dynamic distribution patterns of heat vulnerability in the study area and dissect the trends of influencing factors. The results reveal that from 2001 to 2022, the overall heat vulnerability index in the study area demonstrates a fluctuating downward trend. Key contributors to heat vulnerability include high-frequency and long-duration heatwaves, population sensitivity, and changes in residents' consumption levels. Throughout this period of development, the disparity in heat vulnerability among cities has gradually widened, indicating an overall pattern of uneven development in the region. Future attention should be focused on formulating heat adaptation strategies in areas with high vulnerability to enhance the overall sustainability of the study area.

2.
Huan Jing Ke Xue ; 45(6): 3297-3307, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897752

RESUMO

Land use changes lead to changes in the functions of different types of carbon sources and sinks, which are key sources of carbon emissions. The study of carbon emissions and its influencing factors in the Aksu River Basin from the perspective of land use change is of great importance for the promotion of integrated protection and restoration of mountains, water, forests, fields, lakes, grasslands, sand, and ice in the basin and to help achieve the goal of carbon peaking and carbon neutrality. Based on four periods of land use data and socio-economic data from 1990 to 2020, the total carbon emissions from land use were measured, and the spatial and temporal trajectories of carbon emissions and their influencing factors were explored. The results showed that:① from 1990 to 2020, arable land, forest land, construction land, and unused land showed a general increasing trend, whereas grasslands and water areas showed a decreasing trend. The spatial change in land use types was mainly characterized by the conversion of grasslands and unused land into arable land, and 83.58 % of the arable land conversion areas were concentrated in the southwest of Wensu, Aksu, and the northern part of Awat. ② The total net carbon emissions in the basin showed a continuous growth trend from 1990 to 2020, with a cumulative increase of 14.78×104 t. The increase in arable land was a key factor causing an increase in net carbon emissions in the basin. ③ The spatial distribution pattern of land use carbon emissions in the basin was high in the middle and low in the fourth, with significant changes in net carbon emissions mainly in the southern part of Wensu, Aksu, Awat, and Alaer. ④ Human activities had the strongest driving effect on land use carbon emissions, with their effects gradually increasing from east to west. The contribution of average annual temperature to land use carbon emissions was mainly concentrated in the eastern part of Aksu and the northern part of Awat, whereas average annual rainfall had a strong inhibitory effect on the northern part of Wensu and the western part of Aheqi.

3.
Sci Rep ; 14(1): 13197, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851848

RESUMO

New urbanization (NU) and ecological welfare performance (EWP) play pivotal roles in achieving sustainable urban development, with both emphasizing social equity and environmental management. Exploring the coordinated relationship between EWP and NU is invaluable for understanding the symbiotic interplay between humans and nature. We constructed a framework to elucidate the coupling mechanism of EWP and NU from the perspective of systems theory. We quantified the levels of NU and EWP utilizing the entropy weighting method and the super-efficient SBM method, respectively. Furthermore, we assessed the degree of coupling coordination between the two using the coupling coordination degree model (CCDM). Spatial and temporal evolution analysis was conducted, and factors influencing the degree of coupling coordination between EWP and NU were explored through a spatial-temporal geographically-weighted regression model (GTWR). The results indicate: (1) During the study period, the average annual increase in EWP in the study area was 2.59%, with a narrowing relative gap between cities. Conversely, the average annual increase in the level of NU was 7.6%, with demographic and economic dimensions carrying the highest weights. (2) The type of coupling coordination between EWP and NU transitions from basic coordination to moderate coordination, with the development of EWP lagging behind that of NU. (3) City size demonstrates a positive yet diminishing trend on the coupling coordination level, with economic development exerting the greatest influence and exhibiting a "V" trend, while the impact of green technology innovation diminishes negatively. Additionally, regional disparities are significant, with city size exhibiting a negative impact in areas of high population density and low economic levels, and green technology innovation showing notable polarization characteristics in core cities. These findings serve as a foundation for fostering coordinated ecological development amid the rapid urbanization process of the Chengdu-Chongqing Economic Circle.

4.
Environ Monit Assess ; 196(6): 535, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727754

RESUMO

Revealing the spatiotemporal evolution characteristics and key driving processes behind the habitat quality is of great significance for the scientific management of production, living, and ecological spaces in resource-based cities, as well as for the efficient allocation of resources. Focusing on the largest coal-mining subsidence area in Jiangsu Province of China, this study examines the spatiotemporal evolution of land use intensity, morphology, and functionality across different time periods. It evaluates the habitat quality characteristics of the Pan'an Lake area by utilizing the InVEST model, spatial autocorrelation, and hotspot analysis techniques. Subsequently, by employing the GTWR model, it quantifies the influence of key factors, unveiling the spatially varying characteristics of their impact on habitat quality. The findings reveal a notable surge in construction activity within the Pan'an Lake area, indicative of pronounced human intervention. Concurrently, habitat degradation intensifies, alongside an expanding spatial heterogeneity in degradation levels. The worst habitat quality occurs during the periods of coal mining and large-scale urban construction. The escalation in land use intensity emerges as the primary catalyst for habitat quality decline in the Pan'an Lake area, with other factors exhibiting spatial variability in their effects and intensities across different stages.


Assuntos
Minas de Carvão , Ecossistema , Monitoramento Ambiental , China , Lagos/química , Conservação dos Recursos Naturais
5.
Environ Res ; 252(Pt 1): 118802, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582419

RESUMO

Accelerating the attainment of carbon balance in Chinese cities has become pivotal in addressing global climate change and promoting green, low-carbon development. This study, encompassing 277 prefecture-level and above cities from 2007 to 2020, reveals a positive overall trend in China's urban carbon balance index. The evolution unfolds in two stages, demonstrating a distinct "tiered development" pattern across the eastern, central and western regions. Moreover, significant spatial agglomeration characteristics characterize China's carbon balance hot and cold spots throughout the study period, with their spatial agglomeration degree remaining stable. The standard deviation ellipse analysis confirms these hot and cold spots' alignment with China's economic development level and population distribution. The GTWR test results highlight the pronounced non-stationary characteristics of different driving factors in space and time, exhibiting variations in strength and direction among regions. Consequently, enhancing China's urban carbon balance requires tailored measures based on different areas' unique conditions and development characteristics, emphasizing a hierarchical and classified approach to leverage distinct driving factors and foster a green development system in China.


Assuntos
Carbono , Cidades , Mudança Climática , China , Carbono/análise , Carbono/metabolismo , Análise Espaço-Temporal , Monitoramento Ambiental/métodos , Ciclo do Carbono
6.
Environ Pollut ; 351: 124057, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38688385

RESUMO

Air pollution in China has becoming increasingly serious in recent years with frequent incidents of smog. Parts of southwest China still experience high incidents of smog, with PM2.5 (particulate matter with diameter ≤2.5 µm) being the main contributor. Establishing the spatial distribution of PM2.5 in Southwest China is important for safeguarding regional human health, environmental quality, and economic development. This study used remote sensing (RS) and geographical information system (GIS) technologies and aerosol optical depth (AOD), digital elevation model (DEM), normalized difference vegetation index (NDVI), population density, and meteorological data from January to December 2018 for southwest China. PM2.5 concentrations were estimated using ordinary least squares regression (OLS), geographic weighted regression (GWR) and geographically and temporally weighted regression (GTWR). The results showed that: (1) Eight influencing factors showed different correlations to PM2.5 concentrations. However, the R2 values of the correlations all exceeded 0.3, indicating a moderate degree of correlation or more; (2) The correlation R2 values between the measured and remote sensed estimated PM2.5 data by OLS, GWR, and GTWR were 0.554, 0.713, and 0.801, respectively; (3) In general, the spatial distribution of PM2.5 in southwest of China decreases from the Northeast to Northwest, with moderate concentrations in the Southeast and Southwest; (4) The seasonal average PM2.5 concentration is high in winter, low in summer, and moderate in spring and autumn, whereas the monthly average shows a "V" -shaped oscillation change.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Sistemas de Informação Geográfica , Material Particulado , Tecnologia de Sensoriamento Remoto , Material Particulado/análise , China , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos
7.
Environ Sci Pollut Res Int ; 31(13): 19779-19794, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38366319

RESUMO

Comprehending the spatial-temporal characteristics, contributions, and evolution of driving factors in agricultural non-CO2 greenhouse gas (GHG) emissions at a macro level is pivotal in pursuing temperature control objectives and achieving China's strategic goals related to carbon peak and carbon neutrality. This study employs the Intergovernmental Panel on Climate Change (IPCC) carbon emissions coefficient method to comprehensively evaluate agricultural non-CO2 GHG emissions at the provincial level. Subsequently, the contributions and spatial-temporal evolution of six driving factors derived from the Kaya identity were quantitatively explored using the Logarithmic Mean Divisia Index (LMDI) and Geographical and Temporal Weighted Regression (GTWR) methods. The results revealed that the distribution of agricultural non-CO2 GHG emissions is shifting from the central provinces to the northwest regions. Moreover, the dominant driving factors of agricultural non-CO2 GHG emissions were primarily economic factor (EDL) with positive impact (cumulative promotion is 2939.61 million metric tons (Mt)), alongside agricultural production efficiency factor (EI) with negative impact (cumulative reduction is 2208.98 Mt). Influence of EDL diminished in the eastern coastal regions but significantly impacted underdeveloped regions such as the northwest and southwest. In the eastern coastal regions, EI gradually became the absolute dominant driver, demonstrating a rapid reduction effect. Additionally, a declining birth rate and rural-to-urban population migration have significantly amplified the driving effects of the population factor (RP) at a national scale. These findings, in conjunction with the disparities in geographic and socioeconomic development among provinces, can serve as a guiding framework for the development of a region-specific roadmap aimed at reducing agricultural non-CO2 GHG emissions.


Assuntos
Gases de Efeito Estufa , Agricultura , Dióxido de Carbono/análise , China , Carbono , Efeito Estufa
8.
Environ Sci Pollut Res Int ; 31(15): 22528-22546, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38409382

RESUMO

Urban agglomerations are the centers of carbon emissions. However, research on sector-specific carbon emissions in different urban agglomerations is still limited. Drawing on the data of China's six urban agglomerations in 2005, 2010, and 2015, this study investigates the spatio-temporal patterns, regional inequalities, and driving forces of total, industrial, transportation, and residential carbon emissions. The study found that Beijing-Tianjin-Hebei was the total and sectoral emission center among the studied urban agglomerations. Additionally, regional carbon inequalities gradually decreased, implying a growing regional synergistic carbon pattern. The driving forces of carbon emissions, including population, GDP, energy intensity, secondary industry, tertiary industry, foreign investment, urbanization, and green coverage, varied across sectors and regions. Notably, foreign investment could lead to lower carbon emissions in less developed agglomerations like Beijing-Tianjin-Hebei, the Central Plains, and the middle reaches of the Yangtze River, whereas more developed agglomerations like the Yangtze River Delta and the Pearl River Delta benefited less from foreign investment. Besides, ChengYu has good ecological conditions and sustainable development modes, which linked urbanization and green space to reduced carbon emissions in the industrial sector. The findings can help formulate differentiated carbon policy and support sustainable development.


Assuntos
Carbono , Urbanização , Carbono/análise , Pequim , Indústrias , Rios , China , Cidades , Desenvolvimento Econômico
9.
Environ Monit Assess ; 196(3): 249, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340249

RESUMO

Considering the spatial and temporal effects of atmospheric pollutants, using the geographically and temporally weighted regression and geo-intelligent random forest (GTWR-GeoiRF) model and Sentinel-5P satellite remote sensing data, combined with meteorological, emission inventory, site observation, population, elevation, and other data, the high-precision ozone concentration and its spatiotemporal distribution near the ground in China from March 2020 to February 2021 were estimated. On this basis, the pollution status, near-surface ozone concentration, and population exposure risk were analyzed. The findings demonstrate that the estimation outcomes of the GTWR-GeoiRF model have high precision, and the precision of the estimation results is higher compared with that of the non-hybrid model. The downscaling method enhances estimation results to some extent while addressing the issue of limited spatial resolution in some data. China's near-surface ozone concentration distribution in space shows obvious regional and seasonal characteristics. The eastern region has the highest ozone concentrations and the lowest in the northeastern region, and the wintertime low is higher than the summertime high. There are significant differences in ozone population exposure risks, with the highest exposure risks being found in China's eastern region, with population exposure risks mostly ranging from 0.8 to 5.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Ozônio/análise , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , China
10.
BMC Public Health ; 24(1): 550, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38383335

RESUMO

OBJECTIVE: This study describes regional differences and dynamic changes in the prevalence of comorbidities among middle-aged and elderly people with chronic diseases (PCMC) in China from 2011-2018, and explores distribution patterns and the relationship between PM2.5 and PCMC, aiming to provide data support for regional prevention and control measures for chronic disease comorbidities in China. METHODS: This study utilized CHARLS follow-up data for ≥ 45-year-old individuals from 2011, 2013, 2015, and 2018 as research subjects. Missing values were filled using the random forest machine learning method. PCMC spatial clustering investigated using spatial autocorrelation methods. The relationship between macro factors and PCMC was examined using Geographically and Temporally Weighted Regression, Ordinary Linear Regression, and Geographically Weighted Regression. RESULTS: PCMC in China showing a decreasing trend. Hotspots of PCMC appeared mainly in western and northern provinces, while cold spots were in southeastern coastal provinces. PM2.5 content was a risk factor for PCMC, the range of influence expanded from the southeastern coastal areas to inland areas, and the magnitude of influence decreased from the southeastern coastal areas to inland areas. CONCLUSION: PM2.5 content, as a risk factor, should be given special attention, taking into account regional factors. In the future, policy-makers should develop stricter air pollution control policies based on different regional economic, demographic, and geographic factors, while promoting public education, increasing public transportation, and urban green coverage.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Idoso , Pessoa de Meia-Idade , Humanos , Material Particulado/análise , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Prevalência , Comorbidade , China/epidemiologia , Monitoramento Ambiental/métodos
11.
Environ Sci Pollut Res Int ; 31(6): 9811-9830, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198083

RESUMO

The number of cars is increasing every year and the environmental aspects of transport are becoming a hot topic. The spatial and temporal patterns of motor vehicle carbon monoxide (CO) emissions are still unclear due to the unbalanced economic development and heterogeneous geographic conditions of China. With the objective of realizing a reduction in motor vehicle CO emissions, his study explores the transport carbon emission reduction pathways of China from motor vehicle CO emission. Firstly, the entropy method is adopted to comprehensively evaluate the CO emissions from motor vehicles in each province; secondly, the development of a Geographically and Temporally Weighted Regression (GTWR) model facilitates the examination of the spatiotemporal dynamics pertaining to the influencing factors of motor vehicle CO emissions within each province.; finally, the characteristics of motor vehicle CO emissions in ETS pilot areas and non-ETS pilot areas are compared. The results show that: (1) After the completion of the six ETS pilot areas in 2011, the CO emission from motor vehicles is reduced by 18% compared with 2010.(2)The entropy method shows that the largest CO emissions from motor vehicles are from Beijing, Shanghai, Guangdong and other provinces with high economic levels.(3) The results of the GTWR model show that the positive effects of economic level, population size, road mileage intensity and motor vehicle intensity on motor vehicle CO emissions are decreasing year by year. The negative effect of metro line intensity on CO emission decreases year by year. This study can help decision makers to identify the high emission areas, understand the influencing factors, and formulate emission reduction measures to achieve the purpose of carbon emission reduction in transport.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Emissões de Veículos/análise , Monóxido de Carbono/análise , Poluentes Atmosféricos/análise , China , Veículos Automotores
12.
Epidemiol Infect ; 151: e200, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38044833

RESUMO

Hand, foot, and mouth disease (HFMD) is a common childhood infectious disease. The incidence of HFMD has a pronounced seasonal tendency and is closely related to meteorological factors such as temperature, rainfall, and wind speed. In this paper, we propose a combined SARIMA-XGBoost model to improve the prediction accuracy of HFMD in 15 regions of Xinjiang, China. The SARIMA model is used for seasonal trends, and the XGBoost algorithm is applied for the nonlinear effects of meteorological factors. The geographical and temporal weighted regression model is designed to analyze the influence of meteorological factors from temporal and spatial perspectives. The analysis results show that the HFMD exhibits seasonal characteristics, peaking from May to August each year, and the HFMD incidence has significant spatial heterogeneity. The meteorological factors affecting the spread of HFMD vary among regions. Temperature and daylight significantly impact the transmission of the disease in most areas. Based on the verification experiment of forecasting, the proposed SARIMA-XGBoost model is superior to other models in accuracy, especially in regions with a high incidence of HFMD.


Assuntos
Doença de Mão, Pé e Boca , Humanos , Criança , Doença de Mão, Pé e Boca/epidemiologia , Temperatura , Conceitos Meteorológicos , Incidência , China/epidemiologia
13.
Huan Jing Ke Xue ; 44(12): 6664-6679, 2023 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-38098393

RESUMO

Urbanization is a major source of carbon emissions. A quantitative study on the dynamic relationship between urbanization and its morphological characteristics and carbon emissions is crucial for formulating urban carbon emission reduction policies. Based on the carbon metabolism model, the carbon emissions at the country level in Chang-Zhu-Tan from 1995 to 2020 were calculated. The Tapio decoupling model was used to explore the decoupling relationship between the carbon emissions of Chang-Zhu-Tan and urban land, and a geographically and temporally weighted regression(GTWR) model was used to analyze the impact mechanism of urban spatial morphology on carbon emissions. The following conclusions were drawn:① carbon emissions at the county level in the study area formed a clustered distribution centered on the city jurisdiction and showed a trend of diffusion from year to year. Compared with those in 1995, there were seven new high carbon emission districts in 2020, all of which belonged to Changsha. ② From 1995-2020, the research area as a whole changed from mainly strong decoupling to mainly dilated negative decoupling, and the spatial decoupling state fluctuated back and forth between the decoupling and negative decoupling. By 2020, except for the seven regions with the uncoupling state regressing, all of them reached the uncoupling state or were close to the uncoupling state. ③ Urban patch area(CA), urban patch number(NP), and patch combination degree(COHESION) were positively correlated with urban carbon emissions, whereas landscape shape index(LSI), maximum patch index(LPI), and Euclidean distance mean(ENN_MN) were negatively correlated with urban carbon emissions, and the impact of different urban form indicators on carbon emissions had significant spatial heterogeneity.

14.
Environ Sci Pollut Res Int ; 30(60): 126165-126177, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38008841

RESUMO

Air pollution generated by urbanization and industrialization poses a significant negative impact on public health. Particularly, fine particulate matter (PM2.5) has become one of the leading causes of lung cancer mortality worldwide. The relationship between air pollutants and lung cancer has aroused global widespread concerns. Currently, the spatial agglomeration dynamic of lung cancer incidence (LCI) has been seldom discussed, and the spatial heterogeneity of lung cancer's influential factors has been ignored. Moreover, it is still unclear whether different socioeconomic levels and climate zones exhibit modification effects on the relationship between PM2.5 and LCI. In the present work, spatial autocorrelation was adopted to reveal the spatial aggregation dynamic of LCI, the emerging hot spot analysis was introduced to indicate the hot spot changes of LCI, and the geographically and temporally weighted regression (GTWR) model was used to determine the affecting factors of LCI and their spatial heterogeneity. Then, the modification effects of PM2.5 on the LCI under different socioeconomic levels and climatic zones were explored. Some findings were obtained. The LCI demonstrated a significant spatial autocorrelation, and the hot spots of LCI were mainly concentrated in eastern China. The affecting factors of LCI revealed an obvious spatial heterogeneity. PM2.5 concentration, nighttime light data, 2 m temperature, and 10 m u-component of wind represented significant positive effects on LCI, while education-related POI exhibited significant negative effects on LCI. The LCI in areas with low urbanization rates, low education levels, and extreme climate conditions was more easily affected by PM2.5 than in other areas. The results can provide a scientific basis for the prevention and control of lung cancer and related epidemics.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/epidemiologia , Incidência , Poluentes Atmosféricos/análise , Material Particulado/análise , Poluição do Ar/análise , China/epidemiologia , Classe Social , Monitoramento Ambiental/métodos , Cidades
15.
Prev Med Rep ; 36: 102450, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37840591

RESUMO

The threat of gastric cancer remains significant worldwide, especially in Gansu, located in northwestern China. However, the spatiotemporal distribution characteristics and the impacts of macro factors such as social-economic, climatic conditions, and healthcare resources allocation were less reported before. Based on the data from the medical big data platform of the Gansu Province Health Commission, Gansu Province Bureau of Statistics and some public databases, we conducted joinpoint regression analysis, spatial autocorrelation analysis, trend surface analysis, space scanning analysis, geographically and temporally weighted regression (GTWR) analysis with Joinpoint_5.0, ArcGIS_10.8, GeoDa, and SaTScanTM_10.1.1. Finally, we have found that the increasing trend of gastric cancer incidence in Gansu has reached a turning point and is now declining. Moreover, significant spatial heterogeneity exists in the distribution of gastric cancer across Gansu Province. The identified risk areas and the impacts of macro factors on gastric cancer and their temporal trends could provide evidence for governments to develop specific policies for gastric cancer prevention.

16.
Environ Sci Pollut Res Int ; 30(53): 114420-114437, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37861843

RESUMO

In the context of the increasing global greenhouse effect, the Chinese government has proposed a "dual carbon" target. As a major carbon-emitting province in China, Shandong Province needs to improve its carbon productivity to coordinate carbon emission reductions and sustainable economic growth. This study analyzes the spatial and temporal evolution of carbon productivity at the county scale and the factors influencing it in Shandong Province from 2000 to 2017. The study uses the Dagum Gini coefficient, kernel density analysis, spatial autocorrelation model, and geographically and temporally weighted regression model. The results indicate that the carbon productivity in Shandong Province nearly doubled during the study period, revealing a spatial distribution characteristic of "high in the east and low in the west," together with a significant positive spatial autocorrelation. Intra-regional differences, the most important source of development differences among the three economic circles, rose to 32.11% during the study period, whereas inter-regional differences declined to 26.6%. Gross domestic product per capita and population density play a significant positive role in the development of carbon productivity. The balance of deposits in financial institutions at the end of the year has a weak positive effect, and the local average public finance expenditure and secondary industry structure on carbon productivity are negative in general. Shandong Province should identify specific regions with weak carbon productivity levels and understand the key factors to improve carbon productivity to promote the achievement of the "dual carbon" goal.


Assuntos
Carbono , Desenvolvimento Econômico , Carbono/análise , Análise Espacial , China/epidemiologia , Produto Interno Bruto
17.
PeerJ ; 11: e15869, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37753176

RESUMO

Background: The growth of urbanization in the 20th and 21st centuries has resulted in unprecedented ecological security issues. The imbalance between urban development and internal ecological security is a growing concern. Methods: Based on the urban development process and the characteristics of ecosystem resilience, the corresponding urbanization evaluation system ("scale-structure-benefit") and ecosystem resilience assessment model ("resistance-adaptability-restoring") were constructed to explore the changes in each dimension as well as to analyze the spatial and temporal changes and driving effects of the coupled coordination level of urbanization and ecological resilience using the coupled coordination degree (CCD) model and geographically and temporally weighted regression (GTWR). Results: (1) From 2005 to 2020, urbanization levels increased (from 0.204 to 0.264, respectively), whereas the level of ecological resilience gradually decreased (from 0.435 to 0.421, respectively). The spatial distribution of urbanization is rather steady, with a "high-northeast low-southwest" pattern of regional distribution; however, the spatial distribution pattern of ecological resilience is essentially the reverse. (2) During the study period, there was an improvement in the level of coordination between urbanization and ecological resilience, with an increase from 0.524 to 0.540. However, the main coordination type remained the same, with over 46% being at the basic coordination stage. The relative development type was dominated by the lagging urbanization stage, with the lagging ecological resilience and synchronous development stages accounting for a smaller proportion, and the space was distributed in a block-like cluster. (3) The running results of the GTWR show that the core dimensions of the whole region are scale, benefit, and structure, and the impact of each dimension shows obvious spatial heterogeneity. Cities with different levels of relative development also have different central dimensions. This research will provide support for the coordination of urban development in areas where economic construction and ecological resilience are not coordinated, and will contribute to the sustainable development of urban areas.

18.
Huan Jing Ke Xue ; 44(7): 3738-3748, 2023 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-37438273

RESUMO

Aerosol optical depths of satellites and meteorological factors have been widely used to estimate concentrations of surface particulate matter with an aerodynamic diameter ≤ 2.5 µm. Research on a high time resolution and high-precision PM2.5 concentration estimation method is of great significance for timely and accurate air quality prediction and air pollution prevention and mitigation. Himawari-8 AOD hour product and ERA5 meteorological reanalysis data were used as estimation variables, and a GTWR-XGBoost combined model was proposed to estimate hourly PM2.5 concentration in Sichuan Province. The results showed that:① the performance of the proposed combination model was better than that of the KNN, RF, AdaBoost, GTWR, GTWR-KNN, GTWR-RF, and GTWR-AdaBoost models in the full dataset; the fitting accuracy indexes R2, MAE, and RMSE were 0.96, 3.43 µg·m-3, and 5.52 µg·m-3, respectively; and the verification accuracy indexes R2, MAE, and RMSE were 0.9, 4.98 µg·m-3, and 7.92 µg·m-3, respectively. ② The model had a high goodness of fit (R2 of the whole dataset was 0.96, and R2 of different times ranged from 0.91 to 0.98) when applied to the estimation of PM2.5 concentration hour. It showed that the model had good time stability for hourly estimation and could provide accurate estimation information for regional air quality assessment. ③ In terms of time, the annual average PM2.5hourly concentration estimation showed an inverted U-shaped trend. It began to increase gradually at 09:00 am to a peak of 44.56 µg·m-3 at 11:00 and then gradually decreased. Moreover, the seasonal variation was very obvious, with winter>spring>autumn>summer. ④ In terms of spatial distribution, it showed the characteristics of high in the east and low in the west and a high degree of local pollution.

19.
Front Public Health ; 11: 1079702, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483926

RESUMO

Introduction: With China's rapid industrialization and urbanization, China has been increasing its carbon productivity annually. Understanding the association between carbon productivity, socioeconomics, and medical resources with cardiovascular diseases (CVDs) may help reduce CVDs burden. However, relevant studies are limited. Objectives: The study aimed to describe the temporal and spatial distribution pattern of CVDs hospitalization in southeast rural China and to explore its influencing factors. Methods: In this study, 1,925,129 hospitalization records of rural residents in southeast China with CVDs were analyzed from the New Rural Cooperative Medical Scheme (NRCMS). The spatial distribution patterns were explored using Global Moran's I and Local Indicators of Spatial Association (LISA). The relationships with influencing factors were detected using both a geographically and temporally weighted regression model (GTWR) and multiscale geographically weighted regression (MGWR). Results: In southeast China, rural inpatients with CVDs increased by 95.29% from 2010 to 2016. The main groups affected were elderly and women, with essential hypertension (26.06%), cerebral infarction (17.97%), and chronic ischemic heart disease (13.81%) being the leading CVD subtypes. The results of LISA shows that central and midwestern counties, including Meilie, Sanyuan, Mingxi, Jiangle, and Shaxian, showed a high-high cluster pattern of CVDs hospitalization rates. Negative associations were observed between CVDs hospitalization rates and carbon productivity, and positive associations with per capita GDP and hospital beds in most counties (p < 0.05). The association between CVDs hospitalization rates and carbon productivity and per capita GDP was stronger in central and midwestern counties, while the relationship with hospital bed resources was stronger in northern counties. Conclusion: Rural hospitalizations for CVDs have increased dramatically, with spatial heterogeneity observed in hospitalization rates. Negative associations were found with carbon productivity, and positive associations with socioeconomic status and medical resources. Based on our findings, we recommend low-carbon development, use of carbon productivity as an environmental health metric, and rational allocation of medical resources in rural China.


Assuntos
Doenças Cardiovasculares , Isquemia Miocárdica , Humanos , Feminino , Idoso , Doenças Cardiovasculares/epidemiologia , Fatores Socioeconômicos , Hospitalização , Análise Espaço-Temporal
20.
Sci Total Environ ; 894: 164948, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37336414

RESUMO

Brucellosis is a highly contagious zoonotic and systemic infectious disease caused by Brucella, which seriously affects public health and socioeconomic development worldwide. Particularly, in China accumulating eco-environmental changes and agricultural intensification have increased the expansion of human brucellosis (HB) infection. As a traditional animal husbandry area adjacent to Inner Mongolia, Datong City in northwestern China is characterized by a high HB incidence, demonstrating obvious variations in the risk pattern of HB infection in recent years. In this study, we built Bayesian spatiotemporal models to detect the transfer of high-risk clusters of HB occurrence in Datong from 2005 to 2020. Geographically and Temporally Weighted Regression and GeoDetector were employed to investigate the synergistic driving effects of multiple potential risk factors. Results confirmed an evident dynamic expansion of HB from the east to the west and south in Datong. The distribution of HB showed a negative correlation with urbanization level, economic development, population density, temperature, precipitation, and wind speed, while a positive correlation with the normalized difference vegetation index, and grassland/cropland cover areas. Especially, the local animal husbandry and related industries imposed a large influence on the spatiotemporal distribution of HB. This work strengthens the understanding of how HB spatial heterogeneity is driven by environmental factors, through which helpful insights can be provided for decision-makers to formulate and implement disease control strategies and policies for preventing the further spread of HB.


Assuntos
Brucelose , Humanos , Animais , Teorema de Bayes , Brucelose/epidemiologia , Brucelose/veterinária , Fatores de Risco , China/epidemiologia , Criação de Animais Domésticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA